
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

October 10, 2023

1 / 7

Week 5

Announcements:

Assignment 1 is due Wednesday 11 AM. I changed the last two parts
of question 2. I apologize for not making this clearer.

Todays agenda
We will discuss the following topics:

Proof of non-oblivious local search algorithm for exact max-2-sat.

Some experimental results

k-set packing and k + 1 claw free graphs. Oblivious and non-oblivious
local search.

The metric facility location and k-median problems

Submodular functions

Local search for monotone submodular functions subject to a
constraint

Randomization

Exact Max Sat revisited; the naive algorithm and its
de-randomization; Johnson’s algorithm.

2 / 7

The non-oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
3 / 7

Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Renaming variables, we can assume that τ is the all true assignment.

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1
2P2,j − 3

2P1,j + 1
2N1,j + 3

2N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain
3W (S0) ≤W (S1) + W (S2)

4 / 7

Some experimental results concerning Max-Sat

Of course, one wonders whether or not a worst case approximation
will actually have a benefit in “practice”.
“In practice”, local search becomes more of a “heuristic” where one
uses various approaches to escape (in a principled way) local optima
and then continuing the local search procedure. Perhaps the two most
commonly used versions are Tabu Search and Simulated Annealing.
Later, we will also discuss methods based on online algorithms and
“random walks” and other randomized methods (and their
derandomizations). .
We view these algorithmic ideas as starting points.
But for what it is worth, here are some 2010 experimental results
both for artifically constructed instances and well as for one of the
many benchmark test sets for Max-Sat.
Experimental results by Poloczek and Willamson show that various
ways to use greedy and local search algorithms can compete (wrt.
various test sets) with “state of the art” simulated annealing
algorithms and walk-sat algorithms while using much less time.

5 / 7

Experiment for unweighted Max-3-Sat

50 250 450 650 850 1050
0

0.005

0.01

0.015

0.02

0.025

Number of variables

U
n

s
a

t
ra

ti
o

OLS

NOLS

TS

NOLS+TS

SA

MWS

Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin, 2010]

6 / 7

Experiments for benchmark Max-Sat Instances

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson ACM Experimental Results 2017

Note: 2Pass is a deterministic “2-pass online algorithm” that is derived
from a randomized online algorithm that we will discuss “soon”.

7 / 7

Oblivious and non-oblivious local search for k + 1
claw free graphs

Consider the k set packing problem and its generalization to (k + 1)
claw free graphs. (The intersection graph of a k-set instance is a
k + 1 claw free graph where each vertex represents a k-set and there
is an edge whenever two sets intersect.)
We consider the weighted max (independent) vertex set problem
(WMIS) in a k + 1 claw free graph. (The greedy and oblivious local
search approximations for the weighted k set packing problem
generalize to k + 1 claw free graphs.)
The standard greedy algorithm and the 1-swap oblivious local search
both achieve a k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .
NOTE: I keep trying to use fractional approximation ratios that are
absolute constants and ratios greater than 1 for maximization
problems when the ratios are parameterized.

8 / 7

Berman’s [2000] non-oblivious local search

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 1

2k + 1 approximation.

For the weighted MIS, the “`-swap” oblivous local search results in a
k + ε approximation ratio for any constant ` where ε depends on `.

Chandra and Halldórsson [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
oblivious local search, the approximation ratio improves to 2

3(k + 1)

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves an
approximation ratio of 1

2(k + 1) for WMIS on k + 1 claw-free graphs.

9 / 7

Berman’s [2000] non-oblivious local search

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 1

2k + 1 approximation.

For the weighted MIS, the “`-swap” oblivous local search results in a
k + ε approximation ratio for any constant ` where ε depends on `.

Chandra and Halldórsson [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
oblivious local search, the approximation ratio improves to 2

3(k + 1)

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves an
approximation ratio of 1

2(k + 1) for WMIS on k + 1 claw-free graphs.

9 / 7

Berman’s [2000] non-oblivious local search

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 1

2k + 1 approximation.

For the weighted MIS, the “`-swap” oblivous local search results in a
k + ε approximation ratio for any constant ` where ε depends on `.

Chandra and Halldórsson [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
oblivious local search, the approximation ratio improves to 2

3(k + 1)

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves an
approximation ratio of 1

2(k + 1) for WMIS on k + 1 claw-free graphs.

9 / 7

A little more detail on the Chandra and Halldóssron
greedy + local search algorithm

For the oblivious local search results when we didn’t care about the choice
of the initial solution, it didn’t matter which local improvement we make.

Chandra and Halldóssron show that for their 2
3 ratio result the choice local

improvement does matter. They use the best local improvement (i.e.,
swapping in the best vertex and extending to a maximal independent set).

They also consider an algorithm ANYα where the improvement must
improve by at least an α factor and show that for a suitable choice of α,
the algorithm achieves a ratio 4(k+1)

5 .

They show that this 4
5 ratio is asymptiocally the best ratio for any α.

NOTE: I am not aware of other theoretical results showing how an initial
greedy (or random) solution can impove the local search guarantee.

