
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

November 14, 2023

1 / 41

Week 9

Announcements:

I have started to list questions for the third and final assignment. I
will post two questions today. The assignment will be due Friday,
December 8 at 11 AM.

I have posted (on the web page) slides by Denis Pankratov on LP
theory and LP duality.

Todays agenda
We will discuss the following topics:

Finish up discussion of the random walk algorithm for 2SAT

The random walk algorithm for kSAT

Markov chains and random walks on a graph.

Exponential Time Hypothesis (ETH) and Strong Exponential Time
Hypothesis (SETH).

The randomized algorithm for primality testing.

The (weighted) vertex and set cover problems.

Primal dual algorithms and primal dual fitting.
2 / 41

2SAT and kSAT using random walks

We finish up our discuss of the randomized algorithm for 2-SAT (due
to Papadimitriou [1991]) based on a random walk on the line graph
with nodes {0, 1, . . . , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi) = 1− τ(xi).

3 / 41

The expected time to reach a satisfying assignment

When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.4 / 41

The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i] = Pij and
hence Prob[Xt+1 = j] =

∑
i Prob[Xt+1 = j |Xt = i]Prob[Xt = i].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

5 / 41

Stationary distributions

Define qt = (qt1, q
t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi .
6 / 41

Back to random walks on graphs

Let G = (V ,E) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G) be the expected time to visit every vertex, starting from u
and define C (G) = maxu Cu(G) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G) ≤ 2m(n − 1).

Hence the 2-SAT random walk has expected time at most 2n2. to
find a satisfying assignment in a satisfiable formula. Can use Markov
inequality to obtain probability of not finding satisfying assignment.

7 / 41

Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). We could view the approach as a
local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, following some earlier results, Schöning gave a very simple (a
good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.

8 / 41

Schöning’s k-SAT algorithm

The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e)c .9 / 41

Final comments on the complexity of k-SAT

These random wals algorithm are the basis for WalkSat algorithms
which employ all sorts of heuristics to obtain excellent results in
practice for SAT.

The random walk approach obtains a randomized 1-sided error
algorithm (which in turn has a deterministic variant) for 3-SAT that
runs in time (1.324)n. This is, of course, still exponential but
significantly better that 2n.

It is a big open question as to whether or not there is a 2o(n) time
algorithm for 3-SAT. The exponential time hypothesis (ETH):
There is no deterministic or randomized algorithm for 3-SAT running
in time 2o(n). This is an unproven conjecture even assuming P 6= NP.

Note: The notation time Õ(cn) ignores say nk factors in the time bound.

10 / 41

Final comments on the complexity status of SAT

The random walk time bound bound Õ[(2(1− /1k)]n can be stated as
O((ck)n) where ck → 2 as k →∞.

Strong exponential time hypothesis (SETH): There is no deterministic
or randomized algorithm for SAT that runs in time cn for any c < 2.

Perhaps surprisingly, the ETH and especially the SETH conjectures imply
that for a number of polynomial time computable problems, rather simple
algorithms provide approximately the best time bounds. This important
observation led to a topic called fine-grained complexity.

For example, consider the following orthogonal vectors (OV) problem:
Given a set S of n vectors over {0, 1}d with d = ω(logn) (say
d = d(log2 n)2)e. Determine if S has a pair of orthogonal vectors.

R. Williams [2005] : SETH implies there is no 0-sided randomized
algorithm for the OV problem having expected time n2−ε for any ε > 0.
This in turn (using “fine-grained reductions”) implies that the edit
distance problem cannot be computed in time n2−ε.

