
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

November 28, 2023

1 / 31

Week 11

Announcements:

I posted a final question for Assignment 3. There is also a bonus
question but only for those who are interested and have the time.

Next week is the last week of classes and it would be good to submit
grades before the holiday break.

Todays agenda
We will discuss the following topics:

The CVM streaming algorithm for counting the number of distinct
elements in the input stream.

Sublinear time algorithms.

2 / 31

Estimating the number of distinct elements

We will finish our discussion of streaming algorithm with the Chakraborty,
Vinodchandran and Meel (CVM) algorithm for estimating F0, the 0th

frequence moment. Following CVM, we will stick with the AMS notation
in which the length of the stream a1, a2, . . . , am is m with input items
ai ∈ {1, 2, . . . , n}.

The goal is an (ε, δ) approximation in small space; that is,
Prob[(1− ε)F0 ≤ CVM ≤ 1 + ε)F0] ≥ 1− δ
A substantial history has led to Blasiok [2018] who obtains an (ε, δ)
approximtion using space complexity O(log n + 1

ε2
log 1

δ), which is optimal
in each of the parameters n, ε, δ.

The first O(log n) space algorithm is due to Flajolet and Martin [1985]
which relied on the (still unproven) assumption of efficiently computable
hash functions with full independence. A small modification of their
algorithm is used in practice. Subsequent O(log n) space algorithms
require special properties of bounded independent Hash functions and are
viewed as being too difficult to teach and/or not that practical.

3 / 31

Motivating the new algorithm

The new CVM algorithmn is conceptually simple, easy to implement and
“can be taught in an undergraduate course”.
In its simplest form, the space bound has a logm term. It is possible to
remove this multiplicative logm dependence on m at a small loss in
simplicity. An important aspect of the CVM algorithm is that it does not
use any hash functions but rather is based on simple random sampling.

The algorithm is not quite as space efficient as some previous algorithms
but has the significant advantage in that it can be modified to efficiently
apply to related problems whereas the methods relying on hash function
would not be efficient in running times.

I like simplicity!

4 / 31

Motivating the CVM algorithm continued

In particular, the algorithm extends nicely to the setting where input item
ai is replaced by a set Si ⊆ {1, 2, . . . , n} and the objective is to estimate
| ∪i Si | assuming the collection of sets is a “Delphic Family”.
A Delphic family {Si} is one in which the following can be done in time
and space O(log n) for each set Si :

Determine |Si |
Sample uniformly at random an element from Si

For any x ∈ {1, . . . , n} determine if x ∈ Si

Futhermnore the new algorithm also leads to a practical estimator for
counting the number of satisfying assignments in a DNF formula.

5 / 31

Tha ideas behind the CVM algorithm

Like the simple algorithm for primality testing that works for all numbers
excxept Carmichael numbers, the starting point for the CVM algorithm
relies on a simple idea: Suppose with some probability p we place each
input item in a bin X and the number of balls in the bin is k , then k

p is a
good estimator for the number of items.

However, since we want to estimate the number of distinct elements, input
items that occur frequently will dominate the count.

The clever idea is to only put in the last occurence of an input item into
the bin X .

The remaining idea of the algorithm is how to choose an appropriate
probability p. If p is too large, the space (of the bin) will be too large. If p

is too small, |X |p will not be a good estimator.

The remaining idea is to choose p adaptively.

6 / 31

The CVM algorithm

2 Distinct Elements in Streams: An Algorithm for the (Text) Book

We present a very simple algorithm for the F0 estimation problem using a sampling
strategy that only relies on basic probability for its analysis. In particular, it does not use
universal hash functions. We believe that only using basic probability theory for the analysis
makes the algorithm presentable to undergraduates right after the introduction of basic tail
bounds. In addition, the simplicity of the code makes it appealing to be used in practical
implementations. Our algorithm builds and refines ideas introduced in the recent work on
estimating the size of the union of sets in the general setting of Delphic sets [13].

