
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2023
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

November 21, 2023

1 / 40

Week 10

Announcements:

I posted 2 questions for the third and last assignment. I hope to add
one or two questions. The assignment will be due Friday, December 8
at 11 AM.

I have posted slides by Denis Pankratov on LP theory and LP duality.

Todays agenda
We will discuss the following topics:

The set cover problem. This is where we left off last week.

Primal dual algorithms and primal dual fitting.

Begin streaming algorithms.

2 / 40

Solving the f -frequency set cover

In the f -frequency set cover problem, each element is contained in at most
f sets. We can solve the f -frequency cover problem by obtaining an
optimal solution {x∗j } to the (primal) LP and then rounding to obtain

x̄j = 1 iff x∗j ≥
1
f .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ui∈Sj xj ≥ 1 for all i ; that is, for all ui ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

This is a conceptually simple method but requires solving the LP. We will
see that the primal dual method allows us to achieve the same
approximation without solving the LP.

3 / 40

Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:
I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:
I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.

4 / 40

An example: set cover

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ui∈Sj xj ≥ 1 for all ui ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ui∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.

5 / 40

Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem.

6 / 40

Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z .

7 / 40

Motivating duality

Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 %(y1) y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 %(y2) −y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the abobe primal and ithe dual
solution (y1, y2) = (2, 1) must be 26.

8 / 40

Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi)yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x

9 / 40

Primal dual for f -frequency set cover

We know that for a minimization problem, any dual solution is a lower
bound on any primal solution. One possible goal in a primal dual method
for a minimization problem will be to maintain a fractional feasible dual
solution and continue to try improve the dual solution. As dual constraints
become tight we then set the corresponding primal variables.

Suggestive lemma

We want the following property of our algorithm: Let {y∗i } be an optimal
solution to the dual LP and let C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a

cover.

10 / 40

Primal dual for f -frequency set cover continued

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i ; C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.

11 / 40

Proof of the approximation ratio for the primal dual
f -frequency set cover algorithm

Here again I am completely following the exposition in the Vazirani text
and the notation for the general statement of the primal and dual LPs.

The proof follows as an application of the relaxed primal and dual
complementary slackness conditions and how those yield an approximation
ratio. See Section 15.1 in Vazirani.

Primal complementary slackness conditions:
Let α ≥ 1. ∀j either xj = 0 or cj/α ≤

∑
i aijyi ≤ cj .

Dual complementary slackness:
Let β ≥ 1, ∀i either yi = 0 or bi ≤

∑
j aijxj ≤ βbi .

Theorem If the relaxed complemnetary slackness conditions hold then the
primal dual algorith is an α · β approximation.
For the f -frequency problem, the algorithm satisfies α = 1 and β = f .

12 / 40

Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously.

13 / 40

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual minimization algorithms extend this basic form by
using a second (reverse delete) stage to achieve minimality. Some
primal dual maximization algorithms use a reverse delete to enforce
feasibility. There is some (for me not precise) relation between primal
dual and local ratio algorithms (see Bar-Yehuda and Rawitz)

NOTE: In the primal dual method we are not solving any LPs.
Primal dual algorithms are viewed as “combinatorial algorithms” and
in some cases they might even suggest an explicit greedy algorithm.

14 / 40

Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm

We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .

15 / 40

The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).

16 / 40

Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei)/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.

17 / 40

The streaming model

In the data stream model, the input is a sequence A of input items
(or input elements) a1, . . . , an which is assumed to be too large to
store in memory. Let ai ∈ [1,D]
Small notational dilemma: A seminal paper in the streaming area is
the Alon, Matias and Szegedy (AMS) paper for computing the
frequency moment problem. Their notation (and for many following
papers) is that a stream is a sequence a1, . . . am} with
ai ∈ {1, 2, . . . n}. In the text, we are trying to consistently use n for
the length of the sequence and D for the domain then m = |D| for
the size of the input domain. But for the frequency moments results I
will stay with the AMS notation. We had the same dilemma for
online bipartite matching where the literature convention is mainly to
have n be the number of offline nodes.

We usually assume that the length n of the stream is not known. and
one can think of this model as a type of online or dynamic algorithm.

18 / 40

Streaming and online algorithms

The streaming model is similar to the online model in that an algorithm
has no control over the order of arrival of input items, but that is mainly
where the similarity ends.

While the online setting focuses on irrevocable immediate decisions for
each input arrival, the streaming setting focuses on the amount of memory
required to process the input stream.

Throughout a streaming computation, the available space, S(n, |D|), is a
sublinear (often logarithmic) function. The input items stream by and one
can only store information bounded by space S .

As mentioned, the streaming model is most often used to approximately
compute statistics about the data stream. And here the goal is to achieve
good estimates while maintaining very small space.

