
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

Allan Borodin

April 2, 2015; Lecture 12

1 / 1



Annoucements and Todays Agenda

Announcements

1 Assignment 3 is due Tuesday, April 7. I am not here next week so
please send by email (if possible) and cc lalla@cs). If submitting hard
copy, please contact Lalla to arrange where to drop off assignment.

2 If you are an undergraduate planning to graduate this term, then please
email me so that I can be sure that your assignments are graded first
and a grade is calculated in time for you to graduate.

Todays agenda

1 The Miller-Rabin randomized primality test
2 Monotone submodular maximization subject to matroid and

independence constraints and the return of non-oblivious local search.
3 The Lovasz Local lemma and the Moser-Tardos algorithm for finding a

satisfying instance of an exact k-SAT formula in which every clause C
shares a variable with at most d < 2k/e other clauses.

4 Spectral methods
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Some basic number theory we need for primality
testing

Z ∗N = {a ∈ ZN : gcd(a,N) = 1} is a (commutative) group under
multiplication mod N.

If N is prime, then

1 For a 6= 0(modN), aN−1 = 1(modN).
2 Z∗N is a cyclic group; that is there exists a generator g such that
{g , g2, g3, . . . , gN−1} (all mod N) is the set Z∗N . This implies that
g i 6= 1(modN) for any 1 ≤ i < N − 1.

3 There are exactly two square roots of 1 in Z∗N , namely 1 and -1.

The Chinese Remainder Theorem: Whenever N1 and N2 are relatively
prime (i.e. gcd(N1,N2) = 1), then for all v1 < N1 and v2 < N2, there
exists a unique w < N1 · N2 such that v1 = w (mod N1) and
v2 = w(mod N2).
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A simple but “not quite” correct algorithm

We also need two basic computational facts.

1 ai mod N can be computed efficiently.

2 gcd(a, b) can be efficiently computed.

The following is a simple algorithm that works except for an annoying set
of nunbers called Carmichael numbers.

Simple algorithm ignoring Carmichael numbers

Choose a ∈ ZN uniformly at random.
If gcd(a,N) 6= 1, then Output Composite
If aN−1 mod N 6= 1, then Output Composite
Else Output Prime
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When does the simple algorithm work?

S = {a|gcd(a,N) = 1 and aN−1 = 1} is a subgroup of Z ∗N
If there exists an a ∈ Z ∗N such that gcd(a,N) = 1 but aN−1 6= 1, then
S is a proper subgroup of Z ∗N .

By Lagrange’s theorem, if S is a proper subgroup, |S | must divide the
order of the group so that if |S | ≤ N−1

2

Thus the simple algorithm would be a 1-sided error algorithm with
probabiltiy < 1

2 of saying Prime when N is Composite.

The only numbers that give us trouble are the Carmichael numbers
(also known as false primes) for which aN−1 for all a such that
gcd(a,N) = 1.

It was only recently (relatively speaking) that in 1994 it was proven
that there are an infinite number of Carmichael numbers.

The first three Carmicahel numbers are 561, 1105, 1729
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Miller-Rabin 1-sided error algorithm

Let N − 1 = 2tu with u odd %Since wlg. N is odd, t ≥ 1
Randomly choose non zero a ∈ ZN %Hoping that a will be composite
certificate
If gcd(a,N) 6= 1 then report Composite
x0 = au %All computation is done mod N
For i = 1 . . . t

xi := x2i−1
If xi = 1 and x i−1 /∈ {−1, 1}, then report Composite

End For
If xt 6= 1, then report Composite %x t = xN−1

Else report Prime
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Analysis sketch of Miller-Rabin

Let S be the set of a ∈ N that pass (i.e. fool) the Rabin-Miller test.

S is a subgroup of Z ∗N . We want to show that S is a proper subgroup
and then as before by Langrange we will be done.

It suffices then to find one element w ∈ Z ∗N that will not pass the
Miller-Rabin test.
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Matroids and independence systems

Let M = (U,F), where U is a set of elements, F ⊆ 2|U|; I ∈ F is
called an independent set.
An (heriditary) independence system satisfies the following properties:
1) ∅ ∈ F ; often stated although not necessary if F 6= ∅
2) S ⊆ T ,T ∈ F ⇒ S ∈ F
A matroid is an independence system that also satisfies:
3) S ,T ∈ F , |S | < |T |, then ∃x ∈ T \ S such that S ∪ {x} ∈ F
Sets having at most k elements constitute the independent sets in a
uniform matroid

Other common examples, include
1 partition matroids where U is the disjoint union U1 ∪ U2 . . . ∪ Ur and

there are individual cardiality constraints ki for each block Ui of the
partition.