11 / 41

The fine-grained landscape

Some structure within P

Orthog.
vectors

3SUM APSP

Sparse graph diameter [RV’13], local alignment,
longest common substring* [AVW’14], Frechet

distance [Br’14], Edit distance [BI’15], LCS
[ABV’15, BrK’15]…

N2- H

N2- H’

In dense graphs:
radius, median,
betweenness

[AGV’15], negative
triangle, second

shortest path,
shortest cycle …

[VW’10], …

N1.5-H

n3- H

N1.5- H’ n3- H

Huge literature in comp.
geom. [GO’95, BH-P98, …]:

Geombase, 3PointsLine,
3LinesPoint, Polygonal

Containment …

String problems: Sequence
local alignment [AVW’14],

jumbled indexing [ACLL’14]

N2- H

N2- H’

STUCK
on all 3!

k-SAT
2(1 - G)n

[W’04]

Dynamic
problems

[P’10],[AV’14],
[HKNS‘15],

[RZ’04]

Figure: From V. Williams 2015
12 / 41

The all pairs shorest paths (APSP) problems

Even after (or because of) a number of relatively small improvements we
still have the APSP conjecture.

APSP: given a weighted graph, find the distance
between every two nodes.

Author Runtime Year

Fredman n3 log log1/3 n / log1/3 n 1976

Takaoka n3 log log1/2 n / log1/2 n 1992

Dobosiewicz n3 / log1/2 n 1992

Han n3 log log5/7 n / log5/7 n 2004

Takaoka n3 log log2 n / log n 2004

Zwick n3 log log1/2 n / log n 2004

Chan n3 / log n 2005

Han n3 log log5/4 n / log5/4 n 2006

Chan n3 log log3 n / log2 n 2007

Han, Takaoka n3 log log n / log2 n 2012

Williams n3 / exp(� log n) 2014

Classical problem
Long history

APSP Conjecture:
APSP on n nodes
and O(log n) bit
weights requires

n3-o(1) time.

13 / 41

Primality testing

I now want to briefly turn attention to one of the most influential
randomized algorithms, namely a poly time randomized algorithm for
primality (or perhaps better called compositeness) testing. Let
PRIME = {N|N is a prime number} where N is represented in say
binary (or any base other than unary) so that n = |N| = O(logN).
History of polynomial time algorithms:

1 Vaughan 1972 showed that PRIMES is in NP. Note that co-PRIMES
(i.e. the composites) are easily seen to be in NP.

2 One sided error randomized algorithms (for compositeness) by Solovay
and Strassen and independently Rabin in 1974. That is,
Prob[ALG says N prime |N composite] ≤ δ < 1 and Prob[ALG says N
composite |N prime] = 0

3 The Rabin test is related to an algorithm by Miller that gives a
deterministic polynomial time algorithm assuming a conjecture that
would follow from (the unproven) ERH. The Rabin test is now called
the Miller-Rabin text.

4 Goldwasser and Killian establish a 0-sided randomized algorithm.
5 In 2002, Agrawal, Kayal and Saxena show that primality is in

deterministic polynomial time. 14 / 41

Why consider randomized tests when there is a
deterministic algorithm?

Even though there is now a deterministic algorithm, it is not nearly as
efficient as the 1-sided error algorithms which are used in practice.
These randomized results spurred interest in the topic (and other
number theoretic algorithms) and had a major role in cryptographic
protocols (which often need random large primes). Moreover, these
algorithms became the impetus for major developments in randomized
algoritms.

While many of our previous algorithms might be considered reasonably
natural (or natural extensions of a deterministic algorithm), the
primality tests require some understanding of the subject matter (i.e.
a little number theory) and many number theoretical algorithms are
not something that immediately comes to mind. You can judge the
Miller-Rabin primality test if it is ”reasonably natural”.

15 / 41

Some basic number theory we need for primaltiy
testing.

Z ∗N = {a ∈ ZN : gcd(a,N) = 1} is a (commutative) group under
multiplication mod N.

If N is prime, then
1 For a 6= 0(modN), aN−1 = 1(modN).
2 Z∗

N is a cyclic group; that is there exists a generator g such that
{g , g2, g3, . . . , gN−1} (all mod N) is the set Z∗

N . This implies that
g i 6= 1(modN) for any 1 ≤ i < N − 1.

3 There are exactly two square roots of 1 in Z∗
N , namely 1 and -1.

The Chinese Remainder Theorem: Whenever N1 and N2 are relatively
prime (i.e. gcd(N1,N2) = 1), then for all v1 < N1 and v2 < N2, there
exists a unique w < N1 · N2 such that v1 = w(modN1) and
v2 = w(modN2).

