
1

Haim Kaplan, Uri Zwick
Tel Aviv University

May 2016
Last updated: June 7, 2017

Algorithms in Action
The Multiplicative Weights

Update Method

2

On each on of 𝑇 days:

𝑛 “experts” give us their prediction (Up/Down).
We need to make a binary decision (Up/Down).

Based on their advice, we make a choice.
We then find out whether our choice is correct.
If our choice is wrong, we pay a penalty of 1.

Our goal, of course, is to pay as little as possible.

If our choice is right, we do not pay anything.

“Using expert advice”
A basic binary setting

4

Days

1 2 3 4 5 Cost

Expert 1 U U D U U 1

Expert 2 D D D D D 3

Expert 3 U D U U D 4

Our decision U D D U U 2

Outcome U U D D U

“Using expert advice”
A basic binary setting

5

How well can we do?

We would like to do
almost as well as the best expert,

with hindsight.

If all “experts” are bad,
we cannot do too well.

“Using expert advice”
A basic binary setting

6

The Weighted Majority algorithm
[Littlestone-Warmuth (1994)]

Assign each expert a weight.
The weight of the 𝑖-th expert at day 𝑡 is 𝑤&

' .
On day 1, all weights are 1: 𝑤&

(= 1 , 𝑖 = 1,2, … , 𝑛.

At day 𝑡, predict Up or Down according to
the weighted majority of the experts.

Choose a parameter 0 < 𝜂 ≤ (
2.

Predict up, if ∑&∈5 6 𝑤&
' ≥ ∑&∈8 6 𝑤&

' ,
𝑈('), 𝐷(') – sets of experts predicting Up/Down at day 𝑡.

Update the weights:

𝑤&
'=(= >

𝑤&
' if 𝑖 was correct on day 𝑡

1 − 𝜂 𝑤&
' otherwise

7

The Weighted Majority algorithm
[Littlestone-Warmuth (1994)]

𝑐𝑜𝑠𝑡 Q (𝑊𝑀T) – Number of mistakes of 𝑊𝑀T up to time 𝑇.
𝑐𝑜𝑠𝑡 Q (𝐸𝑋𝑃&) – Number of mistakes of 𝐸𝑋𝑃& up to time 𝑇.

Theorem: For every 𝑖 = 1,2, … , 𝑛,

𝑐𝑜𝑠𝑡 Q 𝑊𝑀T ≤ 2 1 + 𝜂 𝑐𝑜𝑠𝑡 Q 𝐸𝑋𝑃& +
2 ln 𝑛
𝜂

In particular, the inequality holds for the best expert.

Thus, the cost of the Weighted Majority algorithm is only
slightly larger than twice the cost of the best expert!

(We can do even better using a randomized algorithm.)

8

The Weighted Majority algorithm
[Littlestone-Warmuth (1994)]

Theorem: For every 𝑖 = 1,2, … , 𝑛,

𝑐𝑜𝑠𝑡 Q 𝑊𝑀T ≤ 2 1 + 𝜂 𝑐𝑜𝑠𝑡 Q 𝐸𝑋𝑃& +
2 ln 𝑛
𝜂

Let 𝑊 ' = ∑&Z([𝑤&
' . Clearly, 𝑊 (= 𝑛.

If 𝑊𝑀T makes a mistake in day 𝑡, then

𝑊 '=(≤ (
2
+ (

2
1 − 𝜂 𝑊 ' = 1 − T

2
𝑊 ' .

𝑊 Q=(≤ 𝑛 1 − T
2

\]^' _ `ab

Proof:

𝑊 Q=(≥ 𝑤&
Q=(= 1 − 𝜂 \]^' _ cdef

9

The Weighted Majority algorithm
[Littlestone-Warmuth (1994)]

1 − 𝜂 \]^' _ cdef ≤ 𝑊 Q=(≤ 𝑛 1 −
𝜂
2

\]^' _ `ab

𝑐𝑜𝑠𝑡 Q 𝐸𝑋𝑃& ln 1 − 𝜂 ≤ 𝑐𝑜𝑠𝑡 Q 𝑊𝑀T ln 1 −
𝜂
2 + ln 𝑛

𝑐𝑜𝑠𝑡 Q 𝑊𝑀T ≤
ln 1 − 𝜂

ln 1 − 𝜂2
𝑐𝑜𝑠𝑡 Q 𝐸𝑋𝑃& +

ln 𝑛

−ln 1 − 𝜂2

Using 𝑥 ≤ −ln 1 − 𝑥 ≤ 𝑥 + 𝑥2, for 𝑥 ≤ (
2
.

