
Appendix B

Probability Theory

In this appendix we provide a brief overview of probability theory. In theoretical computer science
and online algorithms in particular, we mostly deal with discrete probability spaces. Therefore, this
appendix focuses on discrete probability theory.

B.1 Probability Space, Events, and Random Variables

Definition B.1.1. A discrete probability space is a pair (⌦, p), where

• ⌦ is called the sample space and is simply a finite or an infinitely countable set,

• p is called the probability distribution and is a function p : ⌦ ! R�0 satisfying
P

!2⌦ p(!) = 1.

Definition B.1.2. For a finite probability space (⌦, p), p is called uniform if for all ! 2 ⌦ we have
p(!) = 1

|⌦| .

Definition B.1.3. An event E is a subset of ⌦, i.e., E ✓ ⌦.

Definition B.1.4. Given a set ⌦, the powerset of ⌦, denoted by 2
⌦, is defined as the set of all

subsets of ⌦, i.e.,
2
⌦
= {E | E ✓ ⌦}.

Note: if ⌦ is a sample space, then its powerset is the set of all possible events.

Given a discrete probability space (⌦, p), we extend the probability distribution p defined on ⌦

to be defined on the powerset of ⌦ in the natural way: for any event E ✓ ⌦ we define the probability
of event E is

Pr[E] =

X

!2E
p(!).

Note that Pr[{!}] = p(!).

Definition B.1.5. Let E1 and E2 be two events such that Pr[E2] 6= 0. The probability of E1

conditioned on E2, denoted by Pr[E1|E2], is defined as

Pr[E1|E2] =
Pr[E1 \ E2]

Pr[E2]
.
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Theorem B.1.1. Let E1, E2, . . . , En form a partition of the sample space ⌦, that is for all i 6= j
we have Ei \ Ej = ; and

S
i2[n]Ei = ⌦. Prove the law of total probability, which states for every

event A we have:
Pr[A] =

X

i2[n]

Pr[A \ Ei] =

X

i2[n]

Pr[A|Ei] Pr[Ei],

where the second equality only holds when Pr[Ei] 6= 0 for all i.

Definition B.1.6. Two events E1 and E2 are called independent if

Pr[E1 \ E2] = Pr[E1] Pr[E2].

Definition B.1.7. Events E1, . . . , En are called independent if for every subset I ✓ [n] of events
we have

Pr

"
\

i2I
Ei

#
=

Y

i2I
Pr[Ei].

Events E1, . . . , En are called pairwise independent if for all i 6= j we have

Pr[Ei \ Ej ] = Pr[Ei] Pr[Ej ].

Definition B.1.8. Let � be any set, and (⌦, p) be the discrete probability space. A �-valued random
variable X is a function X : ⌦ ! �. We are mostly interested in real-valued random variables,
which means � = R. From now on, when we write “random variable”, we mean real-valued random
variable, unless stated otherwise.

Observe that p itself is a random variable.

Definition B.1.9. Let X be a random variable and x 2 R be a real number. Notation “X = x” is
a short-hand for the event

{! | X(!) = x}.

The following exercise is both extremely easy and extremely important! It introduces the idea
of the probability distribution induced on the image of a random variable X. Keeping in mind the
distinction between the induced probability distribution and the true probability distribution can
often avoid a lot of confusion in arguments based on probability theory.

Exercise B.1. Let (⌦, p) be a discrete probability space and X be a random variable. Typically, X
is not one-to-one. Let =(X) denote the image of X. Observe that =(X) is either finite or countable.
For each x 2 =(X) we can define µ(x) := p(X = x).

Prove that (=(X), µ) is a probability distribution. Note: µ is called the probability distribution
induced by p on =(X).

You may use the following exercise to check your understanding.

