CSC2420: Algorithm Design, Analysis and
Theory
Fall 2023
An introductory (i.e. foundational) level
graduate course.

Allan Borodin

October 3, 2023

1/31

Week 4

Announcements:

@ Would anyone like to have Victor do a TA office hour answering
questions about Assignment 1 or other questions?

@ in question 3 of the Assignment, when | said kK — 1 mapping, | meant
k to 1 mapping.

Todays agenda
We will discuss the following topics:

@ The charging argument proofs for the unweighted and proportionally
weighted interval selection problems. | put those proofs in the slides
for Week 3 but also repeating the slides today since we didn’t do the
proofs pertaining to priority algorithms for interval selection.

@ Greedy algorithms for the set packing problem

@ Maximum weighted independent set in a matroid

2/31

Charging arguments for the unweighted and
proportionally weighted interval selection problem.

Let first consider the unweighted interval selection problem where each
input item is an interval |; = [s;, f;) with s; (resp. f;) the starting time
(finishing time) of the interval. The greedy algorithm sorts the intervals so
that 4 < ... < f,. We will construct a 1-1 charging function

h: OPT — Greedy (which implies |OPT| < |Greedy]|) as follows:

We charge any interval in OPT N Greedy to itself. So now we need to
charge an interval /; in OPT \ Greedy to an interval selected by the greedy
algorithm. The function h will charge /; to the leftmost interval /; with
which it conflicts. Since /; ¢ Greedy, it must be that /; exists and f; < f;
or else Greedy would have taken /;. This shows that h is well defined. To
show that h is 1-1, we need to show that there cannot be two OPT
intervals being charged to /;. But any Iy with k > i must intersect /; at f;
which means that /; and /, would intersect.

3/31

The job interval scheduling problem and the greedy
algorithm

In the NP-hard job interval scheduling problem, every interval belongs to
exactly one job class and now a feasible solution means that accepted
intervals do not intersect and at most one interval from any job class is
accepted.

We again sort the intervals so fi < f5... < f,. We use essentially the same
charging argumnent except now the charging function h is a 2-1 function
which implies that |OPT| < 2|Greedy|. That is an interval

li € OPT \ Greedy either intersects an interval /; or I; and /; are in the
same job class.

4/31

A charging argument for the proportionally weighted
interval selection problem

Here we assumne that the weight (i.e., the profit) of a scheduled interval
is equal to its length f; — s;. The claim is that LPT (Longest Processing
Time first) provides a % approximation. Moreover, this is the optimal
approximation for any priority algorithm; more specifically % + € for any

e > 0.

We use a charging argument to establish the positive result. Namely, we
provide a charging function f; OPT — LPT such that f charges at most 3
times the weight of intervals in OPT to an interval in LPT.

Once again if I € OPT N LPT, then charge [to itself. Otherwise consider
an interval | € OPT \ LPT. Charge | to the interval I’ in LPT that
intersects with / having the earliest finishing time. (Here we could charge
I to I” with the earliest starting time or really charge in any way that
provides a unique I’.). We know that such an I’ must exist or else LPT
(being greedy) would have taken the interval /.

5/31

Completing the charging argument for proprtionally
weighted interval scheduling

I can intersect I’ by overlapping at an endpoint s; and/or f; of I’ or it can
be that / is contained in I’. We can deal with each of these cases.

@ | subsumes /. This can't happen since the the length (and therefore
profit) of | would be more than /" and hence LPT would have taken
it.

@ [is subsumed by /. The sum of the lengths of all such intervals [is
at most the length of /’.

o I’ intersects at the start time s; (or finishing time f;) of I’. There can
be at most one interval in OPT intesecting at s; (resp. f;). By the
LPT ordering, |I| < |I'|.

6/31

The negative result for proportional weighted
interval selection fn priority algorithms

For the negative result consider input instances where we have long jobs
(as depicted in Figure 1) and enough short jobs to fill up any long job.
Each small job has negligible size compared to the interval that subsumes
it. Any priority algorithm must take the first interval [it decides to
process or else the adversary stops the input sequence and OPT takes /.

If it is a small job, the adversary just gives the long the long job
subsuming it.

If | is a large job Jx # Ji, the adversary gives all the small jobs within /
and the two adjacent intervals.

If /' is a large job J, = Ji, the adversary gives all the small jobs within /
and the one adjacent interval.

