
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

December 5, 2023

1 / 43

Week 12

Announcements:

Assignment 3 is due Friday, December 8 at 11 AM No extensions.

Todays agenda
We will discuss a collection of miscellaneous results:

Recalling “basic paradigms”.

An example of a “more clever brute force search” to derive a divide
and conquer algorithm for Max-3-Sat.

The makespan problem for unrelated machines: An example of a
more involved “rounding” of an IP/LP.

Another paradigm: weighted majority

More examples of vector programs

The densest subgraph problem. Charikar’s reverse greedy algorithm.

2 / 43

Reviewing some basic algorithmic paradigms

We begin with some “conceptually simple” search/optimization algorithms.

The conceptually simplest “combinatorial” algorithms

Given an optimization problem, it seems to me that the conceptually
simplest approaches are:

brute force search

divide and conquer

greedy

local search

dynamic programming

Comment

We usually dismiss brute force as it really isn’t much of an algorithm
approach but might work for small enough problems.

Moreover, sometimes we can combine some aspect of brute force
search with another approach as we will soon see.

3 / 43

More basic paradigms

To these basic paradigms, we should add IP/LP rounding as that also is
often conceptually simple. Of course, selecting the most appropriate IP
and knowing how best to round can be quite non trivial. But often, we
can at least easily come up with a reasonable IP/LP formulation and some
naive way to “round”.

And to the extent that we have a reasonable IP/LP formulation of a
problem, we can also think the primal dual method as a basic paradigm,
using the dual to guide setting of primal variables.

Recalling the DLS given by Marijn Heule on the use of SAT solvers, we
can think of formulating some search and optimization problems as SAT
problems. And again, like IP/LP as a basic paradigm, the choice of the
most appropriate SAT formulation can be quite (even very) non-trivial.

We didn’t discuss divide and conquer or dynmaic programming but they
are definitely basic paradigms. And as mentioned we can combine brute
force with other paradigms. In the next few slides we will see an example
of combining brute force with divide and conquer.

Weighted majority as a paradigm.

4 / 43

A relatively simple deterministic algorithm for 3-SAT

Consider a 3-CNF formula with n variables and m clauses. While there are
any clauses with 3 lterals (for example, x , y , z), branch on each of the 7
possible settings for (x , y , z) that can make the clause true.

In this way, we are creating a 7-ary tree where each node specifies a truth
value setting on three distinct variables. We discontinue a branch
whenever we falsify a clause.

On any branch the current truth value setting can satisfy some clauses
which can then be eliminated. In other clauses, one or two variables will
be eliminated.

We continue to do this until there are no clauses remaining that have
three literals. If any branch satisfies all clauses or if we are left with only
consistent unit clauses, the given formula is saisfiable. If we are left with
two contradictory unit clauses, we are also done and the given formula is
unsatisfiable.

5 / 43

Finishing the simple deterministic algorithm for
3-SAT

Otherwise at each branch, we have a 2-SAT formula for which we can
determine satisfiability.

The depth of the truth value tree is at most n/3 since we were eliminating
3 distinct variables at each level.

Hence the time complexity is

O(7n/3poly(m)) = 2log27n/3poly(m) ≈ 2
2.81
3

npoly(m)) ≈ Õ(1.913)n which
improves the exponent obtained by naively trying all 2n truth values.

We note again that the encoded length of the given formula is O(m log n))
so we can ignore the poly(m) factor with regard to understanding what is
the best possible possible exponent (assuming the time complexity is
exponential in n).

6 / 43

A modification of the previous “7-way branching”
algorithm

Instead of brancing on all 7 possible satisfying truth assignments for a
given clause, here is a modification which we can call a “3-way branching”
algorithm. Here is am using lecture slides by William Gasarch.

Again consider a clause with 3 literals, say x , y , z . Then either the formula
is true setting x = true; or x = false; y = true; or
x = false, y = false, z = true.

Viewed as a recursive algorithm, we get the recurrence
T (n) = T (n − 1) + T (n − 2) + T ((n − 3) instead of the recurrence
T (n) = 7T (n − 3).