2 A Simple Algorithm

Algorithm 1 F0-Estimator

Input Stream A = Èa1, a2, . . . , amÍ, Á, ”

1: Initialize p Ω 1; X Ω ÿ; thresh Ω Á 12
Á2 log(8m

”)Ë
2: for i = 1 to m do
3: X Ω X \ {ai}
4: With probability p, X Ω X fi {ai}
5: if |X | = thresh then
6: Throw away each element of X with probability 1

2
7: p Ω p

2
8: if |X | = thresh then Output ‹
9: Output |X |

p

The algorithm F0-Estimator uses a simple sampling strategy. In order to keep the set of
samples small, it makes sure that X does not grow beyond the value thresh by adjusting the
sampling rate p accordingly. After all the elements of the stream are processed, it outputs
|X |
p where p is the final sampling rate1.

2.1 Theoretical Analysis
We present the theoretical analysis entirely based on first principles, which adds to its length.
For readers who are familiar with randomized algorithms, the proof is standard.

We state the following well-known concentration bound, Cherno� bound, for completeness.

I Fact 2.1 (Cherno�’s Bound). Let v1, ..., vk be independent random variables taking values
in {0, 1}. Let V =

qk
i=1 vi and µ = E[V]. Then, for — > 0, Pr (|V ≠ µ| Ø —µ) Æ 2e≠ —2µ

2+—

The following theorem captures the correctness and space complexity of F0-Estimator.

I Theorem 2. For any data stream A and any 0 < Á, ” < 1, the algorithm F0-Estimator
outputs an (Á, ”)-approximation of F0(A). The algorithm uses O(1

Á2 · logn · (logm+ log 1
”))

space in the worst case.

Proof. The stated space complexity bound of the algorithm follows because, from the
description, it is clear that the size of the set of samples kept by the algorithm is always
Æ thresh, and each item requires Álog2 nË bits to store.

1 In an earlier version, it was wrongly claimed that every element seen so far is independently in X with
equal probability p. That claim was erroneous but, fortunately, not used in the analysis. It is also worth
remarking that |X|

p is not an unbiased estimator of F0.

Figure: The CVM algorithm

7 / 31

Sketch of the CVM analysis

Line 8 can only occur with very low probability and in practice it is not
needed. Theoretically it can be removed by replacing the IF statement by
a While statement leaving a very small probability that the run time
performance of the algorithm would suffer.

The threshold thresh prevents the space from getting too big.

The adaptive setting of the probability p, keeps the probability from
getting too small.

This is the technical part of the analysis and leads to the estaimate (ε, δ)
estiamte.

As is often the case, even simple algorithms can require some non trivial
analysis. However, the analysis is much simpler than in the previous
results. The entire analysis is 3 pages.

8 / 31

Sublinear time

We continue to consider contexts in which randomization is provably
necessary. In particular, we will now study sublinear time algorithms which,
even more than streaming algorithms, almost always require
randomization.

An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. As such an algorithm must provide an answer
without reading the entire input.
Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.
The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.
The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.
Like streaming algorithms, sublinear time often concerns estimates of
various properties rather than producing solutions since solutions (of
search and optimization problems) almost always require at least
linear space.

9 / 31

A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi)
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time
(and hence sublinear) algorithm; namely, choose an arbitrary point
x ∈ M and compute D = maxj d(x , xj). By the triangle inequality, D
is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an explicitly presented
space (such as d dimensional Euclidean space), the points could be
explicitly given as inputs and then the input size is n and not n2.

10 / 31

Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

We will consider the following examples:
1

2 Searching in an (anchored) sorted linked list [Chazelle,Liu,Magen 2003]
3 Estimating the average degree in a graph [Feige 2006]
4 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
5 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.

11 / 31

Searching in an (anchored) sorted linked list

Suppose we have an array A[i] for 1 ≤ i ≤ n where each A[i] is a pair
(xi , pi) with x1 = min{xi} and pi being a pointer to the next smallest
value in the linked list.
That is, xpi = min{xj |xj > xi}. (For simplicity we are assuming all xj
are distinct.)
We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = xj .

