
CSC2420 Spring 2015: Lecture 10

Allan Borodin

March 19, 2015

1 / 40



Announcements and todays agenda

Announcements

I The first 4 questions of the final assignment are now posted. I plan to
add at most one or two more questions.

Todays agenda

1 Filing in some details for the randomized rounding of LP.
2 Review rounding of vector program for Max-2-Sat.
3 Review of Random walks and application to 2-SAT.
4 Extending the random walk algorithm to k-SAT.
5 Whirlwind tour of online maximum matching and adwords problems.
6 Sublinear time algorithms

2 / 40



Filing in some details of the IP/LP for Max-Sat

Recall the weighted Max-Sat problem formulated as a {0, 1} IP.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi ) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1].

3 / 40



Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k )k . Then

Prob[Cj is satisifed ] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwjz

∗
j compared to

the LP-OPT contribution of wjz
∗
j .

Note that bk is a decreasing function (of k) and converges to (and is
always greater than) 1− 1

e as k increases. It follows that the expected
value of the rounded solution is at least (1− 1

e ) LP-OPT ≈ .632
LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.

4 / 40



Proof sketch of previous theorem

We consider an arbitrary clause Cj with k literals. By replacing any x̄i
by xi we can assume the clause has no negated variable and by
renaming we can assume that Cj = x1 ∨ x2 . . . ∨ xk .

Cj is satisfed if x1, . . . xk are not all set false. By the rounding
procedure, the probability of this happening is

1−
k∏
i

(1− yi ) ≥

(
1−

∑k
i (1− yi )

k

)k

by the arithmetic-geometric mean inequality

≥ 1− (1−
z∗j
k

)k

by the constraint
∑k

i yi ≥ zj and the concavity of the function
g(z) = 1− (1− z

k )k .

5 / 40



Review:The quadratic program for Max-2-Sat

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C ) of each clause C
in terms of these {−1, 1} variables.

1 val(xi ) = (1 + yiy0)/2
val(x̄i ) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C ) = 1− val(x̄i ∧ x̄j) = 1− ( 1−yiy0

2 )(
1−yjy0

2 ) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C ) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C ) = (3− yiy0 − yjy0 − yiyj)/4

6 / 40



The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi )

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.

7 / 40



The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856. It follows that

θ
π ≥ α( 1−cosθ

2 )

The rounded solution then has expected value

2
∑

aijProb[yi = yj ] + bijProb[yi 6= yj ] ; Prob[yi 6= yj ] =
θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

E[rounded solution] ≥ α · (OPTVP).

8 / 40



Random walks on graphs and 2-SAT walk
Let G = (V ,E ) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G ) be the expected time to visit every vertex, starting from u
and define C (G ) = maxu Cu(G ) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G ) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula. Can use
Markov inequality to obtain probability of not finding satisfying
assignment. 9 / 40



Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). We cn also view the approach as
a local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, following some earlier results, Schöning gave a very simple (a
good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

10 / 40



Schöning’s k-SAT algorithm
The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ( 4

3 )n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability ( 1

e )c .
11 / 40



Randomized online bipartite matching and the
adwords problem

We return to online algorithms and algorithms in the random order
model (ROM). Here we have already seen evidence of the power of
the ROM model (over all deterministic online algorithms) in the
context of the secretary problem. (See lecture 2.)

As we suggested in lecture 2, another nice sequence of results begins
with a randomized online algorithm for bipartite matching due to
Karp, Vazirani and Vazirani [1990].

We very quickly overview some results in this area as it represents a
topic of current interest.

In the online bipartite matching problem, we have a bipartite graph G
with nodes U ∪ V . Nodes in U enter online revealing all their edges.
A deterministic greedy matching produces a maximal matching and
hence a 1

2 approximation.

12 / 40



Bipartite matching and the secretary problem.
There are two weighted versions of the problem:

1 In the vertex weighted case, the vertices v ∈ V each have a weight
w(v) and the goal is to then to maximize the weight of a matching
where each edge (u, v) has weight w(v) for each online vertex u.

2 In more general edge weighted case, the edges of all online arriving
nodes u are revelaed along with their weights w(u, v) for each edge
(u, v).

Edge weighted online matching can be seen as an extension of the
secretary problem where the offline vertex set is just one node. But in
online matching, we are maximizing the unweighted number of edges
or the weight of a matching (in the weighted cases) and not the
probability of obtaining the best match.
Any deterministic online (resp.priority) algorithm for unweighted
matching cannot approximate better than 1

2 (resp 1
2 + ε) even for

degree at most 2 (resp. degree (n + 1)/2)).
Recall: For secretary problem (and hence edge weighted matching),
there cannot be an online deterministic or randomized constant
approximation algorithm.