Aiming for T (n) roughly equal to αn for some α, we would have
α3 = α2 + α + 1 yielding T (n) ≈ O((1.84)n.

And some tweaking of this 3-way branching algorithm leads to an
algorithm with time compleixty O((1.618)n).

7 / 43

Makespan for the unrelated and restricted machine
models: a more sophisticated rounding

In the IP/LP rounding for the weighted vertex problem, the rounding was
“(input) independent rounding” and oblivious to the input.

We now return to the makespan problem (our first problem week 1)
ibut now with respect to the unrelated machines model and the
special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.

8 / 43

The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.

9 / 43

Adapting the natural IP

We use binary search with an LP solver, to find the best T for the LP
relaxation of the problem.
Namely, given a candidate T , we remove all xji such that pj ,i > T
and obtain a “search problem” (i.e. constant or no objective
function) for finding xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, the LST
algorithm then shows how to use a non-independent rounding to
obtain an integral solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an integral solution.

10 / 43

Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible LP with m + n constraints (not counting the non-negativity
constraints for the variables) then L has an optimal basic solution
such that at most n + m of the variables are non-zero.

It follows that there are at most m of the n jobs that have fractional
solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.

11 / 43

The rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a matching
of size y . Note, of course, this is what makes the “rounding”
non-independent .

The existence of this matching requires more LP theory whereby it
can be shown (LST credit Dantzig [1963]) that the connected
components of the bipartite graph are either trees or trees with one
added edge (and therefore causing a unique cycle).

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed a makespan at
most T before assigning the fractional jobs.

12 / 43

New topic: the weighted majority algorithm

I am following a survey type paper by Arora, Hazan and Kale [2008]. To
quote from their paper: “We feel that this meta-algorithm and its analysis
should be viewed as a basic tool taught to all algorithms students together
with divide-and-conquer, dynamic programming, random sampling, and
the like”.

The weighted majority algorithm and generalizations
The ”classical” WMA pertains to the following situation:
Suppose we have say n expert weathermen (or maybe “expert” stock
market forecasters) and at every time t, they give a binary prediction
(rain or no rain, Raptors win or lose, dow jones up or down, Canadian
dollar goes up or down.
Now some or all of these experts may actually be getting their
opinions from the same sources (or each other) and hence these
predictions can be highly correlated.
Without any knowledge of the subject matter (and why should I be
any different from the “experts”) I want to try to make predictions
that will be nearly as good (over time t) as the BEST expert.

13 / 43

The weighted majority algorithm

The WM algorithm

Set wi (0) = 1 for all i
For t = 0...

Our (t + 1)st predication is
0: if

∑
{i : expert i predicts 0} wi (t) ≥ (1/2)

∑
i wi (t)

1: if
∑
{i : expert i predicts 1} wi (t) ≥ (1/2)

∑
i wi (t) ; arbitrary o.w.

% We vote with weighted majority; arbitrary if tie

For i = 1..n
If expert i made a mistake on (t + 1)st prediction

then wi (t + 1) = (1− ε)wi (t);
else wi (t + 1) = wi (t)

End If
End For

End For

14 / 43

How good is our uninformed MW prediction?

Theorem : Perfomance of WM

Theorem: Let mi (t) be the number of mistakes of expert i after the first t
forecasts, and let M(t) be the number of our mistakes. Then for any
expert i (including the best expert) M(t) ≤ 2 ln n

ε + 2(1 + ε)mi (t) .

That is, we are “essentially” within a multiplicative factor of 2 plus an
additive term of the best expert (without knowing anything).

Using randomization, the factor of 2 can be removed. That is, instead
of taking the weighted majority opinion, in each iteration t, choose
the prediction of the i th expert with probability wi (t)/

∑
i wi (t). This

is the “natural randomization” that we previously saw in maximizaing
non monotone submodular function.