Exercise B.2. Consider a randomized algorithm that takes n random unbiased independent bits
and outputs their sum. What is the sample space and the probability distribution associated with
this randomized experiment? Observe that the output of the algorithm can be viewed as a random
variable. What’s the definition of this random variable? What is the probability distribution induced
on the output of the algorithm (i.e., the image of the associated random variable).
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Observe that going from (⌦, p) and X to (=(X), µ) loses information — in general, you cannot
recover (⌦, p) from (X,µ) alone. In many scenarios, we are interested in the random variable itself
and its distribution (i.e., (=(X), µ)), and not the underlying probability space (i.e., (⌦, p)). In such
applications of probability theory, you will often see (=(X), µ) being specified explicitly and the
underlying probability space (⌦, p) omitted altogether! The unspoken agreement is that there is
always an implicitly defined (⌦, p) that could be made explicit with some (often tedious) work. As
can be seen, an explicitly defined (⌦, p) is usually not needed, since we can compute quantities of
X (e.g., its moments) of interest from (=(X), µ) alone.

B.2 Expected Value, Independence, and Conditioning

Definition B.2.1. The expected value of a random variable X is defined as

E[X] =

X

!2⌦
p(!)X(!).

Exercise B.3. Prove that

E[X] =

X

x2=(X)

xPr[X = x] =
X

x2=(X)

xµ(x).

The above exercise says that we don’t need to know (⌦, p) to compute E[X] — it suffices to
know (=(X), µ).

Exercise B.4. Prove the linearity of expectation. That is for random variables X and Y and real
numbers a and b we have

E[aX + bY ] = aE[X] + bE[Y ].

Note: the above equality holds unconditionally regardless of what X and Y are. It generalizes to an
any finite number of random variables via a straightforward induction.

Definition B.2.2. Random variables X1, . . . , Xn are called independent if for all x1, . . . , xn 2 R
the events X1 = x1, X2 = x2, . . . , Xn = xn are independent.

Exercise B.5. Prove that if X1, . . . , Xn are independent then X1, . . . , Xn�1 are independent.

Exercise B.6. Find two random variables X and Y such that

E[X · Y ] 6= E[X] · E[Y ],

where X · Y is the random variable that is the product of X and Y .

Exercise B.7. Prove that if X and Y are independent random variables then we have

E[X · Y ] = E[X] · E[Y ].

Definition B.2.3. Random variables X1, . . . , Xn are called pairwise independent if for all i 6= j
the variables Xi, Xj are independent.

Definition B.2.4. Let E be an event. The indicator random variable of event E, denoted by IE ,
is defined by

IE(!) =
⇢

1 if ! 2 E,
0 otherwise

Exercise B.8. Prove that the expected value of an indicator random variable is equal to the
probability of the event it is indicating. That is

E[IE ] = Pr[E].
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B.3 Variance and Basic Inequalities in Probability Theory

Theorem B.3.1 (Markov’s Inequality). Let X be a non-negative random variable, i.e., X � 0. For
any a > 0 we have

Pr[X � a] 
E[X]

a
.

Proof.

E[X] =

X

x2=(X)

xPr[X = x] =
X

0x<a

xPr[X = x] +
X

x�a

xPr[X = x]

�

X

x�a

xPr[X = x] �
X

x�a

aPr[X = x] = aPr[X � a].

Definition B.3.1. The variance of a random variable X, denoted by Var(X), is defined as

Var(X) = E[(X � E(X))
2
].

Exercise B.9. Prove that the variance can alternatively be written as

Var(X) = E[X2
]� E[X]

2.

Exercise B.10. Prove the following identity, where X is a random variable and a is a real number:

Var(aX) = a2Var(X).

Exercise B.11. Prove that if X1, . . . , Xn are pairwise independent random variables, then the
variance is additive:

Var(X1 + · · ·+Xn) = Var(X1) + · · ·Var(Xn).

Theorem B.3.2 (Chebyshev’s Inequality). Let X be a random variable and a be a real number.
Then we have

Pr[|X � E[X]| � a] 
Var(X)

a2
.

Proof.

Pr[|X � E[X]| � a] =Pr[(X � E[X])
2
� a2] 

E[(X � E[X])
2
]

a2
=

Var(X)

a2
,

where the inequality step is justified by the Markov’s Inequality applied to the nonnegative random
variable (X � E[X])

2.

Theorem B.3.3 (Jensen’s inequality). Let X be a random variable, and f : R ! R be a convex
function. Then we have

f(E[X])  E[f(X)].

Recall, that f is called convex if for all x1, x2 2 R and t 2 [0, 1] we have f(tx1 + (1 � t)x2) 

tf(x1) + (1� t)f(x2).