16 / 41

A simple but “not quite” correct algorithm

We also need two basic computational facts.

1 ai mod N can be computed efficiently.

2 gcd(a, b) can be efficiently computed.

The following is a simple algorithm that works except for an annoying set
of nunbers called Carmichael numbers.

Simple algorithm ignoring Carmichael numbers

Choose a ∈ ZN uniformly at random.
If gcd(a,N) 6= 1, then Output Composite
If aN−1 mod N 6= 1, then Output Composite
Else Output Prime

17 / 41

When does the simple algorithm work?

S = {a | gcd(a,N) = 1 and aN−1 = 1} is a subgroup of Z ∗N
If there exists an a ∈ Z ∗N such that gcd(a,N) = 1 but aN−1 6= 1, then
S is a proper subgroup of Z ∗N .

By Lagrange’s theorem, if S is a proper subgroup, |S | must divide the
order of the group and thus |S | ≤ N−1

2

Thus the simple algorithm would be a 1-sided error algorithm with
probabiltiy < 1

2 of saying Prime when N is Composite.

The only numbers that give us trouble are the Carmichael numbers
(also known as false primes) for which aN−1 = 1modN for all a such
that gcd(a,N) = 1.

It was only recently (relatively speaking) that in 1994 it was proven
that there are an infinite number of Carmichael numbers.

The first three Carmichael numbers are 561, 1105, 1729

18 / 41

Miller-Rabin 1-sided error algorithm

Let N − 1 = 2tu with u odd %Since wlg. N is odd, t ≥ 1
Randomly choose non zero a ∈ ZN %Hoping that a will be composite
certificate
If gcd(a,N) 6= 1 then report Composite
x0 = au %All computation is done mod N
For i = 1 . . . t

xi := x2i−1
If xi = 1 and x i−1 /∈ {−1, 1}, then report Composite

End For
If xt 6= 1, then report Composite %x t = xN−1

Else report Prime

19 / 41

Analysis sketch of Miller-Rabin

Let S be the set of a ∈ N that pass (i.e. fool) the Rabin-Miller test.
We want to show that S is a proper subgroup and then as before by
Langrange we will be done.

It suffices then to find one element w ∈ Z ∗N that will not pass the
Miller-Rabin test.
Case 1: N is not Carmichael and then we are done.
Case 2: N is Carmichael and hence N cannot be a prime power.

I N = N1 · N2 and gcd(N1,N2) = 1 and of course N odd
I The non-certificates must include some b such that b2

iu = −1(modN)

and hence b2
iu = −1(modN1)

I By the Chinese Remainder Theorem, there exists w = v(modN1) and
w = 1(modN2)

I Hence w2iu = −1(modN1) and w2iu = 1(modN2)
I This implies w2iu /∈ {−1, 1} (mod N)

20 / 41

Weighted vertex cover: where the “natural greedy”
is not that good

We consider another example (weighted vertex cover) where the
“natural greedy algorithm” does not yield a good approximation.
The vertex cover problem: Given node weighted graph G = (V ,E),
with node weights w(v), v ∈ V .
Goal: Find a subset V ′ ⊂ V that covers the edges (i.e.
∀e = (u, v) ∈ E , either u or v is in V ′) so as to mininize

∑
v∈V ′ w(v).

Even for unweighted graphs, the problem is known to be NP-hard to
obtain a 1.3606 approximation and under another (not so universally
believed) conjecture (UGC) one cannot obtain a 2− ε approximation.
For the unweighted problem, there are simple 2-approximation greedy
algorithms such as just taking V ′ to be any maximal matching.
The set cover problem is as follows: Given a weighted collection of
sets S = {S1, S2, . . . ,Sm} over an n element universe U with set
weights w(Si).
Goal: Find a subcollection S ′ that covers the universe so as to
minimize

∑
Si∈S′ w(Si).