1 3 q—1 g—1 7 3 1

Figure 1: The “long jobs” from the worst case sequence for any priority algorithm for m = 1.

7/31

Interval scheduling on more than one machine

| say scheduling (and not selection) when considering more than one
machine since the algorithm must not only decide which intervals to take
but also indicate on which machine to place the interval. Of course, the
intervals on each machine must not intersect.

Note that the job interval scheduling problem subsumes the problem of
interval scheduling on many machines if we know that Itest completion
time for all intervals.

The following table shows some surprises when there is more than one
machine.

Proportional profit | FIXED PRIORITY | ADAPTIVE PRIORITY
_ m even p<2
GREEDY allm p=3 m=2 156<p
(not necessarily greedy) m=2 2<p m=1 p=3

8/31

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets Si,...,S, from a universe U of size m. In the
weighted case, each subset S; has a weight w;. The goal is to choose a
disjoint subcollection S of the subsets so as to maximize ZS;GS w;. In the
s-set packing problem we have |S;| < s for all /.

@ This is a well studied problem and by reduction from the max clique
problem, there is an m>~¢ hardness of approximation assuming
NP #£ ZPP. For s-set packing with constant s > 3, there is an
Q(s/ log s) hardness of approximation assuming P # NP.

@ We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority,

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedy,:)

Sort the sets so that w; > wso ... > w,,.
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SU§S;.
End For

@ In the unweighted case (i.e. Vi, w; = 1), this is an online algorithm.

@ In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

@ The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

10/31

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size
Sort the sets so that wy/|S1]| > wa/[Sa|... > wy/|Shl.
S =0
Fori:1...n
If S; does not intersect any set in S then
S =8SUS§S;.
End For

@ In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.

@ For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U].

@ We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do

better than min{m, n}.
11/31

Improving the approximation for set packing

@ In the unweighted case, greedy-by-weight-per-size (and
greedy-by-weight-per squareroot-size) can be restated as sorting so
that |S1]| < |Sz|... < |Sa] and it can be shown to provide an
\/m-approximation for set packing.

@ On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size; Gonen and Lehmann EC00

Sort the sets so that wy/+/[S1]| > wa/\/|S2] ... > win/+/|Sal.
S =0
Fori:1...n
If S; does not intersect any set in S then
S:=8SUS§s,.
End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2+/m-approximation for the set packing problem. And as noted earlier, this
is asymptotically the best possible approximation assuming NP # ZPP.

12/31

Another way to obtain an O(,/m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyy)

Let Max, be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedy,
applied to sets of cardinality at most \/m/k. Set PGreedyy to be the best
of Max; and G.

@ Theorem: PGreedyy achieves a 21/ m/k-approximation for the
weighted set packing problem (on a universe of size m)

@ In particular, for k = 1, we obtain a 2,/m approximation and this can
be improved by an arbitrary constant factor vk at the cost of the
brute force search for the best solution of cardinality k; that is, at the
cost of say n*.

13/31

Combinatorial auctions

For those who are interested, a combinatorial auction is one where n
agents (buyers) want one of possibly many subsets of items 51,5y, ..., Sk.
Each agent has has a private value w(S;) for any desired set. An
auctioneer wants to allocate at most one subset to each agent so as to
maximize the total value of disjoint sets that are allocated. This is called
the “social welfare” objective.

We assume “free disposal” (as in the display ads problem) so that
w(S)<w(T)ifScCT.

If every agent was truthful about their valuations, this would be the set
packing problem. But agents are self interested and may not truthfully
report the values for the sets they desire if they think it will be helpful.
That is, they could over state or understate their valuations.

In order to incentivize agents to be truthful, the auctioneer decides on
prices for each agent.

14 /31

Combinatorial auctions continued

If we could compute an optimal solution we would have a way to speficy a
price for the subset to be allocated to each agent so that the agent would
be truthful. But set packing is an NP hard approximation problem as we
have indicated. This result (called VCG auctions) does not hold for
approximation algorithms.

Perhaps the most prominent question in CAs, is how how much
truthfulness can hurt the approximation ratio for a given CA if we insist
upon efficient polynomial allocations or insist upon conceptually simple
allocations and pricing.

Although we need to be more precise, truthful auctions using priority
algorithm allocations for say an s-CA will result in asymptotically the
worst possible approxiamtion (i.e., Q(min{n.m}.

