CSC2420: Algorithm Design, Analysis and
Theory
Fall 2023
An introductory (i.e. foundational) level
graduate course.

Allan Borodin

October 17, 2023

1/56

Week 6

Announcements
| posted three questions for Assignment 2. One more to follow.

Todays agenda
We will discuss the following topics:
@ Submodular functions
@ Local search for monotone submodular functions subject to a
constraint
@ Randomization
@ Exact Max Sat revisited; the naive algorithm and its
de-randomization; Johnson's algorithm.
@ Yannakakis IP/LP and randomized rounding for Max-Sat
@ The deterministic and randomized two sided greedy algorithm for
unconstrained non monotone submodular maximization. Application
to Max-Sat.
@ A randomized online max-sat algorithm and its de-randomizations in

extended online algorithms
2/56

Monotone submodular function maximization

@ The monotone problem is only interesting when the submodular
maximization is subject to some constraint.

@ Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f(S) subject to |S| < k for some k
and since f is monotone this is the same as the constraint (S) = k.

@ Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1 — %
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy isa 1 — (1 — %)k
approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint
S =0
While |S| < k
Let u maximize f(SU {u}) — f(S5)
S:=SuU{u}
End While 3/56

Proof: greedy approx for monotone submodular
maximization subject to cardinality constraint

We want to prove the 1 — (1 — %)k approximation bound.
Let S; be the set after i iterations of the standard greedy algorithm and let
S* = {x1,...,xx} be an optimal seti so that OPT = f(S*). For any set S
and element x, let fs(x) = f(S U {x}) — f(S) be the marginal gain by
adding x to S. The proof uses the following sequence of inequalities:
f(S*) < f(S; U S*) by monotonicity
< f(Si)+(f(S;U{Xl})— f(S,-))+(f(S,-)u{x1,xz}— f(S;U{Xl}))+. ..
(by submodularity)
< f(Si) + fS,-(Xl) + fS,-(X2) + ... fS,-(Xk)
(again by submodularity)
< f(Si) + k- (f(Si+1 — f(S;)) by the greedy assumption

Equivalently, f(S;11) > f(S;) + %(f(OPT) — f(S))

The proof is completed by showing f(S;) > (1 — (1 — £)') - OPT by
induction on .

4/56

Generalizing to a matroid constraint

@ Nemhauser and Wolsey [1978] showed that the 1 — % approximation
is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

@ Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

@ Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

@ Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a 1-exchange local search algorithm (that will follow)
achieve a % approximation for maximzing a monotone submodular

function subject to an arbitrary matroid constraint.

@ They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.

5/56

Monotone submodular maximization subject to a
matroid constraint

We need some additional facts about matroids and submodular functions.

@ Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two bases). Then there is a
bijection 7 between O\ S and S\ O such that for all
x € 0,(S\ {n(x)}) U x is independent.

@ We have the following facts for a submodular function f on a ground
set U:

Q Let C={c,...,ce} CU\S. Then

¢
SIS +c)—F(S) = F(SUC)—£(S)
i=1
© Let {t1,...,tr} be elements of S. Then

14
Y IF(S) — F(S\ {t:}] < £(5)

i=1

6/56

The 1-exchange local search algorithm

We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x ¢ S such that
(S\{m(x)}) U {x} > f(S). Here 7 is the bijection as in Brualdi's result.

The previous local seach algorithm provides a %—approximation for
maximizing a monotone submodular function.

Now let S be a local optimum and O an optimal solution. By local
optimality, for all x € O\ S, we have

F(S) = F((S\ {m(x)}) U {x})
Subtracting (S \ {7(x)}) from both sides, we have
F(S) = F(S\{m(x)}) = F((S\ {m(x)}) U {x}) = F(S\ {=(x)})
From submodularity,
FI(S\{m(x)}) U{x}) = (S\ {m(x)}) = F(SU{x}) = £(5)
Thus for all x € O\ S

FIS\ (X)) = F(SU{x}) = £(5)

7/56

Completing the local search approximation

Summing over all such x yields

Yoxeo\slf(S) = F(S\AT)N] = Yseors[f(S U {x}) — £(S)]
Applying the first fact on slide 6 to the right hand side of this inequality
and the second fact to the left hand side, we get

f(5)>f(SU(O\S))—f(S)=f(OUS)—f(S)>f(0)—f1(S)

which gives the desired %—approximation.

8/56

Achieving the 1 — % approximation for arbitrary
matroids

@ An open problem for 30 years was to see if the 1 — % approximation
for the cardinality constraint could be obtained for arbitrary matroids.

o Calinsecu et al [2007, 2011] positively answer this open problem using
a very different algorithm consiting of a continuous greedy algorithm
phase followed by a pipage rounding phase.

@ Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide their development) a sophisticated
non-oblivious local search algorithm that is also able to match the

— % bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.

9/56

Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E, a weight function w : E — R2° and a collection of
of subsets F = {Fi,...,F,} of E. The goal is to find a subset of indices S
(subject to a matroid constraint) so as to maximize f(S) = w(UjesF;).
Note: f is a monotone submodular function.

@ For ¢ < r = rank(M), the ¢-flip oblivious local search for max

coverage has locality gap 2r’__zl_1 — % as r increases. (Recall that

greedy achieves %)

10/56

The non-oblivious local search for max coverage

@ Given two solutions S; and S, with the same value for the objective,
we again ask (as we did for Max-k-Sat), when is one solution better
than the other?

@ Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) = >~ a,,(, s5yw(u) where
k(u, S) is the number of sets F; (i € S) such that v € F; and
a:{0,1,...,r} = R0

@ The interesting and non-trivial development is in defining the
appropriate scaling functions {a;} for i =0,1,...r

@ Filmus and Ward derive the following recurrence for the choice of the
{a,-} Qg = 0,a1 =1- %, and Qjy1 = (i + 1)0&,‘ — iOéi_l — %.

@ These « factors give more weight to those elements that appear
frequently which makes it easier to swap out a set S and still keep
many elements u € S in the collection.

11/56

The very high level idea and the locality gap

@ The high-level idea behind the derivation is like the factor revealing
LP used by Jain et al [2003]; namely, Filmus and Ward formulate an
LP for an instance of rank r that determines the best obtainable ratio
(by this approach) and the {«;} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1 — % —€) and
runs in time O(e~1r?|F||U|logr)

The € in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U?log r).

12/56

A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each F;. For a general monotone submodular
function we no longer have these weights.

Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.

A weight is given to the average value of all solutions obtained from a
solution S by deleting / elements and this corresponds roughly to the
extra weight given to elements covered / + 1 times in the max
coverage case.

The potential function is :
plIsh

g(5) = Zk 02 T:TCS,|T|= k(\S\) Zm (|SDET[f(T)]

13/56

An old but new topic: randomized algorithms

Our next theme will be randomized algorithms. Of course we have already
seen randomization in a few online algorithms. However, for the main part,
our previous themes have been on algorithmic paradigms, so far online
algorithms, variants of greedy and local-search. Randomization is not per
se an algorithmic paradigm (in the same sense as greedy algorithms, DP,
local search, LP rounding, primal dual algorithms).

14 /56

An old but new topic: randomized algorithms

Our next theme will be randomized algorithms. Of course we have already
seen randomization in a few online algorithms. However, for the main part,
our previous themes have been on algorithmic paradigms, so far online
algorithms, variants of greedy and local-search. Randomization is not per
se an algorithmic paradigm (in the same sense as greedy algorithms, DP,
local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.

14 /56

The why of randomized algorithms

@ There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

@ We can use randomization to improve approximation ratios.

@ Even when a given algorithm can be efficiently derandomized, there is
often conceptual insights to be gained from the initial randomized
algorithm.

@ In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

@ One important aspect of randomized algorithms (in an offline setting)
is that the probability of success can be amplified by repeated
independent trials of the algorithm.

15/56

Some applications of randomized algorthms to the
online setting

In addition to the important role of randomization in the more standard
offline algorithm setting, as we have already seen, randomization plays a
very central role in online algorithms as the online setting is particularly
vulnerable to worst case adversarial examples. Here are some results we
will consider in online settings. Note: we have alluded to the first two

items before.
© Naive randomization for the exact max-k-sat algorithm
© De-randomization by the method of conditional expectation

© The Buchbinder et al two sided online greedy algorithm for the
unconstrined maximization of a non-monotone submodular function.
and application to max-sat.

@ Online with advice and relation to randomized online algorithms

© De-randomization using two and multi pass algorithms

But first a few more comments on randomization and complexity theory.
16 /56

Some problems in randomized polynomial time not
known to be in polynomial time

© The symbolic determinant problem.

@ Given n, find a prime in [27,2"1]

© Estimating volume of a convex body given by a set of linear
inequalitiies.

@ Solving a quadratic equation in Z,[x] for a large prime p.

We will see that often a naive randomization provides the best current
results. One can think of naive randomization as a paradigm. That is,
instead of looking for a particular solution, try a random solution.

17/56

Polynomial identity testing

@ The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.

