
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

September 26, 2023

1 / 30

Week 3

1 Announcements:
I Two (multi-part) questions for Assignment 1 are now posted (and

reposted) on the course web page. There was a typo on the due date.
It is due Wednesday, October 11 at 11 AM. Hopefully all other typos
have been fixed.

I Consider signing up for piazza
I I won’t set fixed office hours at this time but feel free to drop by

SF2303B or email for a fixed time to meet. I should be on campus
every dauy this term with the exception of some Thursdays when I try
to work at home.

2 Todays agenda.
I Answer any questions on assignment.
I A discussion about proving negative results (“lower bounds”) for

randomized online, priority (and other) algorithms.
I Review and expand on definition of priority algorithms.
I Extensions of the priority model.
I The set cover problem
I The set packing problem

2 / 30

Proving negative results for randomized algorithms

As I indicated, we will usually assume an oblivious adversary when
discussing randomized algorithms.

Without revoking, the 1
2 randomized competitive ratio for the proportional

weight knapsack problem is an optimal ratio. That is, no randomized
algorithm can achieve a 1

2 + ε competitive ratio for any ε > 0.

This is Fact 3.4.4 in the text. Assume (without loss of generality) that the
knapsack capacity is 1. We will only state one value for an input item
since the value of an item is its size. Consider two input sequences
I1 = (ε) and I2 = (ε, 1). Suppose the algorithm accepts the first ε item
with probability p. Then the algorithm obtains the expected ratio p · ε on
the sequence I1 while OPT has value ε so that the competitive ratio for I1
is p. On sequence I2, the algorithm obtains the ratio p · ε+ (1− p) · 1
while OPT has value 1. This implies that the expected competitive ratio is
(at most) ρ(p) = min{p, pε+ (1− p)} since the competitive ratio is a
worst case (over all sequences) ratio. ρ(p) is maximized when p = 1

2
inwhich case it follows that ρ(12) = 1

2(1 + ε).
3 / 30

Proving randomized negative results continued

Often (if not most often) we prove negative results about randomized
algorithms using what is known as the Yao Minimax Principle. The Yao
Principle can be applied in different applications (not just for competitive
ratios). But for our purposes it says that we can obtain a negative result
(e.g. that the competitive ratio is at most c for a maximization problem)
for a randomized online algorithm by constructing a distribution D on
online input sequences and proving that for any deterministic online
algorithm ALG , we have E[ALG]

E[OPT] ≤ c . For minimization problems (ands

when ratios are greater that 1 for maximization problems), we need to

shopw that E[OPT]
E[ALG] ≥ c.

Here the expectation is taken with respect to the distribution D. We will
illustrate the same negative result for the proportional knapsack problem
(no revoking) using the Yao principle. The simple proof (due to
Böckenhauer et al [TCS 2014]) is not an asymptotic ratio. The Yao based
proof is (independently) due to Han et al [TCS 2015].

Note that Böckenhauer et al and Han et al express ratios to be ≥ 1
4 / 30

The proportional knapsack without revoklng: Using
Yao principle

For a given n, consider the following distribution on n input sequences,
each chosen with probability 1

n :
I1 : 1

2 + ε, 12 − ε
I2 : 1

2 + ε, 12 + ε
2 ,

1
2 −

ε
2

I3 : 1
2 + ε, 12 + ε

2 ,
1
2 + ε

3 ,
1
2 −

ε
3

...
In : 1

2 + ε, 12 + ε
2 , . . .

1
2 + ε

n ,
1
2 −

ε
n

OPT has value 1 since it will accept the inputs 1
2 + ε

k ,
1
2 −

ε
k for some k .

Consider any detertministic online algorithm. Assume the algorithm first
accepts the item with size 1

2 + ε
j for some j ≤ n. Then the algorithm must

reject all items with size 1
2 + ε

` for ` > j .