A
√
n algorithm for searching in anchored sorted linked list

Let R = {ji} be
√
n randomly chosen indices plus the index 1.

Access these {A[ji]} to determine k such that xk is the largest of the
accessed array elements less than or equal to x .
Search forward 2

√
n steps in the linked list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when x ∈ {A[i]}) will fail to
return j such that x = A[j] with probability at most 1/2.

12 / 31

Some further comments on searching in a sorted
linked list

If the list is doubly linked, we can find the smallest item in O(
√
n) time

and do not need the assumption that the list is anchored.

Using the Yao Principle, the O(
√
n) time bound is optimal.

The algorithm can be generalized to provide a O(
√
n) time algorithm to

determine if two n vertex polygons intersect (and if so, return a point of
intersection.

13 / 31

Estimating average degree in a graph

Given a large graph G = (V ,E) (that can only be accessed by some
kind “local queries”) with |V | = n, we want to estimate the average
degree d of the vertices.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/ε random subsets Si of V each of size (say)
√
n

ε2.5

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

14 / 31

What is the difference between the average degree
problem and estimating the average of n numbers?

To estimate the average of a set of numbers {xi} (with 1 ≤ xi ≤ n − 1)
requires Ω(n) time. This is a needle in a haystack problem problem if all
but one of the xi = 1 and the other one is (say) n2.

The average degree in a graph seems pretty much like the average of a set
of numbers. What is different?

For a connencted graph, the difference is intuitively that while we may not
sample a high degree vertex, we are likely to find their neighbours and this
will wind up accounting for the high degree edges.

A more precise argument would use the following theorem:

Erdos-Gallai

The sequence d1 ≥ d2 . . . ≥ dn ≥ 1 is a graph degree sequence if and only
if
∑n

i=1 di is even and
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 di .

15 / 31

What is the difference between the average degree
problem and estimating the average of n numbers?

To estimate the average of a set of numbers {xi} (with 1 ≤ xi ≤ n − 1)
requires Ω(n) time. This is a needle in a haystack problem problem if all
but one of the xi = 1 and the other one is (say) n2.

The average degree in a graph seems pretty much like the average of a set
of numbers. What is different?

For a connencted graph, the difference is intuitively that while we may not
sample a high degree vertex, we are likely to find their neighbours and this
will wind up accounting for the high degree edges.

A more precise argument would use the following theorem:

Erdos-Gallai

The sequence d1 ≥ d2 . . . ≥ dn ≥ 1 is a graph degree sequence if and only
if
∑n

i=1 di is even and
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 di .

15 / 31

The precise statement of Feige’s approximation

We will just sketch a slightly weaker result but here is precisely the
statement in the Feige 2006 SICOMP paper.
For any d0 (the minimum degree in the graph) and for ρ = 2 + ε, the
Feige algorithm computes an estimation within a factor of ρ with high
probability (e.g., any constant) and uses O(1ε

√
n/d0) degree queries.

16 / 31

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But we will show that with
high probability these estimates will not be too bad.

The proof will follow from the following two lemmas concerning the
average degree ai of a subset Si .

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄] ≤ 1− ε
2

17 / 31

How the proof follows from the lemmas

The probability bound in Lemma 2 is amplified to any constant (say 1/8)
by repeated trials; i.e., the 8/ε independent trials of random Si . That is,
Prob[Alg > (1 + ε)d̄] = Prob[ai > (1 + ε)d̄] ∀i

<
(
1− ε

2

)8/ε ≤ e−4 ≤ 1/8.

For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

That is, Prob[ALG < 1
2(1− ε)d̄] ≤

∑ε/8
i=1(ε/64) = 1/8.

18 / 31

Sketch of the lemmas in Feige’s average degree
algorithm

Lemma 2 is relatively easy. Consider any Si . Letting Xj be the degree of
vertex vj we have E[Xj] = d̄ , and

E[ai] = E
[

1
|Si |
(∑

j :j∈Si Xj

)]
= 1
|Si |
∑

j :j∈Si E[xj] = d̄

We can then use Markov’s inequality to obtain Lemma 2.