Theorem: Performance of Randomized WM

For any expert i , E[M(t)] ≤ ln n
ε + (1 + ε)mi (t)

15 / 43

Proof of deterministic WM

Let’s assume that ε ≤ 1/2. It follows that

−ε− ε2 ≤ ln(1− ε) < −ε
Let wi ,t be the weight of the i th expert at time t and let mi (t) be the
number of mistakes made by expert i . . Consider the potential function
Φ(t) =

∑
i wi ,t . Clearly

Φ(t) ≥ wi ,t = (1− ε)mi (t)

We now need an upper bound on Φ(t). Since each time the WM
algoriithm makes a mistake, at least half of the algorithms make a mistake
so that Φ(t) ≤ (1− ε/2)Φ(t − 1). Starting with Φ(0) = n, by induction
Φ(t) ≤ n · (1− ε/2)M(t)

Putting the two inequlaities together and taking logarithms

ln(1− ε)mi (t) ≤ ln n + M(t) ln(1− ε/2)

The argument is completed by rearranging, using the above facts
concerning ln(1− ε) and then dividing by ε/2.

16 / 43

What is the meaning of the randomized
impovement?

In many applications of randomization we can argue that
randomization is (provably) necessary and in other applications, it
may not be provable so far but current experience argues that the
best algorithm in theory and practice is randomized.

For some algorithms (and especially online algorithms) analyzed in
terms of worst case performance, there is some debate on what
randomization is actually accomplishing.

In a [1996] article Blum states that “Intuitively, the advantage of the
randomized approach is that it dilutes the worst case”. He continues
to explain that in the determinstic algorithm, slightly more than half
of the total weight could have predicted incorrectly, causing the
algorithm to make a mistake and yet only reducing the total weight
by 1/4 (when ε = 1/2). But in the randomized version, there is still a
.5 probability that the algorithm will predict correctly. Convincing?

17 / 43

An opposing viewpoint

In the blog LessWrong this view is strongly rejected. Here the writer
comments: “We should be especially suspicious that the randomized
algorithm guesses with probability proportional to the expert weight
assigned. This seems strongly reminiscent of betting with 70%
probability on blue, when the environment is a random mix of 70%
blue and 30% red cards. We know the best bet and yet we only
sometimes make this best bet, at other times betting on a condition
we believe to be less probable. Yet we thereby prove a smaller upper
bound on the expected error. Is there an algebraic error in the second
proof? Are we extracting useful work from a noise source? Is our
knowledge harming us so much that we can do better through
ignorance?” The writer asks: “So what’s the gotcha ... the improved
upper bound proven for the randomized algorithm did not come from
the randomized algorithm making systematically better predictions -
doing superior cognitive work, being more intelligent - but because we
arbitrarily declared that an intelligent adversary could read our mind
in one case but not in the other.”

18 / 43

Further defense of the randomized approach

Blum’s article expresses a second benefit of the randomized approach:
“Therefore the algorithm can be naturally applied when predictions
are ‘strategies’ or other sorts of things that cannot easily be combined
together. Moreover, if the ‘experts’ are programs to be run or
functions to be evaluated, then this view speeds up prediction since
only one expert needs to be examined in order to produce the
algorithm’s prediction”
I agree with Blum but I can see understand the dissenting argument.
To the extent that our algorithms are randomized, an important
consideration (that we mainly ignored) is whether the result is just a
result is expectation or is it a result where we obtain the expected
value with high probability. I think the dissenting argument becomes
irrelvant when we can guarantee high probability.
A basic randomized paradigm for online and greedy algorithm is
classify and randomly select which only yields results in expectation.
Of course, for all algorithmic approaches we have to ask the question:
does it work well “in practce”?

19 / 43

Generalizing: The Multiplicative Weights algorithm

The Weighted Majority algorithm can be generalized to the multiplicative
weights algorithm. If the i th expert or decision is chosen on day t, it incurs
a real valued cost/profit mi (t) ∈ [−1, 1]. The algorithm then updates
wi (t + 1) = (1− εmi (t))wi (t). Let ε ≤ 1/2 and Φ(t) =

∑
i wi (t). On day

t, we randomly select expert i with probability wi (t)/Φ(t).