The expected return of the algorithm is at most
(12 ·

j−1
n) + (1 · 1n) + (12 + ε

j ·
n−j
n) ≤ (12 + ε) · n+1

n

allowing us to conclude that the competitive ratio is no better than 1
2 − ε

for arbitrarily small ε as n→∞. 5 / 30

Proportional knapsack with revoking: Uing the Yao
Principle

We’ll give one more impossibility proof which (currently) is worse than the
best known algorithm which has competitive ratio 7

10 . Here we consider
randomized online algorithms (with revoking) to show that no such
algorithm can be better than 4

5 + ε competitive for the proportional
knapsack problem.

Consider the following distribution on input sequences:
I1 : 2

3 + ε, 13 ,
2
3 with probability 1

2
I2 : 2

3 + ε, 13 with probability 1
2

OPT hae expected value 1 · 12 + (23 + ε) · 12 = 5
6 + ε

Consider any deterministic algorithm.

If the algorithm rejects the second input, then it obtains value 2
3 + ε

2
If the algorithm accepts the second input, it must discard the first input so
that the algorithm has expected value 1 · 12 + 1

3 ·
1
2 = 2

3

Therefore, the competitive ratio is at most 4
5 + ε

6 / 30

Some additional results for randomized online
algorithms with revoking for knapsack problems

We will move on from this topic but perhaps will return to it later.

For proportional weights Han et al [TCS 2015] provide a 7
10

competitive algorithm (with revoking) that is not that simple nor easy
to analyze.

For the general knapsack problem, we have seen a 1
2 randomized

algorithm with revoking. Han et al provide a negative 1
1+1/e ≈ .731

result using the Yao Principle.

Online algorithms with revoking but with a cost to revoke items has
been studied (sometimes called “buyback” problems). This problem is
motivated and studied by Babaioff et al [EC 2009] in the context of
selling ad campaigns. They proved the lower 4

5 negative result
(without costs) for the general knapsack whereas Han et al improve
this negative result by showing that it holds for proportional weights.

7 / 30

The priority algorithm model and variants

As part of our discussion of greedy (and greedy-like) algorithms, I want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms we mentioned? With the exception of
Huffman coding (which we can also deal with), like online algorithms,
all these algorithms consider one input item in some well defined
ordering of the items in each iteration and make an irrevocable
“greedy” decision about that item..

We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dk

about each input item Ik (e.g. on what machine to schedule job Ik in
the makespan case) such that {(I1,D1), . . . , (In,Dn)} constitutes a
feasible solution.

8 / 30

Priority model continued

Note: that a problem is only fully specified when we say how input
items are represented. (This is usually implicit in an online algorithm.)

We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn’t always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation.

9 / 30

Greedy decisions and priority algorithms continued

For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)
If we do not insist on greediness, then priority algorithms would best
have been called myopic algorithms.
We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).
The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.
We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.

10 / 30

The priority model definition

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider deterministic fixed order priority algorithms. Since I
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

Initially there is some (possibly infinite) set J of potential inputs.
The algorithm chooses a total ordering π on J . Then the adversary
selects a subset I ⊂ J of actual inputs so that I becomes the input
to the priority algorithm. The input items I1, . . . , In are ordered
according to π.

In iteration k for 1 ≤ k ≤ n, the algorithm considers input item Ik
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dk about this input item.

11 / 30

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering π of J
Let I ⊂ J be the input instance
S := ∅ % S is the set of items already seen
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
I := I \ S
Ii := minπ{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}

end

Figure: The template for a fixed priority algorithm

12 / 30

Some comments on the priority model

A special (but usual) case is that π is determined by a function
f : J → < and and then ordering the set of actual input items by
increasing (or decreasing) values f (). (We can break ties by say using
the input identifier of the item to provide a total ordering of the input
set.) N.B. We make no assumption on the complexity or even the
computability of the ordering π or function f .
NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
input identifier of the item.
As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global
information.)