13 / 40



The randomized ranking algorithm for unweighted
bipartite matching

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).

The Ranking algorithm achieves an (expected) approximation of
1− 1/e ≈ .63

Aside: making a random choice for each u is still only a 1
2 approx.

The analysis of this algorithm can be used to show that there is a
deterministic greedy algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.

14 / 40



The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and other proofs (e.g. in Birnbaum and Mathieu [2008]).

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727.

15 / 40



Some comments on the Birnbaum and Mathieu
proof

The worst case example a (n, n) graph with a perfect matching.

In particular, for n = 2, the precise expected competitive (i.e.
approximation) ratiois 3

4 . The inapproximation can be seen by using
the Yao principle for obtaining bounds on randomized algorithms.

The main lemma in the analysis

Let xt be the probability (over the random permutations of the vertices in
V ) that the vertex of rank t is matched. Then 1− xt ≤ 1

n

∑t
s=1 xs

Letting St =
∑t

s=1 xs the lemma can be restated as
St(1 + 1/n) ≥ 1 + St−1 fo all t. Given that the graph has a perfect
matching, the expected competitive ratio is Sn/n. It is shown that
1
nSn ≥ 1− (1− 1

n+1 )n → 1− 1/e.

16 / 40



Getting past the (1− 1/e) bound

As discussed in the secretary problem, the ROM model can be
considered as an example of what is called stochastic optimization in
the OR literature. There are other stochastic optimization models
that are perhaps more natural, namely i.i.d sampling from known and
unknown distributions.

Feldman et al [2009] study the known distribution case and show a
randomized algorithm that first computes an optimal offline solution
(in terms of expectation) and uses that to guide an online allocation.

They achieve a .67 approximation (improved to .699 by Bahmani and
Kapralov [2010] and to .705 by Manshadi et al [2011] and also show
that no online (randomized) algorithm can achieve better than
26/27 ≈ .963. Inapporximation has been improved to .823 by
Manshadi et al. This implies the same hardness for the unknown
distribution and ROM models.

In the unknown distrtibution model, Manshadi et al achieve a .702
approximation(almost matching their known distribution result).

17 / 40



Extensions of online bipartite matching

Weighted online matching

Adwords

Applying the ROM model to matching problems

Applying the determinstic priority to matching problems

Stochastic matching

Online with Reassignments

18 / 40



The adwords problem: an extension of bipartite
matching

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each advertiser also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets. Without budgets and when each advertiser will pay for at
most one query, the problem then is edge weighted bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.

19 / 40



Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).

20 / 40



Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.

21 / 40



Vertex weighted bipartite matching

Aggarwal et al [2011] consider the vertex weighted version of the
online bipartite matching problem where as we stated, the vertices
v ∈ V all have a known weight wv and the goal is now to maximize
the weighted sum of matched vertices in V when again vertices in U
arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve the same 1-1/e bound for this class of vertex weighted
bipartite matching.

22 / 40



The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e1−x

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (rv ). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.

23 / 40



The edge weighted algorithm in the ROM model

Kesselheim et al [ESA 2013] show how to extend the ideas of the ROM
secretary algorithm to obtain a 1

e approximation to the edge weighted
biparitite matching problem in the ROM model as well as extending this
idea to set packing (i.e. combinatorial auctions).

An Optimal Online Algorithm for Weighted Bipartite Matching 593

w(e) ∈ R≥0 of its incident edges. Most importantly, the vertices in L are revealed
online and in random order. The algorithm always has to either assign the current
vertex to one of its unmatched neighbors in R, or decide to leave it unassigned.

Our algorithm is a generalization of the classical approach to the secretary
problem. There, a constant fraction of the candidates is ignored. Then, when an
online candidate arrives that is better than all previous ones, it is selected. We
also start by sampling a constant fraction of the vertices on the left-hand side.
Afterwards, whenever a new vertex is presented to the algorithm, we compute
an optimum solution on the revealed part of the graph. If, in this local solution,
the current vertex on the left-hand side is assigned to an unmatched vertex, we
add this edge to our matching.

Algorithm 1. Bipartite online matching
Input : vertex set R and cardinality n = |L|
Output: matching M
Let L′ be the first ⌊n/e⌋ vertices of L;
M := ∅;
for each subsequent vertex ℓ ∈ L− L′ do // steps ⌈n/e⌉ to n

L′ := L′ ∪ ℓ;
M (ℓ) := optimal matching on G[L′ ∪R]; // e.g. by Hungarian method
Let e(ℓ) := (ℓ, r) be the edge assigned to ℓ in M (ℓ);
if M ∪ e(ℓ) is a matching then

add e(ℓ) to M ;

For convenience of notation, we will number the vertices in L from 1 to n in
the (random) order they are presented to the algorithm. Hence, we will use the
variable ℓ synonymously as an integer, the name of an iteration and the name
of the current vertex.