In contrast, online algorithms are usually considered with respect to
optimization (or search) problems.

19 / 40

Semi-streaming

Streaming algorithms have been considered for graph optimization problem
but now the speace requirement is relaxed. Namely, for graphs
G = (V ,E), the goal is to achieve approximations using only space Õ(|V |)
rather than space O(|E |) or space O(n).

These are called semi-streaming algorithms. More generally (beyond graph
problems), we can say semi-streaming means that the space is Õ(OPT)
rather than space usage that could entail the entire input stream.

In semi-streaming algorithms, “revocable decisions” are clearly possible
since there is no requirement that decisions are irrevovable. Later, we will
compare the semi-straaming model and online algorithms (with and
without revoking) where the comparison makes more sense.

Although time and space complexity are always important, competitive
analysis does not impose any complexity requirements. Similarly,
streaming and semi-streaming does not impose bounds on the time to
process an input item; in practice, we want fast time per input item.

20 / 40

The streaming model continued

In some papers, space is measured in bits and sometimes in words,
while understanding that each word would cost O(logD) bits.

As mentioned, it is desirable that that each input item is processed
efficiently, say log(n) + log(m) time, and perhaps even in time O(1)
(assuming we are counting operations on words as O(1)).

The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular item(s) in the data stream.

Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V ,E), the goal is to
obtain a good approximation using space Õ(|V |) rather than O(|E |).

Most results concern the space required for a one pass algorithm. But
there are results concerning multi-pass algorithms and also results
concerning the tradeoff between the space and number of passes.

21 / 40

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing item problem

Suppose we are given a stream A = a1, . . . , an−1 and we are promised that
the stream A is a permutation of {1, . . . , n} − {x} for some integer x in
[1, n]. (Here D = n.) The goal is to compute the missing x .

Space n is obvious using a bit vector cj = 1 iff j has occured.

Instead we know that
∑

j∈A = n(n + 1)/2− x .
So if s =

∑
i∈A ai , then x = n(n + 1)/2− s.

This uses only 2 logm space and constant time/item.

22 / 40

Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose input
elements consist of a permutation of n − k distinct elements in {1, . . . , n}.
We want to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai)
j = cj(n)−

∑
i /∈A x ji . Here cj(m) is

the closed form expression for
∑n

i=1 i
j . This results in k equations in

k unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space
deterministic streaming algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.

23 / 40

Some well-studied streaming problems

Computing frequency moments. Let A = a1 . . . am be a data stream
with ai ∈ [n] = {1, 2, . . . n}. Let mi denote the number of occurences
of the value i in the stream A. For k ≥ 0, the kth frequency moment
is Fk =

∑
i∈[n](mi)

k . The frequency moments are most often studied
for integral k .

1 F1 = m, the length of the sequence which can be simply computed.
2 F0 is the number of distinct elements in the stream
3 F2 is also a special case of interest called the repeat index (also known

as Gini’s homogeneity index).

Finding k-heavy hitters; i.e. those elements appearing more than n/k
times in stream A of lenfgth n.

Finding rare or unique elements in A.

24 / 40

The majority element problem

While most streaming algorithms concern one pass over the input stream,
there are results that use two or more passes.

One relatively easy (but still very interesting) result is the Misra-Gries
algorithm for computing k heavy hitters. As a special case, we have the
majority problem (i.e. the k-hitter problem for k = 2).

There is a temptation to solve this problem by divide and conquer; divide
the sequence in half, find the heavy hitters in each half and then check.

The streaming model fascilitates thinking about a much better solution. In
the case of majority, lets just try to maintain one possible candidate in the
first pass and then check to see if the candidate is a majority item in the
second pass. See the Chakrabarti Lecture notes.

25 / 40

The Misra-Gries algorithm

Maintain a candidate for the majority element and a counter for that
candidate.

When the counter is empty, the next element in the stream becomes the
candidate.

Every time the next element inG the stream is the candidate increase the
counter by 1. If the next element is not the candidate decrease the
counter by 1.

Claim: If there is a majority element then it has to be the current
candidate.

We can use a second pass over the elements to check if the candidate
occurs more than n/2 times.

The space used is O(log n + logD) and the time is (log n) (or O(1) if
counting element comparisons) per input element.

26 / 40

Some comments on the Misra-Gries algorithm

It can be shown that no (even randomized) one pass (small space)
streaming algorithm can return a truly majority element. So the second
pass is needed to verify a candidate.

As suggested the majority algorithm can be extended to solve the k heavy
hitters problem for any small k .

Consider the following extension to the ε-approximate φ-hitters problem
where the algorithm is required to return a set S of elements such that
1) Every element in S appears at least φn times.
2) S does not contain any elements occuring less than (φ− ε)n times.