13 / 30

The adaptive priority model template

J is the set of all possible input items
I is the input instance
S := ∅ % S is the set of items already considered
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
decide on a total ordering πi of J
I := I \ S
Ii := min≤πi

{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}
J := J \ {I : I ≤πi Ii}
% some items cannot be in input set

end

Figure: The template for an adaptive priority algorithm

14 / 30

Some deterministic priority algorithm
approximations and inapproximations

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

The Greedy algorithm for unweighted interval selection is optimal.
Extending the problem to the NP-hard job interval selection problem,
the greedy algorithm is a 1

2 approximation.

For weighted interval selection with arbitrary weighted values (resp.
for proportional weights vj = |fj − sj |), no priority algorithm can
achieve a constant approximation (respectively, a 1

3 + ε
-approximation).

15 / 30

Charging arguments for the unweighted and
proportionally weighted interval selection problem.

Let first consider the unweighted interval selection problem where each
input item is an interval Ij = [si , fi) with si (resp. fi) the starting time
(finishing time) of the interval. The greedy algorithm sorts the intervals so
that f1 ≤ f2 . . . ≤ fn. We will construct a 1-1 charging function
h : OPT → Greedy (which implies |OPT | ≤ |Greedy |) as follows:

We charge any interval in OPT ∩ Greedy to itself. So now we need to
charge an interval Ij in OPT \Greedy to an interval selected by the greedy
algorithm. The function h will charge Ij to the leftmost interval Ii with
which it conflicts. Since Ii /∈ Greedy , it must be that Ii exists and fi ≤ fj
or else Greedy would have taken Ij . This shows that h is well defined. To
show that h is 1-1 is well defined, we need to show that there cannot be
two OPT intervals being charged to Ii . But any Ik with k ≥ i must
intersect Ii at fi which means that Ij and Ik would intersect.

16 / 30

The job interval scheduling problem and the greedy
algorithm

In the NP-hard job interval scheduling problem, every interval belongs to
exactly one job class and now a feasible solution means that accepted
intervals do not intersect and at most one interval from any job class is
accepted.

We again sort the intervals so f1 ≤ f2 . . . ≤ fn. We use essentially the same
charging argumnent except now the charging function h is a 2-1 function
which implies that |OPT | ≤ 2|Greedy |. That is an interval
Ij ∈ OPT \ Greedy either intersects an interval Ii or Ij and Ii are in the
same job class.

17 / 30

A charging argument for the proportionally weighted
interval selection problem

Here we assumne that the weight (i.e., the profit) of a scheduled interval
is equal to its length fi − si . The claim is that LPT (Longest Processing
Time first) provides a 1

3 approximation. Moreover, this is the optimal
approximation for any priority algorithm; more specifically 1

3 + ε for any
ε > 0.

We use a charging argument to establish the positive result. Namely, we
provide a charging function f ;OPT → LPT such that f charges at most 3
times the weight of intervals in OPT to an interval in LPT .

Once again if I ∈ OPT ∩ LPT , then charge I to itself. Otherwise consider
an interval I ∈ OPT \ LPT . Charge I to the interval I ′ in LPT that
intersects with I having the earliest finishing time. (Here we could charge
I to I ′ with the earliest starting time or really charge in any way that
provides a unique I ′.). We know that such an I ′ must exist or else LPT
(being greedy) would have taken the interval I .

18 / 30

Completing the charging argument for proprtionally
weighted interval scheduling

I can intersect I ′ by overlapping at an endpoint si and/or fi of I ′ or it can
be that I is contained in I ′. We can deal with each of these cases.

I subsumes I ′. This can’t happen since the the length (and therefore
profit) of I would be more than I ′ and hence LPT would have taken
it.

I is subsumed by I ′. The sum of the lengths of all such intervals I is
at most the length of I ′.

I ′ intersects at the start time si (or finishing time fi) of I ′. There can
be at most one interval in OPT intesecting at si (resp. fi). By the
LPT ordering, |I | ≤ |I ′|.

19 / 30

The negative result for proportional weighted
interval selection fn priority algorithms

For the negative result consider input instances where we have long jobs
(as depicted in Figure 1) and enough short jobs to fill up any long job.
Each small job has negligible size compared to the interval that subsumes
it. Any priority algorithm must take the first interval I it decides to
process or else the adversary stops the input sequence and OPT takes I .