10 / 7

The (metric) facility location and k-median problems

Two extensively studied problems in operations research and CS
algorithm design are the related uncapacitated facility location
problem (UFL) and the k-median problem. In what follows we restrict
attention to the (usual) metric case of these problems defined as
follows:

Definition of UFL

Input: (F ,C , d , f) where F is a set of faciltites, C is a set of clients or
cities, d is a metric distance function over F ∪ C , and f is an opening cost
function for facilities.
Output: A subset of facilities F ′ minimizing

∑
i∈F ′ fi +

∑
j∈C d(j ,F ′)

where fi is the opening cost of facility i and d(j ,F ′) = mini∈F ′d(j , i).

In the capacitated version, facilities have capacities and cities can
have demands (rather than unit demand). The constraint is that a
facility can not have more assigned demand than its capacity so it is
not possible to always assign a city to its closest facility.

11 / 7

UFL and k-median problems continued

Deifnition of k-median problem

Input: (F ,C , d , k) where F ,C , d are as in UFL and k is the number of
facilities that can be opened.
Output: A subset of facilities F ′ with |F ′| = k minimizing

∑
j∈C d(j ,F ′)

These problems are clearly well motivated. In particular, the k-median
problem (and the k-means problem) are well studied as clustering
problems. Moreover, they have been the impetus for the development
of many new algorithmic ideas.

There are many variants of these problems and in many papers the
problems are defined so that F = C ; that is, any city can be a facility.
If a solution can be found when F and C are disjoint then there is a
solution for the case of F = C .

I want to just mention these problems because of their importance
and the techincal depth that appears in many of the results.

12 / 7

UFL and k-median problems continued

It is known (Guha and Khuller) that UFL is hard to approximate to
within a factor better than 1.463 assuming NP is not a subset of
DTIME (nlog log n) and the k-median problem is hard to approximate to
within a factor better than 1 + 2/e ≈ 1.736 (Jain, Mahdian, Saberi).

The UFL problem is better understood than k-median. After a long
sequence of improved approximation results the current best
polynomial time approximation is 1.488 (Li, 2011).

For k-median, for about 12 years, the best approximation was by an
oblivious local search algorithm. Using a p-flip (of facilities)
neighbourhood, Arya et al (2001) obtain a 3 + 2/p approximation
which yields a 3 + ε approximation running in time O(n2/ε).

Li and Svensson (STOC 2013, SICOMP, 2016) have obtained a
(1 +

√
3 + ε) ≈ 2.73 approximation running in time O(n1/ε

2
).

Surprisingly, they show that an α approximate “pseudo solution” using
k + c facilities can be converted to an α + ε approximate solution
running in nO(c/ε) times the complexity of the pseudo solution.

13 / 7

A little history of the k-median problem

For an arbitrary metric space, the first constant (203) approximation was
achieved by Charikar et al [1999].
A PTAS 1 + 1/c approximation (in time O(nO(c+1)) was given by Arora et
al [STOC 1998] for Euclidean 2-space.
For arbitrary Euclidean spaces, Bhattacharya et al [Approx 2021] provide a
hardness of approximation (based on the unique games conjecture showing
that there is no PTAS for the problem; that is, under this conjecture, there
exists a constant ε > 0 such that no polynomial time algorithm can
achieve a (1 + ε) approximation.

Building on the method of Li and Svensson, Byrka et al [2015] achieve a
2.675 approximation. These methods use a “natural” LP and dependent
rounding to achieve the pseudo solution and then use a black-box method
to convert to a solution. The Byrka et al bound remains the current best
approximation.

14 / 7

A non-oblivious local search algorithm for the
k-median problem

Recently, Cohen-Addad et al [Arxiv 2021] have applied non-oblivious local
search to the k-median problem to achieve a (2.836 + ε) approximation.
This does not match or beat the best known approximation by Bryka et al
but it provides an approach that could lead to an improved approxiamtion.
And, it now is the best approxiation via a local search algorithm.

The running time will be (as in other algorithms where ε appears in the

approximation) O(n
1
ε).

The approach will be to apply non-oblivious local search (swapping in
some number of new medians) to derive a pseudo solution and then
convert to a true solution with k median.

So what can we use for a potential function?

The basic idea is quite natural but the devil is in the “details”. Namely,
instead of just considering the closest facility to each point, we also
consider the second closest facility.

15 / 7

A non-oblivious local search algorithm for the
k-median problem

Recently, Cohen-Addad et al [Arxiv 2021] have applied non-oblivious local
search to the k-median problem to achieve a (2.836 + ε) approximation.
This does not match or beat the best known approximation by Bryka et al
but it provides an approach that could lead to an improved approxiamtion.
And, it now is the best approxiation via a local search algorithm.

The running time will be (as in other algorithms where ε appears in the

approximation) O(n
1
ε).

The approach will be to apply non-oblivious local search (swapping in
some number of new medians) to derive a pseudo solution and then
convert to a true solution with k median.

So what can we use for a potential function?

The basic idea is quite natural but the devil is in the “details”. Namely,
instead of just considering the closest facility to each point, we also
consider the second closest facility.

