
CSC2420: Algorithm Design, Analysis and
Theory
Fall 2023

An introductory (i.e. foundational) level
graduate course.

Allan Borodin

October 31, 2023

1 / 24



Week 8

Announcements
I was going to post an IP/LP rounding problem forthe 4th and final
question for Assignment 2. Instead I will put that question in Assignment
3. So please submit Assignment 2 by the due date (this Friday, Nov 3,
11AM).

Todays agenda

Quick review of bipartite matching

Getting past the 1− 1/e approximation ratio.

AdWords and Display Ads

A better than 3
4 algorithm for Max-2-Sat by vector programming.

Random walk algorithms for 2SAT and SAT
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The randomized ranking algorithm

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.
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The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous. There is an alternative proof (and
extension) by Goel and Mehta [2008], and then another proof in
Birnbaum and Mathieu [2008]. Other alternative proofs have followed.
Recall that this positive result can be stated either as the bound for a
particular deterministic algorithm in the stochastic ROM model, or as
the randomized Ranking algorithm in the (adversarial) online model.
KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.
In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727. This ratio was improved to .696 by Mahdian and
Yan [2011]].
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And some more recent progress

Karande et al show that any ROM approximation result implies the
same result for the unknown i.i.d. model.

Manshadi et al give a .823 inapproximation for biparitie matching in
the known i.i.d. distribution model. This implies the same
inapproximation in the unknown i.i.d. and ROM models improving
the 5

6 inapproximation of Goel and Mehta.

There is a large landscape (and continuing research) of weighted
versions of online bipartite matching such as the adwords problem and
the display ads problem that are motivated by applications to online
advertising.

Although out of data, the survey by Mehta [2013] is a good starting
reference. Note: The table in the survey seems to identify the ROM
and unknown i.i.d. as equivalent models. model. Recently, Correa et
al [Math of OR 2022] show that there is a provable gap between the
known and unknown i.i.d. ratios when there is one offline node.
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Getting past the (1− 1/e) bound

The ROM model can be considered as an example of what is called
stochastic optimization in the OR literature. As we have discussed
early in the term, there are other stochastic optimization models that
are perhaps more natural, namely i.i.d sampling from known and
unknown distributions and Markov distributions.

Feldman et al [2009] study the known distribution case. More
specifically, we assume each onlin node is drawn independently from
the same known distribution and refer to the online nodes in the
supoort of this distribution as the types of the distribution.
Furthermore, they assume the the expected number of draws from
each typo is integral. The best results for online bipartite matching
with i.i.d. arrivals assume integral arrival rates. In fact, only recently
has the 1− 1

e “barrier” been broken for arbitrary arrival rates.

They achieve a .67 ratio which has since been improved in a sequence
of papers. (I will fill in references for best known unweighted and
edge weighetd results).
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ROM arrivals implies i.i.d, with integral arrival rates

Before discussing i.i.d. bipartite matching, let’s consisder the Karande et
“obsrvation”. The result has not been stated in what I think is its
generality but was observed implicitly by Kenyon [SODA 1986] for online
bin packing, and Karande et al [STOC 2011] for online bipartite matching.

Theorem (informal) Consider any problem P for which the ROM model
and i.i.d. models are applicable. Suppose algorithm A obtains expected
competitive ratio c in the ROM model. Then A achieves expected
competitive ratio at least c in the unknown (and hence known) i.i.d.
model with general arrival rates.
The proof is remarkably simple. Consider the algorithm on instances (i.e.
multi sets) consisting of n input items. Partition the input instances into
classes, such that each class is made up of the n! ways to permute the
input items in that class. Each input sequence in a class occurs with the
same probability. Thus each class becomes an instance of the random
order model and hence algorithm A has competitive ratio at least c on
each class. We then take the expectation over the different classes.
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Results for i.i.d. bipartite matching with integral
arrival rates

With respect to the known i.i.d. model, most of the work concerns integral
arrival rates. Huang et al [STOC 2022] point discuss the status of general
arrival rates.

The Feldman et al Best of Two Worlds Algorithm achieved a .67 ratio for
unweighted online biparitite known distribution model (i.i.d.) with integral
arrival rates.

This was improved in successive papers by

Haeupler et al [WINE 2011] obtaining .661 for edge weights

Mansadi et al [Math of OR 2012] .705 unweighted.

Jailet and Lu [Math of OR 2013] .725 for offline vertex weights

Brubach et al [ESA 2016] .705 edge weighted and .7299 offline vertex
weight.
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Bipartite matching with general arrival rates

Huang et al [STOC 2022] recently improve the results for unweighted and
vertex weighted bipartite matching by Huang and Shu [STOC 2021] as
well as proving that for edge weighted bipartite matchning, no online
algorithm can achieve a .703 competitive ratio which shows that general
arrivals cannot be as good as integral arrivals for which Brubach et al
obtained a .705 ratio.

