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Announcements and todays agenda
First part of assignment 1 was posted last weekend. I plan to assign
one or two more questions.
Today will be a short lecture without a break. If possible I will try to
find extra time later in the term.
I try to post the slides within a day or so of the lecture and usually
post what was discussed. This week, I have posted all the intended
slides although we only discussed slides 2-9, and 17-21. The ither
slides will be discussed next week.
Todays agenda

1 Some more comments on set packing. Obtaining an
O(
√
m)-approximation.

2 (k + 1)-claw free graphs.
3 Priority algorithms with revocable acceptance (for packing problems).

The “greedy” algorithm for weighted job interval scheduling.
4 Priority stcak algorithms. Not discussed
5 Chordal graphs. Not discussed
6 The random order model (ROM)

i
7 Start dynmaic programming Not discussed 2 / 1



Greedy algorithms for the set packing problem

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing, there is an Ω(s/ log s) hardness of
approximation assuming P 6= NP.

Set packing is the underlying allocation problem in what are called
combinatorial auctions as studied in mechanism design.

We will consider two “natural” greedy algorithms for the s-set
packing problem and a somewhat less obvious greedy algorithm for
the set packing problem. These greedy algorithms are all fixed order
priority algorithms.
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The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt)

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument.
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Two types of approximation arguments

Recall the argument for makespan on identical machines.
1 We identify some intrinsic limiting bounds for any solution including an

OPT solution; in this case average load/machine and processing time
for any job.

2 Then we relate the algorithmic solution (in this case the natural greedy
solution) to those bounding factors.

3 We will see something similar when consider “LP rounding”.

We now consider a different type of argument. Namely a charging
argument.

We will consider this in the context of a maximization problem,
namely the charging argument for Greedywt for s-set packing.

1 We will charge the weight of every set in an OPT solution to the first
set in the greedy solution with which it intersects.

2 How many sets in OPT can be charged to the same set in Greedywt?
3 If say set Si ∈ OPT is being charged to Sj ∈ Greedywt , then we know

wi ≤ wj .

5 / 1



The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, greedy-by-weight-per-size is only an m-approximation
where m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation.
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Improving the approximation for greedy set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provide a√
m-approximation for the set packing problem. And as noted earlier, this

is essentially the best possible approximation assuming NP 6= ZPP.
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Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible restricting solutions to those of
cardinality at most k. Let G be the solution obtained by Greedywt applied
to sets of cardianlity at most

√
m/k . Set PGreedyk to be the best of

Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .
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(k + 1)-claw free graphs

A graph G = (V ,E ) is (k + 1)-claw free if for all v ∈ V , the induced
subgraph of Nbhd(v) has at most k independent vertices (i.e. does not
have a k + 1 claw as an induced subgraph).

(k + 1)-claw free graphs abstract a number of interesting applications.

In particular, we are interested in the (weighted) maximum
independent set problem (W)MIS for (k + 1)-claw free graphs. Note
that it is hard to approximate the MIS for an arbiitrary n node graph
to within a factor n1−ε for any ε > 0.

We can (greedily) k-approximate WMIS for (k + 1)-claw free graphs.

The (weighted) k-set packing problem is an instance of (W)MIS on
k + 1-claw free graphs. What algorithms generalize?

There are many types of graphs that are k + 1 claw free for small k;
in particular, the intersection graph of translates of a convex object in
the two dimensional plane is a 6-claw free graph. For rectangles, the
intersection graph is 5-claw free.
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Extensions of the priority model: priority with
revocable acceptances

For packing problems, we can have priority algorithms with revocable
acceptances. That is, in each iteration the algorithm can now eject
previously accepted items in order to accept the current item.
However, at all times, the set of currently accepted items must be a
feasible set and all rejections are permanent.

Within this model, there is a 4-approximation algorithm for the
weighted interval selection problem WISP (Bar-Noy et al [2001], and
Erlebach and Spieksma [2003]), and a ≈ 1.17 inapproximation bound
(Horn [2004]). More generally, the algorithm applies to the weighted
job interval selection problem WJISP resulting in an 8-approximation.