15/31

Max weighted independent set in a matroid.

We conclude our current discussion of priority algorithms by mentioning a
classic result about greedy algorithms and matroids.

Let U be a set of elements and Z be a collection of subsets of U. (U,Z) is
a matroid if the following hold:

o (Hereditary property) If | € Z and I’ C I, then I’ € T.

o (Exchange property) If I’;1 € Z and |I'| < |/|, then Ju € I\ I’ such
that I’ U {u} € 7.

An hereditary set system (U,Z) is any set system satisfying the hereditary
property so that a matroid is an hereditary set system that also satisfies
the exchange property.
The sets | € 7 are referred to as the independent sets. We note that there
are alternative equivalent definitions. In particular, an alternative to the
exchange property is that every maximal independent set is called a basis
and has the same size. This maximum size is call the rank of the matroid.

16/31

Matroids and the greedy algorithm

Any acyclic subset of edges in a graph is an independent set in a matroid.
If the graph is connected then a maximal acyclic subset is a spanning tree.
This is called a graphic matroid.

An independent set of vectors in a vector space is a matroid. ‘' Whitney

[1935] defined this elegant abstraction that applies to many other systems.
Generalizations to intersections of matroids and more general indepedence
systems are also known.

The minimum spanning tree (MST) problem can be seen as a
maximizaton problem (negate the signs of the edge weights or subtract
each edge weight from the maxium edge weight).

Kruskal's MST algorithm can be seen as a the natural greedy algorithm for
computing a maximum weight independent set in a graphic matroid.

17/31

The Rado-Edmonds theorem

The proof of the optimality of Kruskal’s algorithm can be carried over to
show how the natural greedy algorithm obtains an optimal solution for
computing an optimal independent set in any matroid.

What is this natural greedy algorithm for computing a max weight
independent set in a matrod?

Remarkably, there is what can be seen as a converse to this fact.

Consider any hereditary set system. If the natural greedy algorithm
produces an optimal solution for every linear function of elements in an
independent set, then the set system is matroid.

Does this define greedy algorithms?

18/31

The Rado-Edmonds theorem

The proof of the optimality of Kruskal’s algorithm can be carried over to
show how the natural greedy algorithm obtains an optimal solution for
computing an optimal independent set in any matroid.

What is this natural greedy algorithm for computing a max weight
independent set in a matrod?

Remarkably, there is what can be seen as a converse to this fact.

Consider any hereditary set system. If the natural greedy algorithm
produces an optimal solution for every linear function of elements in an
independent set, then the set system is matroid.

Does this define greedy algorithms?

Is the optimality of greedy algorithms limited to independent sets in
matroids?

A non interecting set of intervals can be viewed as a hereditary set system
but not a matroid.

18/31

Local search: the “other” conceptually simplest
paradigm

Along with greedy and greedy-like algorithms, local search is (for me) one
of the two conceptually simplest search/optimization paradigms. Like
greedy algorithms, there are many variations of this paradigm.

The vanilla local search paradigm
“Initialize” S
While there is a “better” solution S’
in the “local neighbourhood” Nbhd(S)
S.=9
End While

v

If and when the algorithm terminates, the algorithm has computed a /local
optimum.

19/31

Local search as a well defined algorithm

To make local search a precise algorithmic model, we have to say:
© How are we allowed to choose an initial solution?
© What constitutes a reasonable definition of a local neighbourhood?
© What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific.

20/31

Towards a more precise definition for local search

@ We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.

Of course, in practice we can use any efficiently computed solution.

@ We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

© In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S'|dn(S5,S’) < k} for some “small” k where dy(S,S’) is
the Hamming distance.

© More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|*.

© We can view Ford Fulkerson flow algorithms as local search algorithms
where the (possibly exponential size but efficiently search-able)
neighbourhood of a flow solution S are flows obtained by adding an
augmenting path flow.

21/31

What does “better” solution mean? Oblivious and
non-oblivious local search

@ For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

@ For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons | cannot
understand, this has been termed oblivious local search. | think it
should be called greedy local search.

@ For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

@ In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

@ For efficiency we sometimes insist that there is a “sufficiently better”

improvement rather than just better.
22/31

Exact Max-k-Sat

@ Given: An exact k-CNF formula
F=GANGAN...NCp,
where C; = (¢} v ¢2...v ¢¥) and EJ,: € {xk,xx |1 < k <n}.