≤
𝜂 + 𝜂2
𝜂
2

= 2 1 + 𝜂 ≤
ln 𝑛
𝜂
2

=
2 ln 𝑛
𝜂

10
𝑥 ≤ −ln 1 − 𝑥 ≤ 𝑥 + 𝑥2 , for 𝑥 ≤ (

2
.

−ln 1 − 𝑥

𝑥

𝑥 + 𝑥2

“Using expert advice”
A more general setting

On each on of 𝑇 days:

(Each one of 𝑛 “experts” suggests a course of action.)

We choose a (probability) distribution over the experts.

We pay the average cost according to the distribution chosen.

The costs of choosing each expert are revealed.
All costs are in [−1,1].

Our goal is to minimize our total cost.
Alternative interpretation: On each day a random expert is drawn
according to the distribution chosen. We pay the expected cost.

“Using expert advice”
A more general setting

Ex
pe

rts

Days

1 2 3 4 Cost

1

2

3

Our cost

14

The Multiplicative Weights algorithm
[Cesa-Bianchi, Mansour, Stoltz (2007)]

The weight of expert 𝑖 at day 𝑡 is 𝑤&
' .

𝑤&
(= 1 , 𝑖 = 1,2, … , 𝑛.

𝒑 ' =
𝑤(

' , 𝑤2
' , … , 𝑤[

'

𝑊 '

Choose a parameter 0 < 𝜂 ≤ (
2
.

Update the weights:
𝑤&

'=(= 𝑤&
' 1 − 𝜂 𝑚&

'

Let 𝒎 ' = 𝑚(
' ,𝑚2

' , … ,𝑚[
' be the costs at day 𝑡.

At day 𝑡 use the distribution:

𝑊 ' =n
&Z(

[

𝑤&
'

15

Theorem: Assume that 𝑚&
' ∈ [−1,1] and that 0 < 𝜂 ≤ (

2
.

Let 𝒑 ' be the distribution used by 𝑀𝑊T at day 𝑡.
Then, for every 𝑖 = 1,2, … , 𝑛,

n
'Z(

Q

𝒑 ' o 𝒎 ' ≤ n
'Z(

Q

𝑚&
' + 𝜂n

'Z(

Q

𝑚&
' 2

+
ln 𝑛
𝜂

The Multiplicative Weights algorithm
[Cesa-Bianchi, Mansour, Stoltz (2007)]

𝑐𝑜𝑠𝑡 Q (𝑀𝑊T) 𝑐𝑜𝑠𝑡 Q 𝐸𝑋𝑃&
≤ 𝜂n

'Z(

Q

𝑚&
'

The Multiplicative Weights algorithm
[Cesa-Bianchi, Mansour, Stoltz (2007)]

ln
𝑊 Q=(

𝑊 (= n
'Z(

Q

ln
𝑊 '=(

𝑊 ' = n
'Z(

Q

lnn
&Z(

[

𝑝&
' 1 − 𝜂 𝑚&

'

= n
'Z(

Q

ln 1 − 𝜂 𝒑 ' o 𝒎 ' ≤ −𝜂n
'Z(

Q

𝒑 ' o 𝒎 '

ln
𝑊 Q=(

𝑊 (≥ ln
𝑤&

Q=(

𝑛
= − ln 𝑛 +n

'Z(

Q

ln 1 − 𝜂 𝑚&
'

≥ − ln 𝑛 − 𝜂n
'Z(

Q

𝑚&
' − 𝜂2n

'Z(

Q

𝑚&
' 2

Using −𝑥 − 𝑥2 ≤ ln 1 − 𝑥 ≤ −𝑥 , for 𝑥 ≤ (
2
.

17

Applications of the
Multiplicative Weights algorithm
Learning a linear classifier (The Winnow algorithm)

Boosting the performance of weak learners (cf. Adaboost)

Approximately solving 0-sum 2-player games

Approximately solving packing Linear Programs

Special case: Multicommodity flow

Approximately solving Semidefinte Programs
Special case: SDP relaxation of MAX CUT

…
Approximately solving covering Linear Programs

18

Learning a Linear Classifier

𝜀 𝐱

Assume, w.l.o.g., that the hyperplane passes through
the origin and that 𝐱 ∈ ℝ= [, 𝟏 ⋅ 𝐱 = 1.

19

Learning a Linear Classifier

Assume there exists 𝐱 ∈ ℝ= [, 𝟏 ⋅ 𝐱 = 1,
such that 𝒂w ⋅ 𝐱 ≥ 𝜀, for 𝑗 ∈ [𝑚].