The Misra-Gries algorithm can be extended to solve this problem by
setting k = 1

ε and then outputting all elements a that occur at least
(φ− ε)n times.

27 / 40

Another way to solve an upper bound version of the
ε-approximate φ-heavy hitters.

The following ideas are another very general approach to solving various
streaming problems. We introduce it here as it is an easy case to expose
the ideas. And now we are going to use randomization.

Suppose we just want the counts for the φ-heavy hitters. We want to get
all the counts and have the guarantee that Prob[count ≥ truecount + εm]
is small.

The idea is to hash values and then just keep counts of the hashed values.
Let k = 2/ε. We use a 2-universal hash function h so that
Prob[h(v) = h(v ′] = 1/k so any two distinct values v and v ′.

Count Min Sketch uses a number of different hash functions (in parallel)
and then takes the min of these counters.

28 / 40

Frequency Moments: What is known about
computing Fk?

Given an error bound ε and confidence bound δ, the goal in the frequency
moment problem is to compute an estimate F ′k such that
Prob[|Fk − F ′k | > εFk] ≤ δ.

The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

1 For k ≥ 3, there is an Õ(m1−1/k) space algorithm. The Õ notation
hides factors that are polynomial in 1

ε and polylogarithmic in m, n, 1δ .
2 For k = 0 and every c > 2, there is an O(log n) space algorithm

computing F ′0 such that
Prob[(1/c)F0 ≤ F ′0 ≤ cF0 does not hold] ≤ 2/c .

3 For k = 1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(log log n + 1/ε)

4 For k = 2, they obtain space Õ(1) = O(log(1/δ
ε2)(log n + logm))

5 They also show that for all k > 5, there is a (space) lower bound of
Ω(m1−5/k).

29 / 40

Results following AMS

A considerable line of research followed this seminal paper. Notably
settling conjectures in AMS:

The following results apply to real as well as integral k .
1 An Ω̃(m1−2/k) space lower bound for all k > 2 (Bar Yossef et al

[2002]).
2 Indyk and Woodruff [2005] settle the space bound for k > 2 with a

matching upper bound of Õ(m1−2/k)

The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close to Fk
and variance is sufficiently small such that this r.v. can be calculated
under the space constraint.

We will sketch the (non optimal) AMS results for Fk for k > 2 and
the result for F2.

For k = 0, counting the number of distinct items, there is a wonderful
new simple algorithm due to Chakraborty, Vinodchandran and Meel
(a new UT faculty member).

30 / 40

The AMS Fk algorithm

Let s1 = (8
ε2
m1− 1

k)/δ2 and s2 = 2 log 1
δ .

AMS algorithm for Fk

The output Y of the algorithm is the median of s2 random variables
Y1,Y2,,Ys2 where Yi is the mean of s1 random variables Xij , 1 ≤ j ≤ s1
. All Xij are independent identically distributed random variables. Each
X = Xij is calculated in the same way as follows: Choose random
p ∈ [1, . . . ,m], and then see the value of ap. Maintain
r = |{q|q ≥ p and aq = ap}|. Define X = m(rk − (r − 1)k).

Note that in order to calculate X , we only require storing ap (i.e.
log n bits) and r (i.e. at most logm bits). Hence the Each X = Xij is
calculated in the same way using only O(log n + log n) bits.
For simplicity we assume the input stream length m is known but it
can be estimated and updated as the stream unfolds.
We need to show that E[X] = Fk and that the variance Var [X] is
small enough so as to use the Chebyshev inequality to show that
Prob[|Yi − Fk | > εFk is small. 31 / 40

AMS analysis sketch

Showing E [X] = Fk .

m

m
[(1k + (2k − 1k) + . . .+ (mk

1 − (m1 − 1)k))+

(1k + (2k − 1k) + . . .+ (mk
2 − (m2 − 1)k)) ++

(1k + (2k − 1k) + . . .+ (mk
n − (mn − 1)k))]

(by telescoping)

=
n∑
i

mk
i

= Fk

32 / 40

AMS analysis continued

Y is the median of the Yi . It is a standard probabilistic idea that the
median Y of identical r.v.s Yi (each having constant probability of
small deviation from their mean Fk) implies that Y has a high
probability of having a small deviation from this mean.

E [Yi] = E [X] and Var [Yi] ≤ Var [X]/s1 ≤ E [X 2]/s1.

The result needed is that Prob[|Yi − Fk | > εFk] ≤ 1
8

The Yi values are an average of independent X = Xij variables but
they can take on large vales so that instead of Chernoff bounds, AMS
use the Chebyshev inequality:

Prob[|Y − E [Y]| > εE [Y]] ≤ Var [Y]

ε2E [Y]

It remains to show that E [X 2] ≤ kF1F2k−1 and that
F1F2k−1 ≤ n1−1/kF 2

k

33 / 40

Sketch of F2 improvement

They again take the median of s2 = 2 log(1δ) random variables Yi but
now each Yi will be the sum of only a constant number s1 = 16

ε2
of

identically distibuted X = Xij .