More generally they achieve the following results for known i.i.d arrivals
with general arrivals given in Table 1 in their paper.

Table 1: Summary of Results. We round down algorithmic results and round up hardness results,
to three decimal places. The results in this paper are on the right of the arrows in bold.

Algorithms Hardness

Unweighted 0.711 [16] → 0.716 (§4) 0.823 [25]

Vertex-weighted 0.700 [16] → 0.716 (§4) 0.823 [25]

Edge-weighted (Free Disposal) 0.632 [13] † → 0.706 (§3) 0.823 [25]

Edge-weighted 0.632 [13] † 0.823 [25] → 0.703 (§5.1)
† Although Feldman et al. [13] only analyzed unweighted matching, they effectively showed that every edge is
matched with probability 1 − 1/e times the LP variable, which is sufficient for edge-weighted matching as well.

ratios in various settings of online stochastic matching. We next briefly introduce our algorithms
and techniques in the Poisson arrival model, in which online vertices of each type independently
follow a Poisson process with time horizon [0, 1]. This is asymptotically equivalent to the original
online stochastic matching model [16]. Table 1 gives a summary of our improved competitive ratios
for general arrival rates; see Subsection 1.2 for previous results that assumed integral arrival rates.

Poisson Online Correlated Selection. Like previous works, we rely on the optimal solution
of a linear program (LP) relaxation. For any online vertex type i and offline vertex j, the LP gives
0 ≤ xij ≤ 1 as a reference of how likely a type i online vertex should be match to j. Intuitively,
we may want to match a type i online vertex to each unmatched neighbor j with probability
proportional to xij . Inspired by the multi-way semi-OCS of Gao et al. [14], we propose the Poisson
OCS which further adjusts the match probabilities based on the LP matched level xj =

∑
i xij

of offline vertices j. If a type i online vertex arrives at time t, Poisson OCS matches it to each
unmatched neighbor j with probability proportional to etxjxij . The exponential weights come
from an informal invariant. If we match each type i online vertex independently to a neighbor j
(matched or not) with probability xij , the probability that an offline vertex j is still unmatched at
time t equals e−txj . Since Poisson OCS is better, this unmatched probability is at most e−txj . The
expected mass of matching i to j at time t in Poisson OCS is therefore at most etxj xij · e−txj = xij .

Poisson Matching Linear Program Hierarchy. Our Poisson OCS analysis requires that the
LP does not match the online vertices close to deterministically. If every online vertex type i is fully
matched to a single offline neighbor, the competitive ratio is only 1− 1

e . Fortunately, existing LPs in
the literature satisfy this requirement. We first study the Natural LP and a corresponding Converse
Jensen Inequality of Huang and Shu [16], which already allow us to improve the competitive ratio
of vertex-weighted online stochastic matching from 0.7 to 0.707. Moreover, we introduce a Poisson
Matching LP Hierarchy that contains the Natural LP at its first level. We give a polynomial-time
separation oracle for the LP at any constant level, and thus show its computational tractability.
Finally, we prove a Converse Jensen Inequality for the second level Poisson Matching LP, and get
the following result for unweighted and vertex-weighted matching.

Informal Theorem 1. Poisson OCS with the second level Poisson Matching LP is a polynomial-
time, 0.716-competitive algorithm for unweighted and vertex-weighted online stochastic matching.

Top Half Sampling. We next turn to edge-weighted matching. First consider the free disposal
model which allows the algorithm to rematch a matched offline vertex to a heavier edge. In online

2

Figure: Huang et al results for general arrivals

The edge weighted case with free disposal is the Display Ads problem.
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Sketch of ideas for the Best of Two algorithm

Let U be the offline vertices and V the online vertices in the type graph.
With integral arrival rates we can assume (by making copies of each type)
that the the expected number of arrivals of any type is 1. When n = |V | is
sufficiently large the actual realized graph is “close enough” to the type
graph. There will be an offline stage using the type graph and an online
stage using the realized graph.

Offline stage. We set up a flow graph by appending a source node s to the
offline vertices in U with capacity 2, a target node t connected to all
vertices in V with capacity 2 and all edges (u, v) in the type graph having
capacity 1. Since all capacities are integral, there is an optimal integral
flow from s to t. Let U∗ be the offline nodes in the optimal flow. There is
a procedure to color the edges, blue and red. Edges to a node in U in the
optimal flow will have one or two colors and when there is only one edge,
call that the blue edge.