The model has also been studied with respect to the proportional
profit knapsack problem/subset sum problem (Ye and B [2008])
improving the constant approximation. And for the general knapack
problem, the model allows a 2-approximation.
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The Greedyα algorithm for WJISP
The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S s.t. (S/Ci ) ∪ {Ii} feasible
if v(Ci ) ≤ α · v(Ii ) then

S := (S/Ci ) ∪ {Ii}
end if

END FOR

Figure : Priority algorithm with revocable acceptances for WJISP

The Greedyα algorithm (which is not greedy by my definition) has a tight
approximation ratio of 1

α(1−α) for WISP and 2
α(1−α) for WJISP.
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Priority Stack Algorithms
For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is insure the minimality of the
solution; that is, while popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.
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Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E ) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi ) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence is chordal) by ordering the intervals such that
f1 ≤ f2 . . . ≤ fn. Using this ordering we know that there is a greedy (i.e.
priority) algorithm that optimally selects a maximum size set of non
intersecting intervals. The same algorithm (and proof by charging
argument) using a PEO for any chordal graph optimally solves the
unweighted MIS problem. The following priority stack algorithm provides
an optimal solution for the WMIS problem on chordal graphs.
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The optimal priority stack algorithm for the
weighted max independent set problem (WMIS) in
chordal graphs

Stack := ∅ % Stack is the set of items on stack
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
For i = 1..n

Ci := nodes on stack that are adjacent to vi
If w(vi ) > w(Ci ) then push vi onto stack, else reject

End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure : Priority stack algorithm for chordal WMIS
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A k-PEO and inductive k-independent graphs

An alternative way to describe a PEO is to say that
Nbhd(vi ) ∩ vi+1, . . . , vn} has independence number 1.

We can generalize this to a k-PEO by saying that
Nbhd(vi ) ∩ vi+1, . . . , vn} has independence number at most k .

We will say that a graph is an inductive k-independent graph is it has
a k-PEO.

Inductive k-independent graphs generalize both chordal graphs and
k + 1-claw free graphs.

The intersection graph induced by the JISP problem is an inductive
2-independent graph.

The intersection graph induced by axis parallel rectangles in the plane
are inductive 4-independent.

The priority stack algorithm is a k-approximation algorithm for WMIS
wrt inductive k-independent graphs.
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More extensions of the priority model

So far we have been implicitly assuming deterministic priority
algorithms. We can allow the ordering and/or the decisions to be
randomized.

A special case of fixed priority with randomized orderings is when the
input set is ordered randomly without any dependence on the set of
inputs. In the online setting this is called the random order model.

The revocable acceptances model is an example of priority algorithms
that allow reassignments (of previous decisions) to some extent or at
some cost.

The partial enumeration greedy is an example of taking the best of
some small set of priority algorithms.

Priority stack algorithms are an example of 2-pass (or multi-pass)
priority algorithms where in each pass we apply a priority algorithm.
Of course, it has to be well specified as to what information can be
made available to the next pass.

16 / 1



The random order model (ROM)

Motivating the random order model

The random order model provides a nice compromise between the often
unrealistic negative results for worst case (even randomized) online
algorithms and the often unrealistic setting of inputs being generated by
simple distributions.

In many online scenarios, we do not have realistic assumptions as to
the distributional nature of inputs (so we default to worst case
analysis). But in many appliications we can believe that inputs do
arrive randomly or more precisely uniformly at random.

The ROM can be (at least) traced back to what is called the
(classical) secretary (aka marriage or dowry) problem, popularized in
a Martin Gardner Scientific American article.

As Fiat et al (SODA 2015) note, perhaps Johannes Kepler
(1571-1630) used some secretary algorithm when interviewing 11
potential brides over two years.
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The secretary problem

The classical problem (which has now been extended and studied in many
different variations is as follows:

The classic problem (as in the Gardiner article) assumes an
adversarially chosen set of distinct values for (say N) items that arrive
in random order (e.g. candidates for a position, offers for a car, etc.).
N is assumed to be known.

Once an item (e.g. secretary) is chosen, that decision is irrevocable.
Hence, this boils down to finding an optimal stopping rule, a subject
that can be considered part of stochastic optimization.

The goal is to select one item so as to maximize the probability that
the item chosen is the one of maximum value.

For any set of N values, maximizing the probability of choosing the
best item immediately yields a bound for the expected (over the
random orderings) value of the chosen item. For an “ordinal
algorithm”, these two measures are essentially the same. Why?
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The secretary problem continued

It is not difficult to show that any deterministic or randomized
(adversarial order) online algorithm has competitive ratio 1 at most
O( 1

N ). Hence the need to consider the ROM model to obtain more
interesting (and hopefully more meaningful) results.