We state Jensen’s inequality without a proof, although the following exercise asks you to prove
it for finite probability spaces.
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Exercise B.12. Prove Jensen’s inequality for finite probability spaces. Hint: use the definition of
convexity and induction.

Notation: we write i.i.d. to stand for independent identically distributed. This term is applied
to a sequence of variables X1, . . . , Xn and is self-explanatory.

Markov and Chebyshev inequalities are often used to bound the probability of tail events or large
deviations of a random variable from the mean. The random variable of interest X often consists
of a number of i.i.d. variables Xi, e.g., X =

P
n

i=1Xi. In such cases, Markov and Chebyshev
inequalities give bounds that decay inverse polynomially in n, i.e., n�⇥(1). For Boolean Xi a much
stronger exponential decay can be shown as well. This is known as the Chernoff bound. This is then
often used in conjunction with a union bound over possibly exponentially many events to show that
none of such events take place with high probability. We state two forms of the Chernoff bound
without a proof.

Theorem B.3.4 (Chernoff bound (multiplicative form)). Let X1, . . . , Xn be i.i.d. random variables
taking values in {0, 1}. Let X =

P
n

i=1Xi. For any � > 0 we have

Pr[X  (1� �)E[X]]  exp

✓
�
�2E[X]

2

◆
, 0  �  1,

Pr[X � (1 + �)E[X]]  exp

✓
�
�2E[X]

2 + �

◆
, 0  �.

Theorem B.3.5 (Chernoff bound (additive form)). Let X1, . . . , Xn be i.i.d. random variables
taking values in {0, 1}. Let p = E(Xi) and let X =

P
n

i=1Xi. If p � 1/2 then for every x > 0 we
have

Pr[X � np > x]  exp

✓
�

x2

2np(1� p)

◆
.

The above bounds can be generalized slightly to work with martingales resulting in the famous
Azuma-Hoeffding inequality.

B.4 Martingales and Azuma-Hoeffding Inequality

A discrete-time martingale is a sequence of random variables arriving one at a time with some extra
restrictions. The main restriction says that the expected value of the arriving random variable
conditioned on all previous random variables is equal to the value of the most recent random
variable. Formally, it is stated as follows.

Definition B.4.1. A sequence of random variables X0, X1, . . . is called a discrete-time martingale
if for all i we have

• E[|Xi|] < 1

• E[Xi+1 | X0, X1, . . . , Xi] = Xi

Let Z0, Z1, . . . be another sequence of random variables. Then X0, . . . is called a martingale with
respect to the Zi if we have E[Xi+1 | Z0, Z1, . . . , Zi] = Xi in addition to E[|Xi|] < 1.

In the above, we used the notion of the expectation of a random variable conditioned on another
random variable. Before we define it formally, we define what it means for the expectation of a
random variable to be conditioned on an event.
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Definition B.4.2. Let X be a random variable, and E be an event such that P (E) > 0. The
expected value of X conditioned on E is defined as

E[X | E] =

X

x

xPr[X = x|E] =

X

x

xPr[X = x \ E]

Pr[E]
.

Now, we can define what it means to condition on a random variable.

Definition B.4.3. Let X and Y be random variables. The expected value of X conditioned on Y ,
denoted by E[X | Y ], is a random variable that is a function of values of y defined as follows:

E[X | Y ](y) = E[X | Y = y].

Observe that on the right-hand side we have the expected value of X conditioned on the event
“Y = y.”

Exercise B.13. Let X and Y be random variables. Prove the following identity:

E[E(X | Y )] = E[X].

Exercise B.14. Let X,Y and Z be random variables. Prove the following identity:

E[E[X | Y, Z] | Y ] = E[X | Y ].

Lastly, we state the Azuma-Hoeffding inequality without a proof.

Theorem B.4.1 (Azuma-Hoeffding inequality). Suppose Xi, i � 0, is a martingale (by itself or
with respect to another sequence) such that there exists constants di such that |Xi � Xi�1|  di
almost surely (with probability 1). Then for every n and x > 0 we have

Pr[|Xn �X0| � x]  2 exp

✓
�

x2

2
P

n

i=1 d
2
i

◆
.