Find 𝐱′ ∈ ℝ= [, 𝟏 ⋅ 𝐱′ = 1,
such that 𝒂w ⋅ 𝐱′ ≥ 0, for 𝑗 ∈ [𝑚].

Let 𝒂(, 𝒂2, … , 𝒂z ∈ ℝ[,

𝜀 𝐱

Let 𝜌 = max
w

𝑎w �
.

20

Learning a Linear Classifier -
The Winnow algorithm [Littlestone (1987)]

Experts correspond coordinates (also known as features).

Run 𝑀𝑊T with 𝜂 = 𝜀/2𝜌.

In each iteration, if 𝒑 ' is a good classifier, stop.

Otherwise, let 𝑗 be such that 𝒑(') ⋅ 𝒂w < 0.

Let 𝒎(') = −𝒂w/𝜌.

Theorem: If there exists a classifier 𝐱∗ such 𝒂w ⋅ 𝐱∗ ≥ 𝜀,
𝑗 ∈ [𝑚], then Winnow finds a classifier 𝐱 such that 𝒂w ⋅ 𝐱 ≥ 0,

𝑗 ∈ [𝑚], after at most 𝑇 = ���

��
ln 𝑛 iterations.

21

Learning a Linear Classifier -
The Winnow algorithm [Littlestone (1987)]

For every coordinate (expert) 𝑖 we have:

n
'Z(

Q

𝒑 ' o 𝒎 ' ≤ n
'Z(

Q

𝑚&
' + 𝜂n

'Z(

Q

𝑚&
' +

ln 𝑛
𝜂

Thus, for every distribution 𝒑 we have:

n
'Z(

Q

𝒑 ' o 𝒎 ' ≤ n
'Z(

Q

𝒑 o 𝒎 ' + 𝜂n
'Z(

Q

𝒑 o 𝒎 ' +
ln 𝑛
𝜂

We choose 𝒑 = 𝐱∗.

22

The Winnow algorithm [Littlestone (1987)]

n
'Z(

Q

𝒑 ' o 𝒎 ' ≤ n
'Z(

Q

𝐱∗ o 𝒎 ' + 𝜂n
'Z(

Q

𝐱∗ o 𝒎 ' +
ln 𝑛
𝜂

n
'Z(

Q

𝒑 ' o
−𝒂w6
𝜌

≤ n
'Z(

Q

𝐱∗ o
−𝒂w6
𝜌

+ 𝜂n
'Z(

Q

𝐱∗ o
𝒂w6
𝜌

+
ln 𝑛
𝜂

𝒎 ' =
�𝒂�6
�

, for some 𝑗' such that 𝒂w6 o 𝒑
' < 0.

0 < ≤ −
𝜀𝑇
𝜌
= −2𝜂𝑇 ≤ 𝜂𝑇

𝜂𝑇 ≤
ln 𝑛
𝜂

𝑇 ≤
ln 𝑛
𝜂2 =

2𝜌
𝜀

2
ln 𝑛

23

0-sum 2-player matrix games

𝐴 =
1 0 2
3 1 −1
−2 4 1

ROW chooses a row 𝑖.
COLUMN chooses a column 𝑗.
ROW pays COLUMN 𝐴[𝑖, 𝑗].

2 = min
&
max
w
𝐴[𝑖, 𝑗] > max

w
min
&
𝐴 𝑖, 𝑗 = 0

No player wants to go first…
Suppose the players play simultaneously.

Playing deterministically is similar to playing first.

Use randomized (mixed) strategies.

24

0-sum 2-player matrix games

Randomized (mixed) strategy for ROW:
A distribution 𝒑 over the rows of 𝐴.

Randomized (mixed) strategy for COLUMN:
A distribution 𝒒 over the columns of 𝐴.

If ROW uses 𝒑 and COLUMN uses 𝒒,
the expected payoff is:

𝐴 𝒑, 𝒒 =n
&,w

𝑝&𝑞w𝐴[𝑖, 𝑗] = 𝒑Q𝐴𝒒

25

0-sum 2-player matrix games
Von Neumann’s min-max theorem:

min
𝒑
max
𝒒
𝐴 𝒑, 𝒒 = max

𝒒
min
𝒑
𝐴 𝒑, 𝒒

min
𝒑
max
w
𝐴 𝒑, 𝑗 max

𝒒
min
&
𝐴 𝑖, 𝒒

= =

min 𝑣
s.t. 𝒑Q𝐴 ≤ 𝑣𝟏Q

𝒑Q𝟏 = 1
𝒑 ≥ 0

max 𝑣
s.t. 𝐴𝒒 ≥ 𝑣𝟏
𝟏Q𝒒 = 1
𝒒 ≥ 0

= =

=

LP
Duality

26

0-sum 2-player matrix games

𝐴 =
1 0 2
3 1 −1
−2 4 1

ROW chooses a row 𝑖.
COLUMN chooses a column 𝑗.
ROW pays COLUMN 𝐴[𝑖, 𝑗].