21 / 41

The natural greedy algorithm for weighted set cover

“The natural” greedy algorithm for weighted set cover

S ′ = ∅
While there are uncovered elements in the universe U

Let j = argmini{w(Si)/|Si ∩ U|
S ′ = S ′ ∪ {Si}
U = U \ {Si}

End While

The vertex and set cover problems were two of Karp’s NP-complete
problems.

Johnson[1974] and Lovasz[1975] independently showed that this
natural greedy algorithm provides a H(m) ≈ lnm approximation for
the unweighted case where m = maxi |Si | ≤ |U|. This was extended
by Chvatal[1979] to the weighted case.

Under a reasonable complexity assumption, Feige[1979] showed that
it was not possile to acheive a (1− ε) ln n approximation even for the
unweighted case.

22 / 41

The natural greedy algorithm for weighted vertex
cover (WVC)

Vertex cover can be viewed as a special case of set cover. (How?)

Then
the natural greedy set cover algorithm (which is essentially optimal for set
cover up to standard complexity assumptions) becomes the following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure: Natural greedy algorithm for weighted vertex cover. Approximation ratio
Hn ≈ ln n where n = |V |.

23 / 41

The natural greedy algorithm for weighted vertex
cover (WVC)

Vertex cover can be viewed as a special case of set cover. (How?) Then
the natural greedy set cover algorithm (which is essentially optimal for set
cover up to standard complexity assumptions) becomes the following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure: Natural greedy algorithm for weighted vertex cover. Approximation ratio
Hn ≈ ln n where n = |V |.

23 / 41

Clarkson’s [1983] modified greedy for WVC

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

w ′(v) := w(v) for all v ∈ V
% w ′(v) will be the residual weight of a node

While there are uncovered edges
Let v be the node minimizing w ′(v)/d ′(v)
w :=w ′(v)/d ′(v)
w ′(u) :=w ′(u)− w for all u ∈ Nbhd(v)

% For analysis only, set we(u, v) = w
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd(v)

End While

Figure: Clarkson’s greedy algorithm for weighted vertex cover. Approximation
ratio 2.

24 / 41

Solving the f -frequency set cover

In the f -frequency set cover problem, each element is contained in at most
f sets. We can solve the f -frequency cover problem by obtaining an
optimal solution {x∗j } to the (primal) LP and then rounding to obtain

x̄j = 1 iff x∗j ≥
1
f .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ui∈Sj xj ≥ 1 for all i ; that is, for all ui ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

This is a conceptually simple method but requires solving the LP. We will
see that the primal dual method allows us to acheieve the same
approximation without solving the LP.

25 / 41

End of November 14 class

We ended here but I am posting remaining slides as they may help for the
assignment.

26 / 41

Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:
I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:
I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.

27 / 41

An example: set cover

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ui∈Sj xj ≥ 1 for all ui ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ui∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.

28 / 41

Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.

29 / 41

Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z .

30 / 41

Motivating duality

Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual solution
(y1, y2) = (2, 1) must be 26.

31 / 41

Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi)yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x

32 / 41

Primal dual for f -frequency set cover

We know that for a minimization problem, any dual solution is a lower
bound on any primal solution. One possible goal in a primal dual method
for a minimization problem will be to maintain a fractional feasible dual
solution and continue to try improve the dual solution. As dual constraints
become tight we then set the corresponding primal variables.

Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

33 / 41

Primal dual for f -frequency set cover continued

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i ; C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.

34 / 41

Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .

35 / 41

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual minimization algorithms extend this basic form by
using a second (reverse delete) stage to achieve minimality. Some
primal dual maximization algorithms use a reverse delete to enforce
feasibility. There is some (for me not precise) relation between primal
dual and local ratio algorithms (see Bar-Yehuda and Rawitz)

NOTE: In the primal dual method we are not solving any LPs.
Primal dual algorithms are viewed as “combinatorial algorithms” and
in some cases they might even suggest an explicit greedy algorithm.

36 / 41

Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm

We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .

37 / 41

The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).

38 / 41

Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei)/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.

39 / 41

	Week 9