Lemma 1. Let the random variable Av denote the contribution of the vertex
v ∈ L to the output, i.e. the weight of the edge (v, r) assigned to v in M . And let
OPT be the value of a maximum-weight matching in the full graph G. For the
vertices ℓ ∈ {⌈n/e⌉, . . . , n} we have,

E [Aℓ] ≥
⌊n/e⌋
ℓ− 1 · OPT

n
.

Proof. First, we will show that the expected weight of e(ℓ), i.e. of the edge
assigned to vertex ℓ in the matching M (ℓ), is a significant fraction of OPT .
Then, we will analyze the probability of adding this edge to the matching M .

The proof relies on the fact that in any step k of the algorithm the choice of
the random permutation up to this point can be modeled as a sequence of the
following independent random experiments: First choose a set of size k from L.
Then determine the order of these k vertices by iteratively selecting a vertex at
random and removing it. We need this interpretation to exploit the randomness
in each of these experiments separately.

[Kesselheim et al edge weighted biparitite matching algorithm]

24 / 40



Online algorithms allowing reassignments
There is a substantial history of results in scheduling allowing various
forms of preemption. In the same spirit, we can allow online algorithms to
undo previous decisions at some cost or in some limited way.
In particular,

1 Bar-Noy et al [2001] and independently Erlebach and Spieksma [2012]
consider the weighted interval scheduling problem and the weighted
JISP problem and show constant approximations when previously
accepted intervals can be deleted and the requirement is that a
feasible schedule must always be maintained.

2 This revocable acceptance model can be applied to any packing
problem.

3 Gupta et al [2014] consider the makespan problem in the restricted
machines problem and show that when each job has size 1 (resp.
arbitrary size), an assignment can be maintained that is within twice
(resp. a factor O(log logmn)) of the optimal makespan while using
amortized O(1) reassignments per job.

4 This doesn’t say anything about the maximum matching problem as
to an algorithm that could tradeoff some reassignments for an
improved approximation.

25 / 40



Sublinear time and sublinear space algorithms

We continue to consider contexts in which randomization is provably
necessary. In particular, we will study sublinear time algorithms and then
the (small space) streaming model.

An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. As such an algorithm must provide an answer
without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.

The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.

The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.

This topic will take us beyond search and optimization problems.

26 / 40



A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi )
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time (and
hence sublinear in n2, the number of distances) algorithm; namely,
choose an arbitrary point x ∈ M and compute D = maxj d(x , xj). By
the triangle inequality, D is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an explicitly presented
space (such as d dimensional Euclidean space), the points could be
explicitly given as inputs and then the input size is n and not n2.

27 / 40



Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

We will consider the following examples:

1 Finding an element in an (anchored) sorted linked list
[Chazelle,Liu,Magen]

2 Estimating the average degree in a graph [Feige 2006]
3 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
4 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.

28 / 40



Finding an element in an (anchored) sorted list
Suppose we have an array A[i ] for 1 ≤ i ≤ n where each A[i ] is a pair
(xi , pi ) with x1 = min{xi} and pi being a pointer to the next smallest
value in the linked list.
That is, xpi = min{xj |xj > xi}. (For simplicity we are assuming all xj
are distinct.)
We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = xj .

A
√
n algorithm for searching in an anchored sorted linked list

Let R = {ji} be
√
n randomly chosen indices plus the index 1.

Access these {A[ji ]} to determine k such that xk is the largest of the
accessed array elements less than or equal to x .
Search forward 2

√
n steps in the linked list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when x ∈ {A[i ]}) will fail to
return j such that x = A[j ] with probability at most 1/2.

29 / 40



Estimating average degree in a graph

Given a graph G = (V ,E ) with |V | = n, we want to estimate the
average degree d of the vertices.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε) ). We will assume that we can access the degree di of
any vertex vi in one step.

Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/ε random subsets Si of V each of size (say)
√
n
ε3

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

30 / 40



The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But we will show that with
high probability these estimates will not be too bad. More precisely, we
need:

1 Lemma 1: Prob[ai <
1
2 (1− ε)d̄ ] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄ ] ≤ 1− ε
2

The probability bound in Lemma 2 is amplified as usual by repeated trials.
For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

31 / 40



Understanding the input query model
As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.
Feige’s algorithm for estimating the average degree uses only “degree
queries”; that is, “what is the degree of a vertex v”.
Feige shows that in this degree query model, that any algorithm that
acheives a (2− ε) approximation (for any ε > 0) requires time Ω(n).
In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.
Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
npoly(log n, 1

ε ))

They show that Ω(
√

(n/ε)) queries is necessary to achieve a (1 + ε)
approximation.