Performance of The MW algorithm

The expected cost of the MW algorithm after T rounds is∑T
t=1 m(t) · p(t) ≤ ln n

ε +
∑T

t=1mi (t) + ε
∑T

t=1 |mi (t)|

20 / 43

Reinterpreting in terms of gains instead of losses

We can have a vector m(t) of gains instead of losses and then use the
“cost vector” −m(t) in the MW algorithm resulting in:

Performance of The MW algorithm for gains∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1mi (t)− ε∑T
t=1 |mi (t)|

By taking convex combinations, an immediate corollary is

Performance wrt. a fixed distribution p∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1 m(t)− ε|m(t)|)p

21 / 43

An application to learning a linear binary classifier

Instead of the online application of following expert advice, let us now
think of “time” as rounds in an iterative procedure. In particular, we
would like to compute a linear binary classifier (when it exists).

We are trying to classsify objects characterized by n features; that is
by points a in <n. We are given m labelled examples
(a1, `1), . . . , (am, `m) where `j ∈ {−1,+1}
We are going to assume that these examples can be “well classified”
by a linear classifier in the sense that there exists a non negative
vector x∗ ∈ <n (with xi ≥ 0) such that sign(aj · x∗) = `j for all j .

This is equivalent to saying `jaj · x∗ ≥ 0 and furthermore (to explain
the “well”) we will say that `jaj · x∗ ≥ δ for some δ > 0.

The goal now is to learn some linear classifer; ie a non negative
x ∈ <n such that `jaj · x∗ ≥ 0. Without loss of generality, we can
assume that

∑
i xi = 1.

Letting bj = `jaj , this can now be veiwed as a reasonably general LP
(search) problem.

22 / 43

Littlestone’s Winnow algorithm for learning a linear
classifier

Litlestone [1987] used the multiplicative weights approach to solve
this linear classification problem.
Let ρ = maxj ||bj ||∞ and let ε = δ/(2ρ)
The idea is to run the MW algorthm with the decisions given by the n
features and gains specified by the m examples. The gain for feature i
with respect to the j th example is defined as (bj)i/ρ which is in [-1,1].
The x we are seeking is the distribution p in MW.

The Winnow algorithm

Initialize p
While there are points not yet satisfied

Let bj · p < 0 % a constraint not satisfied
Use MW to upate p

End While

Bound on number of iterations

The Winnow algorithm will terminate in at most d4ρ2 ln n/δ2e iterations.23 / 43

Some additional remarks on Multiplicative Weights

The survey by Arora, Hazan and Kale [2012] discusses other modifications
of the MW paradigm and numerous applications. In terms of applications,
they sketch results for

Aporoximately solving (in the sense of property testing) the decision
problem for an LP; there that is given linear constraints expressed by
Ax ≥ b, the decision problem is to see if such a non-negative x exists
(or more generally, if x is in some given convex set). The algorithm
either returns a x : Aix ≥ bi − δ for all i and some additive
approximation δ or says that the given LP was infeasible.

Solving zero sum games approximately.

The AdaBoost algorithm of Shapire and Freund

Some other specific applications including a class of online algorithms.

I also suggest lecture slides by Uri Zweig on the MW algorithm and its
applications. I will post his slides.

24 / 43

More results via vector programming

In week 8, we briefly discussed the quadradic program and its vector
program relaxation for Max-2-Sat. Rounding vector programs provide the
best known algorithms for a number of other problems. We will first recall
how Max-2-at is solved by this approach and then survey some other
results following the same approach.

In particular, we have the following problems:

We review the Max-2-Sat formulation

Max-cut

Cardinality constrained monotone set function maximization

25 / 43

The quadratic program for Max-2-Sat

The following discussion is taken from the Vazirani Approximation
Algorithms textbook.

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C) of each clause C
in terms of these {−1, 1} variables.