We note (and this holds more generally) that “positive results” for
the ROM model subsume the stochastic optimization scenario where
inputs are generated by an unknown (and hence known) i.i.d. process.
Why?

There are many variations and extensions of the secretary problem
some of which we will consider.

In general, any online problem can be studied with respect to the
ROM model.

1Recall that for maximization problems, competitive and approximation ratios can
sometimes presented as fractions α = ALG

OPT
≤ 1 and sometimes as ratios c = OPT

ALG
≥ 1. I

will try to follow the convention mainly used in each application.
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The optimal stopping rule for the classical secretary
problem

The amusing history of the secretary problem and the following result is
taken up by Ferguson in a 1989 article.

Theorem: For N and r , there is an exact formula for the probability of
selecting the maximum value item after observing the first r items, and
then selecting the first item (if any) that exceeds the value of the items
seen thus far. In the limit as N →∞, the optimal stopping rule is to
observe (i.e. not take) the first r = N/e items. The probability of
obtaining the best item is then 1/e and hence the expected value of the
item chosen is at least 1

e vmax .
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Variations and extensions of the secretary problem

Instead of maximizing the probability of choosing the best item, we
can maximize the expected rank of the chosen item.

Perhaps the most immediate extension is to be choosing k elements.

This has been generalized to the matroid secretary problem by
Babaioff. For arbitrary matroids, the approximation ratio remains an
open problem.

Another natural extension is to generalize the selection of one item to
the online (and ROM) edge weighted bipartite matching problem,
where say N = |L| items arrive online to be matched with items in R.
In online matching the goal is usually to maximize the size (for the
unweighted case) or weight of a maximum matching.

I plan to discuss online matching and the extension to the adwords
problem where the online nodes L represent advertisers/bidders with
budgets and preferences/values for the R nodes representing
keywords/queries.
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Dynamic programming and scaling
We now move on to one of the main objects of study in an undergraduate
algorithms course.

We have previously seen that with some use of brute force and
greediness, we can achieve PTAS algorithms for the identical
machines makespan which is polynomial in the number n of jobs but
exponential in the number m of machines and 1

ε where 1 + ε is the
approximation guarantee.
For the knapsack problem we had a PTAS that was polynomial in n
and exponential in 1

ε . .
We now consider how dynamic programming (DP) can be used to
acheive a PTAS for the makespan problem which is polynomial in m
and n, and how to achieve an FPTAS for the knapsack problem.
To achieve these improved bounds we will combine dynamic
programming with the idea of scaling inputs to improve the results for
knapsack and identical machine makespan.
NOTE: Defining “useful” precise models of DP algorithms is
challenging.
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An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in the numeric value
v (rather than the encoded length |v |) of the input values.

Define S [j , v ] = the minimum size s needed to achieve a profit of at least
v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we give in the form of an array) such
that

1 the desired result can be easily obtained from this array

2 each entry of the array can be easily computed given “previous
entries”
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How to compute the array S [j , v ] and why is this
sufficient

1 The value of an optimal solution is max{v |S [n, v ] is finite}.
2 We have the following equivalent recursive definition that shows how

to compute the entries of S [j , v ] for 0 ≤ j ≤ n and v ≤
∑n

j=1 vj .
I Basis: S [0, v ] =∞ for all v
I Induction: S [j , v ] = min{A,B} where A = S [j − 1, v ] and

B = S [j − 1,max{v − vj , 0}] + sj .

3 It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.

4 For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.

5 The running time is O(n,V ) where V =
∑n

j=1 vj .
6 Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])

is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility.
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The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2

.

We will need a combinaton of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.
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The high level idea of the makespan PTAS

Let T be a candidate for an achievable makespan value. Depending
on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled values of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a soluton that achieves
makespan T .

If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

We use binary search to find a good T .
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The optimal DP for makespan on identical machines
when there is a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of szie zi .

The array we will use to obtain the desired optimal makespan is as
follows:
M[x1, . . . , xd ] = the minimum number of machines needed to
schedule ixi jobs having size zi within makespan T . (Here we can
assume T ≥ max pi ≥ max zi so that this minimum is finite.)

The n jobs can be scheduled within makespan T iff M[n1, , nd ] is at
most m.
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