2 = min
&
max
w
𝐴[𝑖, 𝑗] > max

w
min
&
𝐴 𝑖, 𝑗 = 0

What is the value and what are the optimal strategies?

(
�

(
�

(
�

6/11
3/11
2/11

1 0 2
3 1 −1
−2 4 1

value = 1

27

Solving 0-sum games approximately

Value and optimal strategies can be found by solving an LP.

Can be done in polynomial time, but relatively slowly.
In many situations a good approximation is sufficient.

W.l.o.g., assume that all entries of 𝐴 are in [0,1].
Let 𝑣∗ = 𝑣𝑎𝑙(𝐴) be the value of 𝐴. Let 𝜀 > 0.

𝒑 and 𝒒 are 𝜀-optimal strategies iff:

max
w
𝐴 𝒑, 𝑗 ≤ 𝑣∗ + 𝜀 min

&
𝐴 𝑖, 𝒒 ≥ 𝑣∗ − 𝜀

28

0-sum games using Multiplicative Updates
[Freund-Schapire (1999)]

Experts correspond to the 𝑛 rows of A.
A distribution over the experts is a mixed strategy for ROW.

In iteration 𝑡, the algorithm produces a distribution 𝒑 ' .
The cost vector 𝑚 ' is the column 𝑗 ' of 𝐴 maximizing 𝐴[𝒑 ' , 𝑗].

Theorem: If 𝑀𝑊T is run with 𝜂 = 𝜀/2 for 𝑇 = 4 ln 𝑛 /𝜀2

iterations, then the best strategy obtained is 𝜀-optimal for ROW.
If 𝐴 has 𝑚 columns, the total running time is 𝑂(z[�� [

��
).

An 𝜀-optimal strategy for COLUMN can also be found.

Note that 𝒑 � ⋅ 𝒎 ' = 𝐴 𝒑 ' , 𝑗 ' ≥ 𝑣∗.

29

0-sum games using Multiplicative Updates
[Freund-Schapire (1999)]

For any distribution 𝒑, and in particular 𝒑 = 𝒑∗, we have

n
'Z(

Q

𝐴(𝒑 ' , 𝑗 ') ≤ 1 + 𝜂 n
'Z(

Q

𝐴(𝒑∗, 𝑗 ') +
ln 𝑛
𝜂

𝑣∗ ≤ ≤ 𝑣∗ ≤ 1

𝑣∗ ≤
1
𝑇
n
&Z(

Q

𝐴 𝒑 ' , 𝑗 ' ≤ 𝑣∗ + 𝜂 +
ln 𝑛
𝜂𝑇

≤ 𝑣∗ + 𝜀

𝜂 = 𝜀/2
𝑇 = 4 ln 𝑛 /𝜀2

=
𝜀
2 ≤

𝜀
2

30

0-sum games using Multiplicative Updates
[Freund-Schapire (1999)]

𝑣∗ ≤
1
𝑇
n
'Z(

Q

𝐴 𝒑 ' , 𝑗 ' ≤ 𝑣∗ + 𝜀

For at least one 𝑡 we have:
𝐴 𝒑 ' , 𝑗 ' = max

w
𝐴 𝒑 ' , 𝑗 ≤ 𝑣∗ + 𝜀

Thus, if 𝑡 minimizes 𝐴 𝒑 ' , 𝑗 ' ,
then 𝒑 ' is 𝜀-optimal for ROW.

((
Q
∑'Z(Q 𝒑 ' is also 𝜀-optimal for ROW.)

31

0-sum games using Multiplicative Updates
[Freund-Schapire (1999)]

𝑣∗ ≤
1
𝑇
n
'Z(

Q

𝐴 𝒑 ' , 𝑗 ' ≤ 1 + 𝜂
1
𝑇
n
'Z(

Q

𝐴(𝑖, 𝑗 ') +
ln 𝑛
𝜂𝑇

≤ 𝐴 𝑖, 𝒒 + 𝜀

Let 𝒒 be such that 𝑞w = 𝑡 𝑗 ' = 𝑗 /𝑇.