Let’s go over an example of a problem that can be solved with the techniques just introduced.
Suppose that you have n bins and you throw n balls into the bins. Each time you throw a ball, it
has an equal chance of falling into one of the bins. How many empty bins are left after all n balls
have been thrown?

Let’s start by computing the expected value. Let Y denote the random variable that is equal
to the number of empty bins at the end of the process. Let Zi be the indicator random variable for
the event that bin i is empty at the end of the process. Then we have Y =

P
n

i=1 Zi. By linearity
of expectation, we have E[Y ] =

P
n

i=1 E[Zi] = nE[Z1], where the last equality follows since the
Zi are identically distributed. Now, using the fact that the expectation of the indicator random
variable is equal to the probability of the event that the random variable indicates, we get that
E[Z1] = (1� 1/n)n ⇡ e�1. This is because the probability that ball j misses bin 1 is 1� 1/n, and
all ball throws are independent. Therefore, we get that E[Y ] = n(1� 1/n)n ⇡ n/e.

Next, we show that the random variable Y is concentrated around its expected value. Let
Xi denote the bin into which ball i lands. Define Yi = E[Y | X1, X2, . . . , Xi]. Observe that
Y0 = E[Y ] = n(1� 1/n)n ⇡ n/e and Yn = Y . Also note that |Yi|  n for all i and

E[Yi | X1, X2, . . . , Xi�1] = E[E(Y | X1, . . . , Xi) | X1, . . . , Xi�1] = E[Y | X1, . . . , Xi�1] = Yi�1,

where the second equality follows from Exercise B.14. Thus, Yi is a martingale with respect to Xi.
Note that this construction is completely general — it is called Doob’s martingale. Lastly, observe
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that |Yi+1 � Yi|  1 since changing the bin into which ball i + 1 lands can affect the number of
non-empty bins by at most 1. Thus, applying Azuma-Hoeffding inequality to Yi we get

Pr[|Yn � Y0| � x]  exp

✓
�
x2

2n

◆
.

Thus, we get that Pr[|Y � n(1 � 1/n)n| � c
p
n]  exp(�c2/2). Taking c =

p
2 log n we get that

the probability that the number of empty bins at the end of the process deviates from n/e by an
additive term more than

p
2n log n is at most 1/n.

B.5 Exercises

1. Let E1, E2, . . . , En be events in ⌦. The following inequality is known as the union bound :

Pr

"
n[

i=1

Ei

#


nX

i=1

Pr[Ei].

Prove the union bound.

2. Let E1, E2, . . . , En be events in ⌦. The following equation is known as the inclusion-exclusion
formula:

Pr

"
n[

i=1

Ei

#
=

nX

i=1

Pr[Ei]�

X

1i1<i2n

Pr[Ei1 \ Ei2 ]+

+

X

1i1<i2<i3n

Pr[Ei1 \ Ei2 \ Ei3 ]� · · ·+ (�1)
n�1

Pr[E1 \ E2 \ · · · \ En]

=

nX

k=1

(�1)
k�1

X

I✓[n]:|I|=k

Pr[EI ],

where EI := \i2IEi. Prove the inclusion-exclusion formula.

3. Let E1 and E2 be two events such that Pr[E1],Pr[E2] 6= 0. The following equation is known
as the Bayes’ rule:

Pr[E1|E2] =
Pr[E2|E1] Pr[E1]

Pr[E2]
.

Prove it.

4. Is independence equivalent to Pr[E1|E2] = Pr[E1]?

5. Does independence of n events imply their pairwise independence? If yes, prove it. If not,
give a counter-example.

6. Does pairwise independence of n events imply their independence? If yes, prove it. If not,
give a counter-example.

7. Consider an exact 3-SAT formula (meaning each clause contains exactly 3 variables) with n
variables and m clauses, such that each variable is contained in at most k clauses. Generate an
assignment by setting each variable to either 0 or 1 uniformly at random and independently
of each other. What is the expected number of clauses satisfied by such random assignment?
Use Doob’s martingale together with Azuma-Hoeffding inequality to bound the probability
that the number of satisfied clauses deviates from the mean by more than ⇥(k

p
n).