The key additional idea is that X will not maintain a count for each
particular value separately but rather will count an appropriate sum
Z =

∑n
t=1 btmt and set X = Z 2.

Here is how the vector < b1, . . . , bn >∈ {−1, 1}n is randomly chosen.

Let V = {v1, . . . , vh} be a set of O(n2) vectors over {−1, 1} where
each vector vp =< vp,1, . . . , vp,n >∈ V is a 4-wise independent vector
of length n.

Then p is selected uniformly in {1, . . . , h} and < b1, . . . , bn > is set
to vp.

34 / 40

The CVM algorithm for F0

35 / 40

The semi-streaming model

Feigenbaum et al [2005] introduced “semi-streaming” in order to consider
sparse graph problem in the streaming model. As such we can view
semi-streaming as an online model where we are not required to make
immediate irrevocable (or revocable) decisions but can only maintain a
limited amount of information about the input stream.

Like (tradional) online algorithms, we have a graph G = (V ,E) with
|V | = n, |E | = m and vertices or edges arrive online in sequence.

If we are interested in producing a solution (i.e., a coloring, an independent
set, a matching, etc.) we need at lease Ω(n) space just for the solution.

The goal is to maintain Õ(n) space.

As we saw in the Misra-Gries majority algorithm, a different model can
leave us open to different ways of thinking about a problem. Another
example is a semi-streaming algorithm for unweighted interval selection
(call control on the line) due to Emek et al [2016] that is shown to work in
the online model that allows for revoking previous acceptances.

36 / 40

Comparing the semi-streaming and online models

It might seem that the semi-streaming model is less restrictive than the
online setting since immediate decisions are not required.

But is it obvious that every online algorithm can be simulated in the
semi-streaming model?

An online algorithm does not have to limit itself to Õ(n) memory. It could
remember all edges seen this far and the order in which they arrived. And
it can use any amount of spacxe in order to make decisions.

However, it it is not clear when and how to ultilize the unbounded space
enjoyed by an online algorithm.

37 / 40

Comparing the semi-streaming and online models

It might seem that the semi-streaming model is less restrictive than the
online setting since immediate decisions are not required.

But is it obvious that every online algorithm can be simulated in the
semi-streaming model?

An online algorithm does not have to limit itself to Õ(n) memory. It could
remember all edges seen this far and the order in which they arrived. And
it can use any amount of spacxe in order to make decisions.

However, it it is not clear when and how to ultilize the unbounded space
enjoyed by an online algorithm.

37 / 40

Bipartite matching in the semi-streaming mpdel

In the edge arrival model,

There is no (randomized) semi-streaming algorithm with worst case
competitive ratio better than 1

2 . That ratio is optimal since any
greedy algorithm (i.e. always make a match when possible) achieves
1
2 in the streaming model as well as in the online model.

A slightly better ratio exists when edges arrive in random order.

In the vertex arrival model,

The randomized KVV algorithm also easily carries over to the
semi-streaming model (either as a deterministic random order
algorithm or as a randomized adversarial order algorithm).

Surpringly, Goel et al [2011] show that there is a 1− 1
e competitive

deterministic semi-streaming algorithm with adversarial order input
sequences. This tends to reinforce our intuition that the
semi-streaming model is less restrictive than the tradititional online
model.

38 / 40

Comparing semi-streaming and the online model
with and without revocable items

Is there a (natural) optimization problem and for which some online
algorithm (with or without allowing revoking) has a competitive ratio s
better than any ratio obtainable in the streaming model?. How much can
we use the entire history for the first i inputs vs just knowing the current
“configuration”.

For the unweighted interval selection problem, there is an interesting
result. In the semi-streaming model, there is a deterministiic algorithm
that is a 1

2 approximationi while for the online model with revoking, the
optimal deterministic competitve ratio is 2k , where k is the number of
different interval lengths. However, the streaming algorithm can be
randomized and implemented as an online algorithm with revoking that
achieves competitive ratio 1

6 .

39 / 40

Ansering (to some extent) a question I raised in
class

I raised the question as to whether there were any natural problems for
which there is an online algorithm using much more than O(OPT)
memory.

The answer is YES. The new randomized Fahrbach et al OCS based
methods for Display Ads (which achieve competitive ratio ρ > 1

2) use
O(|E |) memory. This method does not need to revoke any decisions.

This then raises the question: Is there a semi-streaming algorithm for
Display Ads with competitive ratio ρ > 1

2 .

40 / 40

	Week 10