For every 𝑖, 1
𝑇
n
'Z(

Q

𝐴 𝑖, 𝑗 ' = 𝐴(𝑖, 𝒒)

Hence, 𝑣∗ − 𝜀 ≤ 𝐴(𝑖, 𝒒), for every 𝑖,
so 𝒒 is 𝜀-optimal for COLUMN.

Rewards instead of costs
On day 𝑡 we get a reward vector 𝒓 ' , instead of a cost vector 𝒎 ' .

Maximize reward instead of minimizing cost.

Simply let 𝒎 ' = −𝒓 ' .

Multiplicative weight update:
𝑤&

'=(= 𝑤&
' 1 + 𝜂 𝑟&

'

Theorem: Assume that 𝑟&
' ∈ [−1,1] and that 0 < 𝜂 ≤ (

2
.

Let 𝒑 ' be the distribution used by 𝑀𝑊T at day 𝑡.
Then, for every 𝑖 = 1,2, … , 𝑛,

n
'Z(

Q

𝒑 ' o 𝒓 ' ≥ n
'Z(

Q

𝑟&
' − 𝜂n

'Z(

Q

𝑟&
' 2

−
ln 𝑛
𝜂

33

5

12

8

15

3

1

9

16

13

2

17

25

11

3018

22

Maximum Multicommodity Flow

13

8

22

𝑠(

𝑡(

𝑠2
𝑡2

𝑠�

𝑡�

Maximum Multicommodity Flow
𝐺 = (𝑉, 𝐸) – A directed graph (the flow network)

𝑐: 𝐸 → ℝ= – A capacity function

𝑠(, 𝑡(, 𝑠2, 𝑡2 , … , (𝑠�, 𝑡�) - 𝑘 source-sink pairs.

Maximize the total flow, i.e., the flow sent from 𝑠(to 𝑡(,
plus the flow sent from 𝑠2 to 𝑡2, etc.

Different commodities can share the edges of the network.

The total flow on an edge should not exceed its capacity.

Exercise: Express the maximum multicommodity flow
as a linear program of polynomial size. (Hint: For every
edge 𝑒 introduce 𝑘 flow variables 𝑓(𝑒 , 𝑓2 𝑒 ,…𝑓� 𝑒 .

35

Maximum Multicommodity Flow
We use a different LP formulation of the problem

of possibly exponential size (!)

Let ℙ be the set of simple directed paths from 𝑠(to 𝑡(,
and from 𝑠2 to 𝑡2, etc.

For 𝑝 ∈ ℙ, let 𝑓¢ ≥ 0 be a variable that expresses the flow,
of the appropriate commodity, on 𝑝.

We want to maximize ∑¢∈ℙ 𝑓¢
subject to 𝑓£ = ∑¢∋£ 𝑓¢ ≤ 𝑐£, for every 𝑒 ∈ 𝐸.

max∑¢∈ℙ 𝑓¢
s.t. ∑¢∋£ 𝑓¢ ≤ 𝑐£ ,	𝑒 ∈ 𝐸

𝑓¢ ≥ 0 , 𝑝 ∈ ℙ

A polynomial time 1 − 𝜀 -approximation algorithm.

Maintain a weight function 𝒘 ' (~ 𝒑 ') on the edges.

Find a shortest path 𝑝 ' ∈ ℙ w.r.t. 𝑤£
' /𝑐£.

Route 𝑐 ' units of flow on 𝑝 ' , where 𝑐 ' = min
£∈¢(6)

𝑐£.

Define 𝑟£
' = ⁄𝑐 ' 𝑐£ ∈ [0,1], if 𝑒 ∈ 𝑝 ' , and 𝑟£

' = 0, otherwise.

Use Multiplicative weight updates with 𝜂 = 𝜀/2.

Let 𝑓£ be the total flow so far on 𝑒. Stop when ∃𝑒 𝑓£/𝑐£ ≥ (ln𝑚)/𝜂2.

Down-scale the flow 𝒇 to establish all capacity constraints.

Maintain a flow 𝒇 = 𝒇 𝒕 (may violate the capacity constraints).

In each iteration:

Maximum Multicommodity flow
[Garg-Könemman (2007)]

Our presentation follows [Arora-Hazan-Kale (2012)].