Online stage. When an online vertex arrives, match it to a free node in U∗

by a blue edge. If no such node exists, match it to a free node (if one
exists) by a red edge. 10 / 24



The Feldman et al Best of Two Algorithm
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Figure: The Feldman et al algorithm
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Weighted extensions of online bipartite matching

As mentioned, there are various edge weighted versions of online bipartite
matching motivated by online auction advertising.

Adwords with small and large (compared to the budget) bids.

The Display Ads problem with free disposal.

The adwords problem with small bids is equivalent to the display ads
problem with large capacities. Both of these problems are generalized
by the submodular welfare maximization problem.

The Display Ads Problem with free disposal is an example of online
bipartire bipartite matching with recourse. More generally, one can
consider reassigning an online node.
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The adwords problem: an extension of weighted
bipartite matching

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each offline advertiser i also has a hard budget Bi . An adviser i
receives benefit min {Bi , sum of matched bids}. The objective is to
maximize the sum of the offline benefits. The goal is to match the
nodes in U to V so as to maximize the sum of the accepted bids
without exceeding any budgets.

In the online case, when a query arrives, all the relevant bids are
revealed.
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Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).

Recently, a new algorithmic approach called online correlated
selection (OCS) was introduced by Zadimoghaddam [arXiv 2017] and
first publish in Fahrbach et al [FOCS 2020 and JACM 2022] breaking
the 1

2 “barrier” for the display ads (capacity 1). OGS was also utilized
by Huang et al [FOCS 2020] for the adwords (arbitrary bids) problem.
I will try to sketch the OCS approach later.

14 / 24



Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.
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Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve the same 1-1/e bound for vertex weighted bipartite matching.
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The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick xv randomly in [0, 1]
Let f (x) = 1− e1−x

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv ). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.

A result by Huang et al [TALG 2018, arXiv 2019] provdes a randomized
algorithm that achieves competitive ratio .6534 in the random order arrival
model. .
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Some concluding remarks on max-sat and bipartite
matching

The ROM model subsumes the stochastic model where inputs are
chosen i.i.d. from an unknown distribution (which in turn subsumes
i.i.d. inputs from a known distribution). Why? Hence a positive
result in the ROM model implies a positive result in the i.i.d.
unknown distribution model.
A research problem of interest is to see to what extent some form of
an extended online or priority framework can yield a deterministic
online bipartite matching algorithm with approximation ratio better
than 1/2.
As mentioned before, Pena can show that a 3/4 max-sat
approximation can be obtained by a deterministic “poly width” online
algorithm.
One can formulate the Buchbinder and Feldman method in the
framework of the priority BT model of Alekhnovich et al. Can we
show that a bounded width online (or priority) BT algorithm cannot
obtain a 3/4 ratio?
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Online and priority width bounds for max-sat and
bipartite matching

We have the following width inapproximation results.

To improve upon the 3
4 approximation (using online width 2n) result,

we need exponential width. More precisely,
For any ε > 0 there exists δ > 0 such that, for k < eδn, no online
width k algorithm can achieve an asymptotic approximation ratio of
3/4 + ε for unweighted exact max-2-sat with input model 2.
For any ε > 0 there exists δ > 0 such that, for k < eδn, no pBT width
k algorithm can achieve an asymptotic approximation ratio of
21/22 + ε for unweighted max-2-sat with input model 3.
Ω(log log n) advice bits (and therefor random bits) are needed to
asymptoticall beat the 1

2 online ratio. Recently Buchbinder et al prove
that O(log log n) random bits are sufficient to obtain 1

2 + ε for some
ε > 0.
For any ε > 0, no priority algorithm can achieve a 1

2 + ε
approximation for bipartite matching.
The first algorithm to use vectior programming for Max-2-Sat (and
other problems such as Max-Cut) is due to Goemans and Williamson
[JACM 1995]. The best known result for Max-2-Sat is .940 due to
Levin et al [IPCO 2002], Austrin [STOC 2007] and Brakensiek et al
[arXiv 2023] who showed that this is the optimal ratio assuming the
Unique Games Conjecture (UGC). I will present the Goemans and
Williamson result.
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The quadratic program for Max-2-Sat

The following discussion is taken from the Vazirani Approximation
Algorithms textbook.

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C ) of each clause C
in terms of these {−1, 1} variables.

1 val(xi ) = (1 + yiy0)/2
val(x̄i ) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C ) = 1− val(x̄i ∧ x̄j) = 1− ( 1−yiy0
2 )(

1−yjy0
2 ) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C ) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C ) = (3− yiy0 − yjy0 − yiyj)/4
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The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi )

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.
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The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value

2
∑

aijProb[yi = yj ] +
∑

bijProb[yi 6= yj ] ; Prob[yi 6= yj ] =
θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).
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2SAT and kSAT using random walks

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .

There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, . . . , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi ) = 1− τ(xi ).
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The expected time to reach a satisfying assignment

When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.24 / 24
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