If it is a small job, the adversary just gives the long the long job
subsuming it.

If I is a large job Jk 6= J1, the adversary gives all the small jobs within I
and the two adjacent intervals.

If I is a large job Jk = J1, the adversary gives all the small jobs within I
and the one adjacent interval.

20 / 30

Some more deterministic priority algorithm
approximations and inapproximations

For the knapsack problem, no deterministic adaptive priority
algorithm can achieve a constant approximation. However, there are
randomized competiitve competitive algorithms. This is relevant to
the second assignment question.

For the set cover problem, the “natural” greedy algorithm obtains the
ratio Hn ≈ ln n and this is essentially the best priority algorithm and
the best approximation by any polynomial time algorithm assuming a
reasonable complexity conjecture.
What is the natural greedy algorithm?

In the j th iteration, we choose
the set that minimizes ci

ri
where ci (respectively, ri) is the cost of set

Si (respectively, the number of remaining uncovered items in Si at the
start of the j th iteration. This is clearly, an adaptive priority algorithm.

21 / 30

Some more deterministic priority algorithm
approximations and inapproximations

For the knapsack problem, no deterministic adaptive priority
algorithm can achieve a constant approximation. However, there are
randomized competiitve competitive algorithms. This is relevant to
the second assignment question.

For the set cover problem, the “natural” greedy algorithm obtains the
ratio Hn ≈ ln n and this is essentially the best priority algorithm and
the best approximation by any polynomial time algorithm assuming a
reasonable complexity conjecture.
What is the natural greedy algorithm? In the j th iteration, we choose
the set that minimizes ci

ri
where ci (respectively, ri) is the cost of set

Si (respectively, the number of remaining uncovered items in Si at the
start of the j th iteration. This is clearly, an adaptive priority algorithm.

21 / 30

And more deterministic priority algorithm
approximations and inapproximations

See Section 16.4.3 in the text for the unweighted set cover problem in
which case the natural greedy algorithm sorts the sets so that
c1 ≤ c2 . . . ≤ cm. Here we show the positive Hn result and a priority
algorithm log n−1

2 inapproximation.

The analysis of the natural greedy algorithm for the weighted set
cover problem is given in the Vazirani Approximation Algorithms text.

As previously mentioned, for deterministic fixed order priority
algorithms, there is an Ω(logm/ log logm) inapproximation bound for
the makespan problem in the restricted machines model. The
competitive ratio for the naturaal greedy algorithm is logm so that a
gap “small” gap remains for fixed priority and we don not have an
adaptive priority inapproximation.

22 / 30

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For a deterministic adaptive algorithm, the game
between an algorithm and an adversary can conceptually be naturally
viewed an alternating sequence of actions with respect to some initial set
of all possible input items.

The adversary eliminates some possible input items

The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, we again (as for online algorithms) usually
assume an oblivious adversary. And again, we often use the Yao principle
to prove randomized results.

23 / 30

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For a deterministic adaptive algorithm, the game
between an algorithm and an adversary can conceptually be naturally
viewed an alternating sequence of actions with respect to some initial set
of all possible input items.

The adversary eliminates some possible input items

The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, we again (as for online algorithms) usually
assume an oblivious adversary. And again, we often use the Yao principle
to prove randomized results.

23 / 30

Extensions of the priority order model

We already implicitly suggested some extensions of the basic priority
model (e.g., the basic one-pass, irrevocable decisions model) The following
online or priority algorithm extensions can be made precise:

Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to permanently discard previously accepted
intervals , then we can achieve a 1

4 -approximation. (but provably
cannot achieve optimality unlike unweighted interval selection).
While the knapsack problem cannot be approximated (by a
deterministic priority algorithm) to within any constant, we can
achieve a 1

2 -approximation (respectively, a 1
4 -approximation) by taking

the maximum of 2 greedy algorithms (by randomly choosing between
two greedy algorithms). More generally we can consider some “small”
number k of priority (or online) algorithms and take the best result
amongst these k algorithms (e.g., the partial enumeration greedy
algorithms for the makespan and knapsack problems are examples).