Maximum Multicommodity flow
[Garg-Könemman (2007)]

n
'Z(

Q

𝒑 ' o 𝒓 ' ≥ 1 − 𝜂 n
'Z(

Q

𝑟£
' −

ln𝑚
𝜂

, ∀ 𝑒 ∈ 𝐸

= 𝑓£/𝑐£

n
'Z(

Q

𝒑 ' o 𝒓 ' =n
'Z(

Q ∑£∈¢ 6 𝑤£
' ⋅ 𝑐

'

𝑐£
∑£∈c 𝑤£

' =n
'Z(

Q

𝑐 '
∑£∈¢ 6

𝑤£
'

𝑐£
∑£∈c 𝑤£

'

Let 𝒇]¢' be the optimal flow and let 𝐹]¢' = ∑¢∈ℙ𝑓¢
]¢'

≤ 1/𝐹]¢'≤
1

𝐹]¢'
n
'Z(

Q

𝑐 ' =
𝐹
𝐹]¢'

(See next slide.)

38

Maximum Multicommodity flow
[Garg-Könemman (2007)]

∑£∈c𝑤£
∑£∈¢

𝑤£
𝑐£

≥
∑£∈c 𝑤£ ⋅ ∑¢®∋£

𝑓¢®
]¢'

𝑐£
∑£∈¢

𝑤£
𝑐£

Let 𝒇]¢' be the optimal flow and let 𝐹]¢' = ∑¢∈ℙ𝑓¢
]¢'

Let 𝑤£ be arbitrary (non-negative) edge weights.

Let 𝑝 ∈ ℙ be a shortest path w.r.t. edge lengths 𝑤£/𝑐£.

=
∑¢®∈ℙ𝑓¢®

]¢' ∑£∈¢®
𝑤£
𝑐£

∑£∈¢
𝑤£
𝑐£

≥ n
¢®∈ℙ

𝑓¢®
]¢' = 𝐹]¢'

≤ 1

≥ 1

39

Maximum Multicommodity flow
[Garg-Könemman (2007)]

𝐹
𝐹]¢'

≥ n
'Z(

Q

𝒑 ' o 𝒓 ' ≥ 1 − 𝜂 max
£

𝑓£
𝑐£

−
ln𝑚
𝜂

≥ 1 − 2𝜂 𝐶

= 𝐶Maximum congestion Upon termination:

𝐶 ≥
ln𝑚
𝜂2𝐹

𝐹]¢'
≥ 1 − 2𝜂 𝐶

Scale down the flow by 𝐶 :

𝐹
𝐶

≥ 1 − 2𝜂 𝐹]¢' = (1 − 𝜀)𝐹]¢'

𝐹/𝐶 is an 1 − 𝜀 -approximate maximal flow!

40

Maximum Multicommodity flow
[Garg-Könemman (2007)]

How many iterations are needed?

We stop the algorithm when maximum congestion 𝐶 ≥ ��z
T� .

Each iteration adds 1 to the congestion of at least one edge.

Thus, number of iterations is at most 𝑚 ��z
T� .

Total running time is 𝑂 z ��z
�� 𝑘 𝑇 ¢(𝑚) = °𝑂 �z�

�� .

[Fleisher (2000)] reduced the running time to °𝑂 z�

��
.

Positive Semidefinite Programming
max 𝐶 • 𝑋
s.t. 𝐴w • 𝑋 ≤ 𝑏w , 𝑗 ∈ 𝑚

𝑋 ≽ 0

𝑋, 𝐴(, … , 𝐴z ∈ ℝ[×[, 𝑏(, … , 𝑏z ∈ ℝ

𝐴 • 𝐵 = ∑&,w 𝑎&,w𝑏&,w (matrix inner product)

𝐴 ≽ 0 ((symmetric) positive semidefinite)
⟺ 𝒙Q𝐴𝒙 ≥ 0 for every 𝒙 ∈ ℝ[

Can also be approximated using multiplicative updates.
Interesting application:

Approximation algorithm for MAX CUT

42

Bibliography
Sanjeev Arora, Elad Hazan, Satyen Kale,

The Multiplicative Weights Update Method:
A Meta-Algorithm and Applications,

Theory of Computing, Volume 8 (2012), pp. 121-164

http://theoryofcomputing.org/articles/v008a006/v008a006.pdf

43

Bonus material
Not covered in class this term

“Careful. We don’t want to learn from this.”
(Calvin in Bill Watterson’s “Calvin and Hobbes”)

44

Packing Linear Programs
𝐴𝐱 ≤ 𝒃
𝐱 ∈ 𝕂

Find a feasible 𝐱 ∈ ℝ[,
or show that none exists.