1 val(xi) = (1 + yiy0)/2
val(x̄i) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C) = 1− val(x̄i ∧ x̄j) = 1− (1−yiy0
2)(

1−yjy0
2) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C) = (3− yiy0 − yjy0 − yiyj)/4

26 / 43

The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi)

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.

27 / 43

The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value

2
∑

aijProb[yi = yj] +
∑

bijProb[yi 6= yj] ; Prob[yi 6= yj] =
θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).

28 / 43

The Goemans and Williamson program algorithm for
max-cut

This is very similar to Max–2-sat.

We introduce {-1,1} variables yi corresponding to the vertex variables
xi . We also need a homogenizing variable y0; the intended meaning is
that vertex vi ∈ S and iff yi = y0.

The max-cut problem can then be represented by the following
(strict) quadratic programming problem:

Maximize 1
2

∑
1≤i<j≤n wij(1− yiyj) subject to

y2i = 1 for 0 ≤ i ≤ n

This is relaxed to a vector program by introducing vectors on the unit
sphere in vi ∈ Rn+1 where now the scalar multiplication becomes the
vector inner product.

29 / 43

The same rounding of the vector program

The randomized rounding (from v∗i to yi) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value∑
1≤i<j≤n wijPr[vi and vj are separated] =

∑
1≤i<j≤n wij

θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).

30 / 43

Set function maximization

Densest subgraph, max cut, max-di-cut and max-sat are problems where
the goal is to maximize a non-monotone set function and hence (given
that they are non-monotone) make sense in their unconstrained version.

Of course, similar to monotone set function maximization problems (such
as max coverage), these problems also have natural constrained versions,
the most studied version being a cardinality constraint.

More generally, there are other specific and arbitrary matroid constraints,
other independence constraints, and knapsack constraints.

31 / 43

Cardinality constrained set function maximization

Max-k-densest subgraph, max-k-cut, max-k-di-cut, max-k-uncut and
max-k-vertex-coverage are the natural cardinality constrained versions of
well studied graph maximization problems. They all are of the following
form:

Given an edge weighted graph G = (V ,E ,w) with non negative edge
weightes w : E → R, find a subset S ⊆ V with |S | = k so as to maximize
some set function f (S). (Of course, In the unweighted versions, w(e) = 1
for all e ∈ E .)

For example, the objective in max-k-uncut is to find S so as to maximize
the edge weights of the subgraphs induced by S and V \ S . That is, in a
social network, divide the graph into two “communities”.

NOTE: Max-k-sat is not the cardinality constrained version of max-sat in
the same sense as the above problems. Although not studied (as far as I
know), the analogous problem would be to find a set of propositional
variables of cardinality k so as to maximize the weights of the satisfied
clauses. 32 / 43

The SDP/vector program algorithms for the
cardinality constrained problems

In what follows, I will briefly sketch some of the SDP based analysis in
Feige and Langberg [2001]. This paper was proceeded and followed by a
substantial number of important papers including the seminal Goemans
and Williamson [1995] SDP approximation algorithm for max-cut.

(See , for example, Feige and Goemans [1995] and Frieze and Jerrun
[1997] for proceeding work and Halperin and Zwick [2002], Han et al
[2002] and Jäger and Srivastav for some improved and unifying results.)

There are also important LP based results such as the work by Ageev and
Sviridenko [1999, 2004] that introduced papage rounding.
Many papers focus on the bisection versions where k = n/2 and also
k = σn for some 0 < σ < 1 for which much better approximations atre
known relative to results for a general cardinality k constraint.

33 / 43

The Goemans and Williamson program algorithm for
max-cut

As stated in Lecture 6, vector programs can be solved to arbitrary
precision within polynomial time.

We introduce {-1,1} variables yi corresponding to the vertex variables
xi . We also need a homogenizing variable y0; the intended meaning is
that vertex vi ∈ S and iff yi = y0.