The proof of Lemma 1 is more involved. We cannot simply amplify an
error bound for a random subset since each Si trial gives another chance of
finding a low estimate. Instead we will have to use a Chernoff bound for
the probability that a sum of independent random variables deviates from
its mean. The following is sufficient:

A Chernoff bound

Let Z1, . . . ,Zs be a sequence of iindependent r.v.s with Zj ∈ [0, 1] and let

µ = E[
∑

j Zj]. Then Prob[
∑

j Zj ≤ (1− ε)sµ] ≤ e−ε
2s µ

4

19 / 31

Continuing the proof sketch for Lemma 1

Let H be the
√
ε′n vertces of the the highest degree. Here ε′ will be

chosen to satisfy (1− ε′) · (1/2− ε′) ≤ (1/2− ε)

Assune that the random selection of nodes in the algorithm was restricted
to just L = V \ H.

Of course, by removing high degree vertices from the random sampling,
the probability of concluding that d̄ ≤ 1

2(1− ε)d increases.

Claim
∑

i∈L dj ≥ (12 − ε
′)
∑

i∈V di − ε′n
The Claim is a couting algorithm noting that the

∑
i∈V counts every edge

twice while
∑

i∈L might omit ε′n edges within H and only count edges
between H and L once.

20 / 31

Continuation of proof of Lemma 1

Thus the average degree in L is at least 1
2(d̄ − ε′) . So it remain to obtain

a lower bound on the average degree of vertices in L. We use the following
observations:

Let dH = minimum degree of any vertex in H

Let Xj = degree of a vertex vj ∈ Si which implies Xj ∈ [1, dH]

Let Zj = Xj/dH

The Chernoff bound and the bound we have for the average degree of

vertices in L, then gives us : Prob[ai < (1/2)(1− ε)d̄] ≤ e
−
ε2sE[Xj]

4dH

using the Chernoff bound.

If s = |Si | were sufficiently large (i.e. s ≥ ε2 dH
E[Xj]

), we are done. But we

would like the bound to not depend on dH and E[Xj].

This is handled by considering two cases; namely for when dH < |H| and
when dH ≥ |H|.

21 / 31

Understanding the input query model

As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.

Feige’s algorithm for estimating the average degree uses only “degree
queries”; that is, “what is the degree of a vertex v”.

Feige shows that in this degree query model, any algorithm that
acheives a (2− ε) approximation (for any ε > 0) requires time Ω(n).

In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.

Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
(n/d̄)poly(log n, 1ε)

They also show that this
√

(n) time bound is essentially optimal.
22 / 31

Approximating the size of a maximum matching in a
bounded degree graph

We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching.

Our goal is to compute with high probability a maximal matching in
time depending only on the maximium degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {ej}
% Note: this will be done “on the fly” as needed
The permutation determines a maximal matching M as given by the

greedy algorithm that adds an edge whenever possible.
Choose r = O(D/ε2) nodes {vi} at random
Using an “oracle” let Xi be the indicator random variable for whether

or not vertex vi is in the maximal matching.
Output m̃ =

∑
i=1...r Xi

23 / 31

Performance and time for maximal matching

Claims

1 m ≤ m̃ ≤ m + ε n where m = |M|.
2 The algorithm runs in time 2O(D)/ε2

This immediately gives an approximation of the maximum matching
m∗ such that m∗ ≤ m̃ ≤ 2m∗ + εn

A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result

Let δ, ε > 0 and let k = d1/δe. There is a randomized one sided algorithm

(with probability 2/3) running in time 2O(Dk)

ε2k+1 that outputs a maximium

matching estimate m̃ such that m∗ ≤ m̃ ≤ (1 + δ)m∗ + εn.

24 / 31

Property Testing

Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite).

The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “ε-far” from having the property. The tester
can answer either way if G does not have the property but is
“ε-close” to having the property.