24 / 30

Extensions of the priority order model continued

Closely related to the “best of k online (priority)” algorithms is the
concept of online (priority) algoirthms with “advice”. There are two
advice models, a model where one measures the maximum number of
advice bits per input item, and a model where we are given some
number ` of advice bits at the start of the computation. The latter
model is what I will usually mean by “online (priority) with advice.”
Online with ` advice bits is equivalent to the max of k = 2` online
each priority algorithm operating independent of the other. (priority)
model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of online and
priority algorithms, one doesn’t impose any such restriction.

25 / 30

Extensions of the priority order model continued

Closely related to the “best of k online (priority)” algorithms is the
concept of online (priority) algoirthms with “advice”. There are two
advice models, a model where one measures the maximum number of
advice bits per input item, and a model where we are given some
number ` of advice bits at the start of the computation. The latter
model is what I will usually mean by “online (priority) with advice.”
Online with ` advice bits is equivalent to the max of k = 2` online
each priority algorithm operating independent of the other. (priority)
model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of online and
priority algorithms, one doesn’t impose any such restriction.

25 / 30

Online algorithms with ML advice

Relatively recently, the advice model has gained new attention in the form
of “online algorithms with ML advice”. Of course, saying ML attracts
attention and the more accurate (and also used) terminology is “online
algorithms with predictions”. And more generally, this can be seen as
“online algorithms with untrusted advice”1.

The perspective in online algorithms with predictions is the tradeoff
between the amount of error in the predictions and performance (e.g., the
competitive ratio). The predictions might come from experience of an ML
algorithm learning from thousands of trials or it can come from a
prediction that the inputs are coming from a known distribution, or really
any prediction about the data.

1This latter termninology was defined to study the number of untrusted bits of
advice vs performance but the current focus is on prediction error vs performance.

26 / 30

Online algorithms with predicitions

The goal is to exploit predictions to obtain an algorithm that informally is
“robust” (in the sense of the algorithm not performing too badly if the
prediction is arbitrarily bad and is “consistent” in the sense that the
algorithm’s performance is much better than what can be done without
predictions if the prediction is accurate or near accurate (i.e., the “error” is
small).

There are different ways to formulate and quantify these robust and
consistency requirements; that is, defining a “useful” class of predictions
and how to measuren the error of the prediction. Not surprisingly, there is
usually a tradeoff between robustness and consistency.

The goal is often to exhibit Pareto optimal algorithms. In the case of say
predicitions we consider an algorithm’s outcome as a point in terms of the
(robust,consistency) values of the algorithm and Pareto optimal here
means that we cannot simultaneously improve both the robustness and the
consistency.

27 / 30

More on advice and predicitions

The concepts of trusted and untrusted advice, and predictions can be
applied to any class of algorithms.
As mentioned, we can consider an online (resp. priority) algorithhm
with say k trusted bits of advice as a parallel model where the
algorithm initially forks into 2k online (resp. parallel) algorithms and
takes the best leaf in the resulting 2k width tree. There are more
general parallel priority based models than “best of k” algorithms.
Namely, parallel algorithms could be spawning or aborting threads (as
in the pBT model to be discussed later which serves as a model for
branch and bound algorithms and very simple dynmaic programming).
Any lower bound on the number of advice bits needed to obtaina
c-approximation immediately becomes a lower bound on the number
of random bits needed to achieve a c-approximation. Moreover, under
a mild assumption, a randomized algorithm with ratio c can be
converted to a deterministic (1 + ε) · c-competitive ratio using
O(log n) advice bits. The countrapositive of this result (for proving
randomized inapproximations) is perhaps the primary use of advice.

28 / 30

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for biparitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why?

What information should we be allowed to convey between
passes?

29 / 30

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for biparitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we be allowed to convey between
passes?

29 / 30

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant s ≥ 3, there is an
Ω(s/ log s) hardness of approximation assuming P 6= NP.
We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority.

30 / 30

	Week 3