The max-cut problem can then be represented by tbhe following
(strict) quadratic programming problem:

Maximize 1
2

∑
1≤i<j≤n wij(1− yiyj) subject to

y2i = 1 for 0 ≤ i ≤ n

This is relaxed to a vector program by introducing vectors on the unit
sphere in vi ∈ Rn+1 where now the scalar multiplication becomes the
vector inner product.

34 / 43

The rounding of the vector program

The randomized rounding (from v∗i to yi) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value∑
1≤i<j≤n wijPr[vi and vj are separated] =

∑
1≤i<j≤n wij

θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).

35 / 43

Extending the vector program formulation for the
cardinality constraint

The basic idea is to add an additional constraint:

n∑
i=1

viv0 = 2k − n

It turns out that it is sometimes important to define an improved
relaxation by using instead (for all j ∈ {0, . . . , n}) the “caraidnality
constraints”:

∑n
i=1 vivj = vjv0(2k − n)

For vectors vj in the unit sphere, these constraints are equivalent to the
constraints

∑n
i=1 vi = v0(2k − n)

It also turns out that sometimes problems also use the following “triangle
inequality constraints”: vivj + vjvk + vkvi ≥ −1
and vivj + vjvk + vkvi ≥ −1 for all i , j , k ∈ {0, 1, . . . , n}

36 / 43

What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the s SDP results so
as to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.

37 / 43

What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the s SDP results so
as to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.

37 / 43

What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the s SDP results so
as to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.

37 / 43

What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the s SDP results so
as to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.

37 / 43

The formulation for other set function maximization
problems

The formulation and idea of the relaxation follows the same idea by mainly
changing the objective function. (Recall the objective for max-2-sat.)

For the max-k-densest subgraph problem, the objective (wrt.

yi ∈ {−1, 1}) is to maximize
∑

eij∈E wij
1+yiy0+yjy0+yiyj

4

The max-k-vertex-coverage problem a special case of the max
coverage where each element (i.e. an edge) occurs in eactly two of
the sets (i.e. vertices).

The objective is to maximize
∑

eij∈E wij
3+yiy0+yjy0−yiyj

4
Here by monotocity we do not have to worry about outputs with
|S | < k

Now to compensate for |S | > k , we optimize Z = w(S)
OPTSDP

+ θ n−|S |n−k .

38 / 43

The results in Feige and Langberg
The results in Feige and Langbergapproximation algorithms 177

TABLE 1
Approximation ratios achieved on our four maximization problems. Our results appear in

columns in which the SDP technique is mentioned.

Problem Technique Approximation ratio Range

Max-VCk Random 1− "1− k/n#2 all k
Greedy max"1− 1/e! 1− "1− k/n#2# all k
LP 3

4 all k
SDP 0.8 k ≥ n/2
SDP 0.8 k size of

minimum VC
SDP 3/4 +ε all k, universal

ε > 0

Max-DSk Random k"k−1#
n"n−1# all k

Greedy O"k/n# all k
LP k

n
"1− ε# all k, every

ε > 0
SDP k/n+ εk k ∼ n/2

Max-Cutk Random 2k"n−k#
n"n−1# all k

LP 1
2 all k

SDP 1/2 + ε all k, universal
ε > 0

Max-UCk Random/LP 1− 2k"n−k#
n"n−1# all k

SDP 1/2 + εk k ∼ n/2

Max-VCk problem can be viewed as a special case of the Max-k-Coverage
problem.

Several algorithms approximate Min-VC within a ratio of 2, and it is a
long standing open problem whether an approximation ratio of 2 − ε for
some fixed ε > 0 can be achieved in polynomial time.

For Max-VCk we are not yet in a position to formulate a conjecture about
the best possible approximation ratio. The simple algorithm that uniformly
picks a random subset U ⊆ V of size k has an expected approximation
ratio of 1 − "1 − k/n#2. A greedy approximation algorithm presented in
[Hoc95] has an approximation ratio of max"1 − 1/e! 1 − "1 − k/n#2#. An
algorithm based on linear programming was shown in [AS99] to have an
approximation ratio of 3/4.