We will usually have a 1-sided error in that we will always answer YES
if G has the property.

We will see what it means to be “ε-far” (or close) from a property by
some examples.

25 / 31

Tester for linearity of a function

Let f : Zn− > Zn; f is linear if ∀x , y f (x + y) = f (x) + f (y) .

Note: this will really be a test for group homomorphism

f is said to be ε-close to linear if its values can be changed in at most
a fraction ε of the function domain arguments (i.e. at most εn
elements of Zn) so as to make it a linear function. Otherwise f is said
to be ε-far from linear.

The tester

Repeat 4/ε times
Choose x , y ∈ Zn at random

If f (x) + f (y) 6= f (x + y)
then Output f is not linear

End Repeat If all these 4/ε tests succeed then Output linear

Clearly if f is linear, the tester says linear.

If f is ε-far from being linear then the probability of detecting this is
at least 2/3.

26 / 31

Testing a matrix multiplication algorithm

Suppose we are given a new fast matrix multiplication algorithm which
given three n × n matrices A,B,C (over some ring or field R) is supposed
to output C = A · B. Recall there is an algorithm that runs in time
O(n2.34) but maybe you don’t trust it.

A naive way to check by using a known trusted algorithm (perhaps the
standard n3 algorithm) and then verify. But then why use the new
algorithm?

Instead we can choose a random small set S ⊂ R and randomly choose a
vertor v ∈ Rn and check if A(B(v)) = C(v). This will take O(n2)
operations and the probability can be made arbitrarily small by choosing a
large S or by repeating the test.

This is not a sublinear time algorithm but in practice might be very useful
in contrast to trying to prove correctness of the algorithm. The problem of
computing a matrix vector product provably requires n2 operations but not
sure if this rules out a tester running in time o(n2).

27 / 31

Testing if an array is sorted

Given an array A[i] = xi , i = 1 . . . n of distinct elements, determine if
A is sorted (i.e. i < j ⇒ A[i] < A[j]) or is ε-far from being monotone
in the sense that more than ε ∗ n list values need to be changed in
order for A to be monotone.

The algorithm randomly chooses 2/ε random indices i and performs
binary search on xi to determine if xi in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

Clearly the time bound is O(log n/ε) and clearly if A is monotone
then the tester reports monotone.

If A is ε-far from monotone, then the probability that a random binary
search will succeed is at most (1− ε) and hence the probability of the

algorithm failing to detect non-monotonicity is at most (1− ε)
2
ε ≤ 1

e2

28 / 31

Graph Property testing

Graph property testing is an area by itself. There are several models
for testing graph properties.

Let G = (V ,E) with n = |V | and m = |E |.
Dense model: Graphs represented by adjacency matrix. Say that
graph is ε-far from having a property P if more than εn2 matrix
entries have to be changed so that graph has property P.

Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is ε-far from property P is at least εm edges
have to be changed.

In general there are substantially different results for these two graph
models.

29 / 31

The property of being bipartite

In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

Pick a random subset S of vertices of size r = Θ(
log(1

ε
)

ε2
)

Output bipartite iff the induced subgraph is bipartite

Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

The claim is that if G is ε-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

The algorithm runs in time quadratic in the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).

30 / 31

Testing bipartiteness in the bounded degree model

Even for degree 3 graphs, Ω(
√
n) queries are required to test for being

bipartite or ε-far from being being bipartite. Goldreich and Ron [1997]

There is a nearly matching algorithm that uses O(
√
n · poly(log n/ε))

queries. The algorithm is based on random walks in a graph and
utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/ε) times
Randomly select a vertex s ∈ V
If algorithm OddCycle(s) returns cylce found then REJECT

End Repeat
If case the algorithm did not already reject, then ACCEPT

OddCycle performs
√
n · poly(log n/ε) random walks from s each of

length poly(log n/ε). If some vertex v is reached by both an even
length and an odd length prefix of a walk then report cycle found;
else report odd cycle not found

31 / 31

	Week 11