𝐴 ∈ ℝz×[, 𝒃 ∈ ℝz , 𝕂 ⊆ ℝ[is a “simple” convex set

𝐴𝐱 ≥ 0, for every 𝐱 ∈ 𝕂.
𝒃 > 0Packing:

By scaling, we sometimes assume that 𝒃 = 𝟏.
Willing to settle for 𝐱 ∈ 𝕂 such that 𝐴𝐱 ≤ 𝒃 + 𝜀

ORACLE: Given a distribution 𝒑 on the rows of 𝐴,
return 𝐱 ∈ 𝕂 such that 𝒑º𝐴𝐱 ≤ 𝒑º𝒃, or “no” if none exists.

If ORACLE returns “no” for any distribution 𝒑,
then the problem is infeasible.

45

Packing Linear Programs

𝕂 ⊆ ℝ[is convex iff
𝒙, 𝒚 ∈ 𝕂 , 0 ≤ 𝛼 ≤ 1 à 1 − 𝛼 𝒙 + 𝛼𝒚 ∈ 𝕂

“Simple” is used informally. The only requirement is
that ORACLE can be efficiently implemented.

Example: 𝕂 = 𝐱 ∈ ℝ[∶ 𝐱 ≥ 0 , 𝒄Q𝐱 = 𝑓 .

𝐴𝐱 ≤ 𝒃
𝐱 ∈ 𝕂

𝐴 ∈ ℝz×[, 𝒃 ∈ ℝz , 𝕂 ⊆ ℝ[is a “simple” convex set

Find a feasible 𝐱 ∈ ℝ[,
or show that none exists.

46

Packing Linear Programs

ORACLE is (1, 𝜌)-bounded iff
for every point 𝐱 ∈ 𝕂 returned and every 𝑖 ∈ [𝑚],

−1 ≤ 𝐴&𝐱 − 𝑏& ≤ 𝜌

This is automatic,
as 𝑨𝐱 ≥ 0 , 𝒃 = 𝟏.

The width.

𝐴𝐱 ≤ 𝒃
𝐱 ∈ 𝕂

𝐴 ∈ ℝz×[, 𝒃 ∈ ℝz , 𝕂 ⊆ ℝ[is a “simple” convex set

ORACLE: Given a distribution 𝒑 on the rows of 𝐴,
return 𝐱 ∈ 𝕂 such that 𝒑º𝐴𝐱 ≤ 𝒑º𝒃, or “no” if none exists.

Find a feasible 𝐱 ∈ ℝ[,
or show that none exists.

Packing LPs using multiplicative weights
[Plotkin-Shmoys-Tardos (1995)]

Experts correspond to the 𝑚 linear constraints (rows of 𝐴).

A distribution 𝒑 corresponds to the constraint 𝒑Q𝐴𝐱 ≤ 𝒑Q𝒃.

The costs at iteration 𝑡 are determined by a point 𝐱 ' ∈ 𝕂.

𝒎 ' = (
�

𝒃 − 𝐴𝐱 '

Note: Satisfied constraints are more costly.

∈ −1, (
�

z

Use 𝑀𝑊T to produce distributions 𝒑 (, 𝒑 2 , … , 𝒑 Q .
In iteration 𝑡 apply ORACLE to 𝒑 ' to obtain 𝐱 ' and 𝐦 ' .
If ORACLE returns “no” in any iteration, problem infeasible.

Run for 𝑇 = 8𝜌 ln𝑚 /𝜀2 and return Â𝐱 = (
Q
∑' 𝐱 ' .

Packing LPs using multiplicative weights
[Plotkin-Shmoys-Tardos (1995)]

Theorem: For any 𝜀 ≥ 0, after 𝑇 = 8𝜌 ln𝑚 /𝜀2 iterations
of 𝑀𝑊T, 𝜂 = 𝜀/4, with an 1, 𝜌 -ORACLE, the point

Â𝐱 = (
Q
∑' 𝐱 ' satisfies 𝐴𝐱 ≤ 𝒃 + �

(�T
and 𝐱 ∈ 𝕂.