2 Graphic matroids where U is the set of edges E in a graph G = (V ,E )
and E ′ ⊆ E is independent if G = (V ,E ′) is acyclic.

3 Linear matroids where U is a set of vectors in a vector space and I is
independent in the usualy sense of linear independence.
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Matroids, k-independence systems and the natural
greedy algorithm

Beautiful development starting in the 1950’s with the work of
Rado[1957], Gale[1968] and Edmonds[1970,71], (extended by Korte
and Lovász[1980,1984], and others) as to contexts in which “the
natural” greedy algorithm will produce an optimal solution.

In particular, matroids characterize those hereditary set systems for
which the natural greedy algorithm (determined by the order
c1 ≥ c2 . . . for maximization) will optimize any linear objective
function

∑
xi∈I cixi subject to the constraint that I is an independent

set in a matroid M = (U, I).

Here the best known example is perhaps the minimum (or maximum)
spanning tree problem where the edges of a graph are the elements
and the indepedent sets are forests in the graph. Kruskal’s greedy
algorithm is the natural greedy MST algorithm.
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More general independence systems

There are many equivalent ways to define matroids. In particular, the
exchange property immediately implies that in a matroid M every maximal
independent set (base) has the same cardinality, the rank of M. We can
also define a base for any subset S ⊆ U. Matroids are those independence
systems where all bases have the same cardinality.
A (Jenkyns) k-independence system satisfies the weaker property that for

any set S and two bases B and B ′ of S , |B||B′| ≤ k . Matroids are precisely
the case of k = 1.
Examples:

The intersection of k matroids

Mestre’s k-extendible systems where the matroid exchange property is
replaced by : If S ⊆ T and S ∪ {u} and T are independent, then
∃Y ⊆ T − S : |Y | ≤ k and T − Y ∪ {u} is independent.

Independent sets in k + 1 claw free graphs. In such graphs, the
neighbourhood of every node has at most k independent vertices.
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The standard greedy algorithm for k-systems and
k + 1 claw free graphs

Jenkyns shows that the standard greedy algorithm is a k-approximation for
maximizing a linear function subject to independence in a k-independence
system. It follows that the standard greedy algorithm is a k-approximation
for independence in a k + 1 claw free graph.
This implies constant approximations for many classes of graphs, in
particular for many types of graphs induced by intersections of geometric
objects.
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Monotone submodular function maximization
As previously mentioned, the monotone problem is only interesting
when the submodular maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k )k

approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}

End While
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Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint. Matroids
are an elegant abstraction of independence in a variety of settings.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and the 1-exchange local search algorithm achieve a 1

2
approximation for an arbitrary matroid constraint.

They also showed that this bound was tight for greedy and for the
1-exchange local search.
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Achieving the 1− 1
e approximation for arbitrary

matroids

An open problem for 30 years was to see if the 1− 1
e approximation

for the cardinality constraint could be obtained for arbitrary matroids.

Calinsecu et al [2007, 2011] positively answer this open problem using
a very different (than anything in our course) algorithm consiting of a
continuous greedy algorithm phase followed by a pipage rounding
phase.

Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide the development) a sophisticated
non-oblivious local search algorithm that is also able to match the
1− 1

e bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.

14 / 1



Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E , a weight function w : E → <≥0 and a collection of
of subsets F = {F1, . . . ,Fn} of E . The goal is to find a subset of indices S
(subject to a matroid constraint) so as to maximize f (S) = w(∪i∈SFi )
subject to some constraint (often a cardinality or matroid constraint).
Note: f is a monotone submodular function.

In a matroid, all maximal independent sets have the same size; the
rank of a matroid is the size of the largest maximal independent set.
Conversely, if all maximal independent sets in an independence system
M have the same size, then M is a matroid.

For ` < r = rank(M), the `-flip oblivious local search for max
coverage has locality gap r−1

2r−`−1 →
1
2 as r increases. (Recall that

greedy achieves 1
2 .)
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The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask (as we did for Max-k-Sat), when is one solution better
than the other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u, S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1−−1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .
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The very high level idea and the locality gap

The high-level idea behind the derivation is like the factor revealing
LP used by Jain et al [2003]; namely, they formulate an LP for an
instance of rank r that determines the best obtainable ratio (by this
approach) and the {αi} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1− 1
e − ε) and

runs in time O(ε−1r2|F||U| log r)
The ε in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U|2 log r).
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A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each Fi . For a general monotone submodular
function we no longer have these weights.

Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.

A weight is given to the average value of all solutions obtained from a
solution S by deleting i elements and this corresponds roughly to the
extra weight given to elements covered i + 1 times in the max
coverage case.

The potential function is :

g(S) =
∑|S|

k=0

∑
T :T⊆S ,|T |=k

β
(|S|)
k

(|S|k )
f (T ) =

∑|S |
k=0 β

(|S|)
k ET [f (T )]
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One more non oblivious local search

We consider the weighted max (independent) vertex set in a k + 1
claw free graph. Note that this is the standard graph theoretic notion
of an indepedent set of vertices and this is not independence in a
matroid. The problem is that of finding an independent set S of
vertices so as to maximize a linear function f (S) (i.e. weights given
to vertices).

The concept of an independent set in a k + 1 claw free graph has
been abstracted by Feldman et al [2011] to an independence system
called k-exchange systems which are a proper subcase of Mestre’s
[2006] k-extendible systems which are a subcase of Jenkyn’s [1976] k
systems.

The work of Jenkyns and Nemhauser et al show that the standard
greedy algorithm is a 1

k approximation for weighted max independent
set in a Jenkyn’s k system.

It remains an open problem to improve upon the greedy approximation
for Mestre’s k extendible systems and Jenkyn’s k systems.
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Oblivious and non-oblivious local search for k + 1
claw free graphs

The standard greedy algorithm and the 1-swap oblivious local search
both achieve a 1

k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .

The standard greedy and 1-swap oblivious local search can be
extended to the case of submodular (rather than linear) functions on
the vertex sets. This results in a 1

k+1 approximation (locality gap).
The idea is to use marginal gain of an element (relative to the current
solution).

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 2

k+1 approximation.
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Berman’s [2000] non-oblivious local search
For the weighted MIS, the “`-swap” oblivous local search results
(essentially) in an 1

k locality gap for any constant `.
Chandra and Halldórson [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
k-swap oblivious local search improves the approximation ratio to 3

2k .
Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?
Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a large set V2 whose vertices have small
weights.
Berman chooses the potential function g(S) =

∑
v∈S w(v)2. Ignoring

some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
Linear function (resp. monotone submodular) maximization is
extended to k exchangeable systems in Feldman et al [2011] (resp.
Ward [2012]). Note: For the submodular case, the potential function
introduces some obstacles in using the marginal weight. 21 / 1



The Lovász Local Lemma (LLL)

Suppose we have a set of “bad” random events E1, . . . ,Em with
Prob[Ei ] ≤ p < 1 for each i . Then if these events are independent we
can easily bound the probability that none of the events has occurred;
namely, it is (1− p)m > 0.

Suppose now that these events are not independent but rather just
have limited dependence. Namely suppose that each Ei is dependent
on at most r other events. Then the Lovász local Lemma (LLL)
states that if e · p · (r + 1) is at most 1, then there is a non zero
probability that none of the bad events Ei occurred.

As stated this is a non-constructive result in that it does not provide a
joint event in which none of the bad events occured.

There are a number of applications of LLL including (Leighton,
Maggs, Rao) routing, thje restricted machines version of the Maxmin
“Santa Claus” problem and as we shall now see, solving exact k-SAT
under suitabl conditions on the clauses.
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A somewhat canonical application of the LLL

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be a an exact k CNF formula. From our
previous discussion of the exact Max-k-Sat problem and the naive
randomized algorithm, it is easy to see that if m < 2k , then F must
be satisfiable. (E [clauases satisfied] = 2k−1

2k
m > m− 1 when m < 2k .)

Suppose instead that we have an arbitrary number of clauses but now
for each clause C , at most r other clauses share a variable with C .

If we let Ei denote the event that Ci is not satisfied for a random
uniform assignment and hence having probability 1/(2k), then we are
interested in having a non zero probability that none of the Ei

occurred (i.e. that F is satisfiable).

The LLL tells us that if r + 1 ≤ 2k

e , then F is satisfiable.