15 / 7

The Cohen-Addad potential function

Letting Let F be a set of facitilites. Let d1((c ,F) be the distance of a
client c to the closest facility in F and let Let d2((c,F) be the distance of
a client c to the second closest facility in F . Then the potential function is:

Φ(F) =
∑
c∈C

[d1(c ,F) + βmin{d2(c,F), αd1(c ,F)}]

They choose α = 3 and β = 1/5. That is, a client whose second closest
facility is much further away will pay more in with respect to this potiential
and the net effect is to allow for a broader space of possible solutions.

Theorem

Let α, β be as above, and let p(ε) be the swap size, and let r(ε) be the
number of additional facilities in the pseudo solution, then for
|F | = k + r(ε)
ALG (F) ≤ (2.836 + ε) · OPT (F ∗) where F ∗ is a solution with k facilities.

16 / 7

Another possible non-oblivious approach for
k-median

In class another approach was suggested for a possible non-oblivious local
search aalgorithm. Namely, we should give some weight to the dispersion
of the set of facilities.

Indeed this approach is realized in the metric k-center problem where the
objective is to select a set S of k facilities so to minimize the maximum
distance of every client a facility F ∈ S . That is, thinking of each faciltiy
as a center, the goal is to minimize the maximize radius of the
neighbourhoods centred at the facilities in S .

The algorithm simply iteratively adds a new facility to maximize the
distance to each of the current set of facilities.

17 / 7

Some additional comments on local search

An interesting (but seemingly difficult) open problem is to consider
the second and third closest. Can non-oblivious local search be
beneficial for either the UFL or k-means problems?

Suffice it to say for now that local search is the basis for many
practical algorithms, especially when the idea is extended by allowing
some well motivated ways to escape local optima (e.g. simulated
annealing, tabu search) and when combined with other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn’t been
much interest in formalizing the method and establishing limits.

LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

I No simples method is known to run in polynomial time in the worst
case.

18 / 7

Submodular functions

Let U be a universe. In what follows, we will only be interested in set
functions that satisfy f (S) ≥ 0 for all S ⊆ U. We will also assume
functions are normalized in that F (∅) = 0, These assumptions are not
that essental but they are standard and without these assumptions
statements and proofs become somewwhat more complex.

A sublinear set function satisfies the property that
f (S ∪ T) ≤ f (S) + f (T) for all subsetes S ,T of U.

When f (S ∪ T) + f (S ∩ T) = f (S) + f (T), the function is a linear
(also called modular) function.

A submodular set function f : U → R satisfies the following property:
f (S ∪ T) + f (S ∩ T) ≤ f (S) + f (T)

It follows that modular set functions are submodular and submodular
functions are sublinear.

Submodular functions can be monotone or non-monotone. A
monotone submodular function also satisifes the property that
f (S) ≤ f (T) whenever S ⊆ T .

19 / 7

An alternative characterization and examples of
submodular functions

Submodular functions satisfy and can also be defined as those satisfying a
decreasing marginal gains property. Namely,
For S ⊂ T , f (T ∪ {x})− f (T) ≤ f (S ∪ {x})− f (S). That is, adding
additional elements has decreasing (more precisely, non increasing)
marginal gain for larger sets.

Most applications of submodular functions are for monotone submodular
functions. For example, in practice, when we are obtaining results from a
search engine, as we obtain more and more results, we tend to obtain less
additional value.

Modular functions are monotone.

The rank function of a matroid is a monotone submodular function.

The two most common examples of non-monotone submodular functions
are max-cut and max-di-cut (i.e., max directed cut)

20 / 7

Monotone submodular function maximization

The monotone problem is only interesting when the submodular
maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k)k

approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}

End While 21 / 7

Proof: greedy approx for monotone submodular
maximization subject to cardinality constraint

We want to prove the 1− (1− 1
k)k approximation bound.

Let Si be the set after i iterations of the standard greedy algorithm and let
S∗ = {x1, . . . , xk} be an optimal seti so that OPT = f (S∗). For any set S
and element x , let fS(x) = f (S ∪ {x})− f (S) be the marginal gain by
adding x to S . The proof uses the following sequence of inequalities:
f (S∗) ≤ f (Si ∪ S∗) by monotonicity

≤ f (Si)+(f (Si∪{x1})−f (Si))+(f (Si)∪{x1, x2}−f (Si∪{x1}))+. . .
(by submodularity)

≤ f (Si) + fSi (x1) + fSi (x2) + . . . fSi (xk)
(again by submodularity)

≤ f (Si) + k · (f (Si+1 − f (Si)) by the greedy assumption

Equivalently, f (Si+1) ≥ f (Si) + 1
k (f (OPT)− f (Si)

The proof is completed by showing f (Si) ≥ (1− (1− 1
k)i) · OPT by

induction on i .

22 / 7

Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a 1-exchange local search algorithm (that will follow)
achieve a 1

2 approximation for maximzing a monotone submodular
function subject to an arbitrary matroid constraint.

They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.

23 / 7

	Week 5