0 ≤ n
'Z(

Q
1
𝜌
𝑏& − 𝐴𝒊𝐱 ' + 𝜂n

'Z(

Q
1
𝜌
𝑏& − 𝐴𝒊𝐱 ' +

ln 𝑛
𝜂

𝒑 ' ⋅ 𝒎 ' =
1
𝜌
𝒑 ' Q𝒃 − 𝒑 ' Q𝐴𝐱 ' ≥ 0

As 𝐱 ' is the ORACLE’s response to 𝒑 ' , we have:

For every constraint (“expert”) 𝑖 we have:

49

n
'Z(

Q

𝑥' + 𝜂n
'Z(

Q

𝑥' = 1 − 𝜂 n
'Z(

Q

𝑥' + 2𝜂n
'Z(

Q

𝑥' =

Useful fact:

𝑥' = = max{0, 𝑥'}

Packing LPs using multiplicative weights
[Plotkin-Shmoys-Tardos (1995)]

0 ≤ n
'Z(

Q
1
𝜌
𝑏& − 𝐴𝒊𝐱 ' + 𝜂n

'Z(

Q
1
𝜌
𝑏& − 𝐴𝒊𝐱 ' +

ln 𝑛
𝜂

= 1 − 𝜂 n
'Z(

Q
1
𝜌 𝑏& − 𝐴𝒊𝐱 ' + 2𝜂n

'Z(

Q
1
𝜌 𝑏& − 𝐴𝒊𝐱 ' =

+
ln 𝑛
𝜂

ORACLE is (1, 𝜌)-bounded ≤ 1

0 ≤ 1 − 𝜂
1
𝑇
n
'Z(

Q

𝑏& − 𝐴𝒊𝐱 ' + 2𝜂 +
𝜌 ln 𝑛
𝜂𝑇

×
𝜌
𝑇

= 𝑏& − 𝐴& Â𝐱
≤
𝜀
2 ≤

𝜀
2

Maximum Multicommodity Flow

𝕂 = 𝒇 ∶ 𝒇 ≥ 0 , ∑¢∈ℙ 𝑓¢ = 𝐹

Using binary search can be essentially reduced to:
Is there a feasible multicommodity flow 𝒇 of value ∑¢∈ℙ 𝑓¢ = 𝐹 ?

This is now a packing problem.

max∑¢∈ℙ 𝑓¢
s.t. (

\Æ
∑¢∋£ 𝑓¢ ≤ 1 ,	𝑒 ∈ 𝐸

𝑓¢ ≥ 0 , 𝑝 ∈ ℙ

ORACLE is given a weight 𝑤£ ≥ 0 for each edge
and has to find a flow 𝒇, if there is one, such that
∑£ 𝑤£

(
\Æ
∑¢∋£ 𝑓¢ ≤ ∑£ 𝑤£ , ∑¢∈ℙ 𝑓¢ = 𝐹

Note: The flow 𝒇 returned by ORACLE does not have to satisfy all
the capacity constraints. Only one weighted capacity constraint.

Maximum Multicommodity flow
(
\Æ
∑¢∋£ 𝑓¢ ≤ 1 ,	𝑒 ∈ 𝐸

𝒇 ∈ 𝕂 = 𝒇 ∶ 𝒇 ≥ 0 , ∑¢∈ℙ 𝑓¢ = 𝐹

ORACLE is given a weight 𝑤£ ≥ 0 for each edge
and has to find a flow 𝒇, if there is one, such that

∑£𝑤£
(
\Æ
∑¢∋£ 𝑓¢ ≤ ∑£𝑤£ , ∑¢∈ℙ 𝑓¢ = 𝐹

∑£𝑤£
(
\Æ
∑¢∋£ 𝑓¢ = ∑¢∈ℙ 𝑓¢ ∑£∈¢

ÇÆ
\Æ

Find a path 𝑝 ∈ ℙ that minimizes ∑£∈¢
ÇÆ
\Æ

.
If 𝐹 ∑£∈¢

ÇÆ
\Æ
≤ ∑£𝑤£, send 𝐹 units of flow on 𝑝, i.e., 𝑓¢ = 𝐹.

Otherwise, return “no”.

ORACLE just needs to solve 𝑘 shortest paths problems.

53

Maximum Multicommodity flow
How good is the algorithm obtained using the framework?

Number of iterations is 𝑇 = 8𝜌 ln𝑚 /𝜀2

In each iteration, solve 𝑘 shortest paths problems in °𝑂 𝑚𝑘 time.

We also need to multiply by the cost of the binary search.

ORACLE is (1, 𝜌)-bounded iff
for every point 𝐱 ∈ 𝕂 returned and every 𝑖 ∈ [𝑚],

−1 ≤ 𝐴&𝐱 − 𝑏& ≤ 𝜌

In our case: 𝜌 ≤ È
\ÉfÊ

− 1, where 𝑐z&[= min
£∈c

𝑐£

The running time is °𝑂 Èoz�
��\ÉfÊ

The running time is not polynomial!