As nicely stated in Gebauer et al [2009]: “In an unsatisable CNF
formula, clauses have to interleave; the larger the clauses, the more
interleaving is required.”
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A constructive algorithm for the previous proof of
satisfiability

Here we will follow a somewhat weaker version (for r ≤ 2k/8) proven
by Moser [2009] and then improved by Moser and G. Tardos [2010] to
give the tight LLL bound. This proof was succinctly explained in a
blog by Lance Fortnow

This is a constructive proof in that there is a randomized algorithm
(which can be de-randomized) that with high probability (given the
limited dependence) will terminate and produce a satisfying
assignment in O(mlogm) evaluations of the formula.

Both the algorithm and the analysis are very elegant. In essence, the
algorithm can be thought of as a local search search algorithm and it
seems that this kind of analysis (an information theoretic argument
using Kolmogorov complexity to bound convergence) should be more
widely applicable.
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The Moser algorithm

We are given an exact k-CNF formula F with m variables such that for
every clause C , at most r ≤ 2k/8 other clasues share a variable with C .

Algorithm for finding a satisfying truth assignment

Let τ be a random assignment
Procedure SOLVE

While there is a clause C not satisfied
Call FIX(C)

End While

Procedure FIX(C)
Randomly set all the variables occuring in C
While there is a neighbouring unsatisfied clause D

Call FIX(D)
End While
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Sketch of Moser algorithm

Suppose the algorithm makes at least s recursive calls to FIX. Then
n + s ∗ k random bits describes the algorithm computation up to the
sth call at which time we have some true assignment τ ′.

That is, te computation (if it halts in s calls is described by the n bits
to describe the initial τ and the k bits for each of the s calls to FIX.

Using Kolmogorov complexity, we state the fact that most random
strings cannot be compressed.

Now we say that r is sufficiently small if k − log v − c > 0 for some
constant c , Then the main idea is to describe these n + s ∗ k bits in a
compressed way if s is large enough and r is small enough.
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Moser proof continued

Claim: Any C that is satisfied before Fix(C) is called in SOLVE
remains satisfied.

Claim: Working backwards from τ ′ we can recover the original
n + s ∗ k bits using n + m logm + s(log r + c) bits; that is n for τ ′,
m logm for calls to FIX in SOLVE and log r + c for each recursive call.

Note: Here it is not stated, but the algorithm does not always
terminate
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The briefest introduction to spectral methods

Like other topics in the course, spectral methods and in particular
spectral graph theory and spectral graph algorithms is really a topic in
itself.

Spectral methods are becoming more and more important with
applications to many areas of research.

When we say spectral method, we mean algorithmic methods relying
on the eigenvalues and eigenvectors of a matrix. In particular, we will
just highlight some results relating to matrices coming from
undirected graphs.

An excellent set of (hand-written) lecture notes are by Lap Chi Lau.
These notea in turn s follow those of Dan Spielman who has been
central to the recent activity in this area.

I will just briefly introduce some terminology and give a glimpse of
one application of spectral graph theory.
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Spectral graph theory

For undirected graphs, the adjacency matrix A(G ) of a graph G is a
real symmetric matrix.

A non-zero (column) vector x is an eigenvector of A with eigenvalue
λ if Ax = λx .

(The spectrum of A or a graph G refers to the set of eigenvalues of A
(resp A(G )).

When A is a real symmetric matrix, then all the eigenvalues are real
and there is an orthonormal basis of Rn consisting the eigenvectors of
A. That is, the eigenvectors are orthogonal to each other and each
normalized to length = 1.

The question is what useful information about a graph can the
spectrum provide?
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The Laplacian

In spectral graph theory, it is often better to consider the Laplacian of
a graph which is defined as L(G ) = D(G )− A(G ) where D(G ) is the
diagonal matrix whose entries are the degrees of the vertices.

In particular if G were d regular, then any eigenvector of A(G ) with
eigenvalue λ is an eigenvector of L(G ) with eigenvalue d − λ and vice
versa.

The nice property of the Laplacian L(G ) is that it is a positive
semi-definite matrix which means that all its eigenvalues are
non-negative.

Furthermore, G is connected if and only if λ = 0 is an eigenvalue of
L(G ) with multiplicity 1. More generally, G has k connected
components iff 0 is an eigenvalue of multiplicity k .

Why is this interesting? Ordering so that λ1 ≤ λ2 . . . ≤ λn, we can
think of the two smallest eigenvalues being close iff the graph is
“close” to being disconnected iff there is a “sparse cut”.
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