We present an algorithm based on semidefinite programming that has an
approximation ratio of at least 3/4 + ε some universal constant ε > 0 and
all values of k. When k ≥ n/2, or when k is at least the size of the minimum
vertex cover in the input graph, we achieve an approximation ratio above
0.8. Our algorithm and its analysis use ideas from [NT75, GW95, FG95,
FJ97].

‘
12 / 1

‘
39 / 43

The results in Jäger and Srivastav

I think the following still represents the latest improvements in cardinality
constrained set function maximization for k = σn from Jäger and
Srivastav [2005]The results in Jäger and Srivastav

I think the following represents the latest improvements in cardinality
constrained set function maximization for k = �n from Jäger and
Srivastav [2005]

Problem � Prev. Our Method

MAX-k-CUT 0.3 0.527 0.567

MAX-k-UNCUT 0.4 0.5258 0.5973

MAX-k-DIRECTED-CUT 0.5 0.644 0.6507

MAX-k-DIRECTED-UNCUT 0.5 0.811 0.8164

MAX-k-DENSE-SUBGRAPH 0.2 0.2008 0.2664

MAX-k-VERTEX-COVER 0.6 0.8453 0.8784

Table 1: Examples for the improved approximation factors

In summary, we see that our technique of combining the analysis of the random
hyperplane with mathematical programming leads to improvements over many
previously known approximation factors for the maximization problems consid-
ered in this paper. This shows that a more systematic analysis of the semidef-
inite relaxation scheme gives better approximation guarantees and opens room
for further improvements, if better methods for choosing an optimal parameter
set can be designed.

2 The Algorithm

For S ✓ V the set of edges E can be divided in the following way:

E = S1 [̇S2 [̇S3 [̇S4,

where

S1 = {(i, j) | i, j 2 S},

S2 = {(i, j) | i 2 S, j 2 V \ S},

S3 = {(i, j) | i 2 V \ S, j 2 S},

S4 = {(i, j) | i, j 2 V \ S}.

As we will see, we distinguish the six problems MAX-k-CUT, MAX-k-UNCUT,
MAX-k-DIRECTED-CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-
SUBGRAPH, MAX-k-VERTEX-COVER by four {0, 1} parameters a1, a2, a3, a4.
All these problems maximize the sum of a subset of the four edge classes
S1, S2, S3, S4.
For i = 1, 2, 3, 4 we define ai as 1, if the problem maximizes the edge weights
of Si, and 0 otherwise. The following values a1, a2, a3, a4 lead to the specific
problems:

3

‘

13 / 1

‘

40 / 43

The densest subgraph problem

The (unconstrained) densest subgraph problem is defined as follows:

Given a graph G = (V ,E), find a subset V ′ ⊆ V so as to maximize
|e:u,v∈V ′|
|V ′| ; that is, to maximize the density (or equivalently the average

degree) in a subgraph of G .

There is also a directed graph version of this problem. We will consider
the undirected case. And also weighted versions of the problem.

The densest subgraph problems can be solved in polynomial time by a flow
based algorithm as described in Lawler’s 1976 text and improved in Gallo
et al [1989]. There is also an LP duality based optimal method given in
Charikar [2000] that is the starting point for the MapReduce (1 + ε)
approximation algorithm due to Bahmani, Goel and Munagala [2014].

The (1 + ε) approximation follows a MapReduce 2(1 + ε) approximation by
Bahmani, Kumar and Vassilvitskii [2012] based on the Charikar “reverse
greedy” 2-approximation. (Note that these papers use approximation
ratios ≥ 1.)

41 / 43

The densest subgraph problem

The (unconstrained) densest subgraph problem is defined as follows:

Given a graph G = (V ,E), find a subset V ′ ⊆ V so as to maximize
|e:u,v∈V ′|
|V ′| ; that is, to maximize the density (or equivalently the average

degree) in a subgraph of G .

There is also a directed graph version of this problem. We will consider
the undirected case. And also weighted versions of the problem.