@ Consider an n x n matrix A = (a;j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) = Zwesn(—l)sg”(”) [11 aix() isa

polynomial of degree nd. The symbolic determinant problem is to
determine whether det(A) = 0, the zero polynomial.

18/56

Schwartz-Zipple Lemma

Schwartz Zipple Lemma

Let P € F[x1, ..., xm] be a non zero polynomial over a field F of total
degree at most d. Let S be a finite subset of F. Then

Probrieus[P(rl, e .rm) = O] S %

Schwartz Zipple is clearly a multivariate generalization of the fact that a
univariate polynomial of degree d can have at most d zeros.

19/56

Polynomial identity testing and symbolic
determinant continued

@ Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S| > 2nd). Randomly choosing r; € S, we evaluate each of the
polynomial entries at the values x; = r;. We then have a matrix A’
with (not so large) integer entries.

@ We know how to compute the determinant of any such integer matrix

Al in O(n%) arithmetic operations. Using the currently fastest, but
not necessarily practical, matrix multiplication algorithm, the
determinant can be computed in O(n?371860) arithmetic operations.
(This bound is not yet peer reviewed; the smallest peer reviewed
exponent is 2.3728596 according to Wikipedia.)

@ That is, we are computing the det(A) at random r; € S which is a
degree nd polynomial. Since |S| > 2nd, then Prob[det(A’) = 0] < %
assuming det(A) # 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

@ In complexity theory terms, the problem (is det(A) = 0) is in co-RP.

20/56

The naive randomized algorithm for exact
Max-k-Sat

We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Note: For the following maximization problems, we will follow the
prevailing convention by stating competitive ratios as fractions ¢ < 1.

@ Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.

@ As already noted, since exact Max-k-Sat generalizes the exact k- SAT
decision problem, it is clearly an NP hard problem for k > 3. It is
interesting to note that while 2-SAT is polynomial time computable,
Max-2-Sat is still NP hard.

@ The naive randomized (online) algorithm for Max-k-Sat is to

randomly set each variable to true or false with equal probability.
21/56

Analysis of naive Max-k-Sat algorithm continued

@ Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

@ Since each clause C; has k variables, the probability that a random
assignment of the literals in C; will set the clause to be satisfied is
exactly 2571, Hence E [weight of satisfied clauses] = 2 71 doiwi

o Of course, thls probability only improves if some cIauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

@ This is not only an approxination ratio but moreover a “totality ratio”

2k—1
2k

all clause weights whether satisfied or not.

@ We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

22/56

Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F[xi,..., x,] be an exact k CNF formula
over n propositional variables {x;}. For notational simplicity let true =1
and false = 0 and let w(F)|7 denote the weighted sum of satisfied clauses
given truth assignment 7.

Let x; be any variable. We express E[w(F)|yc,f0,1}] s

Ew(F)lxe, o}l = 11 (1/2) + EW(F) e, (o115 = 01 - (1/2)
This implies that one of the choices for x; will yield an expectation at
least as large as the overall expectation.

It is easy to determine how to set x; since we can calculate the
expectation clause by clause.

We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.

NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional

variables. What input representation is needed/sufficient?
23 /56

(Exact) Max-k-Sat

@ For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 2 (resp. §).

@ For k > 3, using PCPs (probabilistically checkable proofs) Hastad
proves that it is NP-hard to improve upon the 2% approximation

ratio for Max-k-Sat.

@ For Max-2-Sat, the % ratio can be improved by the use of
semi-definite programming (SDP) and randomized rounding.

@ The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?

24 /56

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses C;, w! := w;/(2/61)
Let L be the set of clauses in formula F and X the set of variables
For x € X (or until L empty)
Let P = {C; € L such that x occurs positively}
Let N = {C; € L such that x occurs negatively}
> cep W = cen W)
x:=true;L:= L\ P
Forall C, ¢ N, w/:=2w/ End For
Else
x = false;L:= L\ N
For all C, € P, w/:=2w, End For
End If
Delete x from X
End For

Aside: This reminds me of boosting (Freund and Shapire [1997])

25 /56

Johnson’s algorithm is the derandomized algorithm

@ Twenty years after Johnson's algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson's algorithm is the
derandomized naive algorithm.

@ Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson's algorithm is at best % For example,
consider the 2-CNF F = (x V y¥) A (X V y) A ¥ when variable x is first
set to true. Otherwise use F = (x Vy) A (XVy)Ay.

@ Chen, Friesen, Zheng [1999] showed that Johnson's algorithm
achieves approximation ratio % for arbitrary weighted Max-Sat.

@ For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.

Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.

26/56

	Week