@ In the weighted version, each C; has a weight w;.

@ Goal: Find a truth assignment 7 so as to maximize

W(r) = w(F|7),
the weighted sum of satisfied clauses w.r.t the truth assignment 7.
@ It is NP hard to achieve an approximation better than % for exact

Max-3-Sat and hence that hard for the non exact version of
Max-k-Sat for k > 3.

@ Max-2-Sat can be approximated to within a factor = .87856. 251

The natural oblivious local search

@ A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:

Ng(r) ={7': 7 and 7' differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment 7

WHILE there exists 7 € Ny(7) such that W(7)> W(r)
T="7

END WHILE

24/31

How good is this oblivious local search algorithm?

@ Note: Following the standard convention for Max-Sat, | am using
approximation ratios < 1.

@ It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is %

@ In fact, for every exact 2-Sat formula, the algorithm finds an
assignment 7 such that W(7) > 5>°7, w;, the weight of all clauses,
and we say that the “totality ratio” is at least %

@ More generally for Exact Max-k-Sat the ratio is kL+1
This ratio is essentially a tight ratio for any d = o(n).

@ This is in contrast to an online greedy algorithm derived from a naive
randomized algorithm that achieves totality ratio (2% — 1)/2k.

@ “In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with the greedy algorithm

and then apply local search. 25

Analysis of the oblivious local search for Exact
Max-2-Sat

@ Let 7 be a local optimum and let

» So be those clauses that are not satisfied by 7
» S; be those clauses that are satisfied by exactly one literal by 7
» S, be those clauses that are satisfied by two literals by 7

o Let W(S;) be the corresponding weight.

26/31

Analysis of obvlivious Exact-Max-2-Sat local search
continued

@ We will say that a clause involves a variable x; if either
xj or X; occurs in the clause. Then for each j, let

@ A; be those clauses in Sp involving the variable x;.

@ B; be those clauses C in S involving the variable x;
such that it is the literal x; or X; that is satisfied in C
by 7.

@ (; be those clauses in S, involving the variable Xx;.

o Let W(A;), W(B;), W((;) be the corresponding weights.

27/31

Analysis of the oblivious local search (continued)

@ Summing over all variables x;, we get

o 2W(S) = >_; W(A)) noting that each clause in Sy gets counted
twice.

° W(5)=2;W(B))
@ Given that 7 is a local optimum, for every j, we have

W(A;j) < W(B))
or else flipping the truth value of x; would
improve the weight of the clauses being satisfied.
@ Hence (by summing over all j),

2Wh < WA

28/31

Finishing the analysis

o It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W(So) < W(So) < W(S)
W(So)+W(51)+W(S2) — 3W(So)+W(S2) — 3W(So)

@ It is not easy to verify but there are examples showing that this %
bound is essentially tight for any Ny neighbourhood for d = o(n).

@ It is also claimed that the bound is at best % whenever d < n/2. For
d = n/2, the algorithm would be optimal.

@ In the weighted case, we have to worry about the number of
iterations. And here we can speed up the termination by insisting that
any improvement has to be sufficiently better.

29/31

Using the proof to improve the algorithm

Aside: Using adversarial examples and viewing algorithms as a game
against an adversary is an idea that is now very active in “adversarial
learning” .

@ We can learn something from this proof to improve the performance.
o Note that we are not using anything about W(5>).

o If we could guarantee that W(Sp) was at most W(S,) then the ratio
of clause weights not satisfied to all clause weights would be % .

@ Claim: We can do this by enlarging the neighbourhood to include
7/ = the complement of 7.

30/31

The non-oblivious local search

@ We consider the idea that satisfied clauses in S> are more valuable
than satisfied clauses in S; (because they are able to withstand any
single variable change).

@ The idea then is to weight S, clauses more heavily.

@ Specifically, in each iteration we attempt to find a 7/ € Ny(7) that
improves the potential function

3
instead of the oblivious W(S51) + W(S).

@ More generally, for all k, there is a setting of scaling coefficients
C1,--.,Ck, such that the non-oblivious local search using the
potential function ¢; W(S51) + caW(S2 + ... + cx W(Sk) results

: o .ok
in approximation ratio 22k1 for exact Max-k-Sat.

31/31

	Week 4