The densest subgraph problems can be solved in polynomial time by a flow
based algorithm as described in Lawler’s 1976 text and improved in Gallo
et al [1989]. There is also an LP duality based optimal method given in
Charikar [2000] that is the starting point for the MapReduce (1 + ε)
approximation algorithm due to Bahmani, Goel and Munagala [2014].

The (1 + ε) approximation follows a MapReduce 2(1 + ε) approximation by
Bahmani, Kumar and Vassilvitskii [2012] based on the Charikar “reverse
greedy” 2-approximation. (Note that these papers use approximation
ratios ≥ 1.)

41 / 43

Some comments on the densest subgraph problem

One immediate application is that the densest subgraph can be used to
identify a “community” in the web or a social network. There are other
applications as well in biological networks.

The k-densest subgraph problem asks for the densest subgraph V ′ of size
|V ′| = k. As far as I know Bhaskara et al [2010] have the current best

approximation O(n
1
4
+δ) for the k-densest subgraph problem. It is also

known that there cannot be a polynomial time algorithm if the exponential
time hypothesis is true.

Obviously if one can (approximately) solve the k-densest subgraph
problem then one can (approximately) solve the ”densest subgraph with at
least (or at most) k vertices. But the converse is not apparentlly true.
Andersen and Chellapilla [2009] show the following:

There is a 3-approximation algorithm for the “at least k vertices”
variant.
If there is a γ approximatin for the “at most k vertices” variant then

there is an γ2

8 approximation for the k-densest subgraph problem

42 / 43

Some comments on the densest subgraph problem

One immediate application is that the densest subgraph can be used to
identify a “community” in the web or a social network. There are other
applications as well in biological networks.

The k-densest subgraph problem asks for the densest subgraph V ′ of size
|V ′| = k. As far as I know Bhaskara et al [2010] have the current best

approximation O(n
1
4
+δ) for the k-densest subgraph problem. It is also

known that there cannot be a polynomial time algorithm if the exponential
time hypothesis is true.

Obviously if one can (approximately) solve the k-densest subgraph
problem then one can (approximately) solve the ”densest subgraph with at
least (or at most) k vertices. But the converse is not apparentlly true.
Andersen and Chellapilla [2009] show the following:

There is a 3-approximation algorithm for the “at least k vertices”
variant.
If there is a γ approximatin for the “at most k vertices” variant then

there is an γ2

8 approximation for the k-densest subgraph problem

42 / 43

Some comments on the densest subgraph problem

One immediate application is that the densest subgraph can be used to
identify a “community” in the web or a social network. There are other
applications as well in biological networks.

The k-densest subgraph problem asks for the densest subgraph V ′ of size
|V ′| = k. As far as I know Bhaskara et al [2010] have the current best

approximation O(n
1
4
+δ) for the k-densest subgraph problem. It is also

known that there cannot be a polynomial time algorithm if the exponential
time hypothesis is true.

Obviously if one can (approximately) solve the k-densest subgraph
problem then one can (approximately) solve the ”densest subgraph with at
least (or at most) k vertices. But the converse is not apparentlly true.
Andersen and Chellapilla [2009] show the following:

There is a 3-approximation algorithm for the “at least k vertices”
variant.
If there is a γ approximatin for the “at most k vertices” variant then

there is an γ2

8 approximation for the k-densest subgraph problem
42 / 43

Charikar’s Reverse greedy algorithm for densest
subgraph

Sn := V
Compute density dn of Sn
While n > 0
v∗ := argminv∈Sn [degree(v)]
Sn−1 := Sn \ {v∗}
dn−1 := density of Sn−1
n := n − 1

End While

Charikar’s reverse greedy algorithm achieves an 1
2 approximation.

It would be interesting (at least to me) to formalize (and analyze
limitations of) “reverse greedy-like algorithms” similar to our priority
formaization of greedy-like algorithms.

The reverse greedy algorithm for maximizing the weight of an independent
set in a matroid achieves optimality.

43 / 43

	Week 12