32 / 40



Approximating the size of a maximum matching in a
bounded degree graph

We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching. Let m be smallest possible
maximal matching.

Our goal is to compute with high probability a maximal matching in
time depending only on the maximium degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {ej}
% Note: this will be done “on the fly” as needed
The permutation determines a maximal matching M as given by the

greedy algorithm that adds an edge whenever possible.
Choose r = O(D/ε2) nodes {vi} at random
Using an “oracle” let Xi be the indicator random variable for whether

or not vertex vi is in the maximal matching.
Output m̃ =

∑
i=1...r Xi

33 / 40



Performance and time for the maximal matching

Claims

1 m ≤ m̃ ≤ m + ε n where m = |M|.
2 The algorithm runs in time 2O(D)/ε2

This immediately gives an approximation of the maximum matching
m∗ such that m∗ ≤ m̃ ≤ 2m∗ + εn

A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result

Let δ, ε > 0 and let k = d1/δe. There is a randomized one sided algorithm

(with probability 2/3) running in time 2O(Dk )

ε2k+1 that outputs a maximium

matching estimate m̃ such that m∗ ≤ m̃ ≤ (1 + δ)m∗ + εn.

34 / 40



Property Testing

Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite) or is
in some sense far away from that property.

The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “ε-far” from having the property. The tester
can answer either way if G does not have the property but is
“ε-close” to having the property.

We will usually have a 1-sided error in that we will always answer YES
if G has the property.

We will see what it means to be “ε-far” (or close) from a property by
some examples.

35 / 40



Tester for linearity of a function

Let f : Zn− > Zn; f is linear if ∀x , y f (x + y) = f (x) + f (y) .

Note: this will really be a test for group homomorphism

f is said to be ε-close to linear if its values can be changed in at most
a fraction ε of the function domain arguments (i.e. at most εn
elements of Zn) so as to make it a linear function. Otherwise f is said
to be ε-far from linear.

The tester

Repeat 4/ε times
Choose x , y ∈ Zn at random

If f (x) + f (y) 6= f (x + y)
then Output f is not linear

End Repeat If all these 4/ε tests succeed then Output linear

Clearly if f is linear, the tester says linear.

If f is ε-far from being linear then the probability of detecting this is
at least 2/3.

36 / 40



Testing a list for monotonicity

Given a list A[i ] = xi , i = 1 . . . n of distinct elements, determine if A is
a monotone list (i.e. i < j ⇒ A[i ] < A[j ]) or is ε-far from being
monotone in the sense that more than ε ∗ n list values need to be
changed in order for A to be monotone.

The algorithm randomly chooses 2/ε random indices i and performs
binary search on xi to determine if xi in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

Clearly the time bound is O(log n/ε) and clearly if A is monotone
then the tester reports monotone.

If A is ε-far from monotone, then the probability that a random binary
search will succeed is at most (1− ε) and hence the probability of the

algorithm failing to detect non-monotonicity is at most (1− ε)
2
ε ≤ 1

e2

37 / 40



Graph Property testing

Graph property testing is an area by itself. There are several models
for testing graph properties.

Let G = (V ,E ) with n = |V | and m = |E |.
Dense model: Graphs represented by adjacency matrix. Say that
graph is ε-far from having a property P if more than εn2 matrix
entries have to be changed so that graph has property P.

Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is ε-far from property P is at least εm edges
have to be changed.

In general there are substantially different results for these two graph
models.

38 / 40



The property of being bipartite

In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

Pick a random subset S of vertices of size r = Θ(
log( 1

ε
)

ε2 )
Output bipartite iff the induced subgraph is bipartite

Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

The claim is that if G is ε-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

The algorithm runs in time quadratic in the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).

39 / 40



Testing bipartiteness in the bounded degree model

Even for degree 3 graphs, Ω(
√
n) queries are required to test for being

bipartite or ε-far from being being bipartite. Goldreich and Ron [1997]

There is a nearly matching algorithm that uses O(
√
npoly(log n/ε))

queries. The algorithm is based on random walks in a graph and
utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/ε) times
Randomly select a vertex s ∈ V
If algorithm OddCycle(s) returns cylce found then REJECT

End Repeat
If case the algorithm did not already reject, then ACCEPT

OddCycle performs poly(log n/ε) random walks from s each of length
poly(log n/ε). If some vertex v is reached by both an even length and
an odd length prefix of a walk then report cycle found; else report odd
cycle not found

40 / 40


