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Abstract

Priority algorithm is a model of computation capturing the notion of greedy and greedy-like algorithm. This paper concerns
priority algorithms for Job Scheduling. Three main restrictions are defined for priority algorithms, namely: memoryless, greedy and
fixed. It was asked in [A. Borodin, M.N. Nielsen, C. Rackoff, (Incremental) priority algorithms, in: Proc. 13th Annu. Symp. Discrete
Algorithms (SODA), January 2002, pp. 752–761 (also in Algorithmica 37(4) (2003) 295–326] whether the general class of priority
algorithms is of different power from the restricted class of greedy-priority algorithms (for the Job Scheduling problem). We answer
this question affirmatively by showing that a specific priority algorithm cannot be simulated by any greedy-priority algorithm on
every input. Furthermore we systematically compare every two classes of priority algorithms for different settings of Job Scheduling.
We also define a hierarchy for priority algorithms of bounded memory which lies between the class of memoryless and the class of
priority algorithms with memory, and we show that this memory hierarchy is robust.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Greedy algorithms have been extensively applied due to their conceptual simplicity and computational efficiency.
Priority algorithm [3] is a model of computation that captures the notion of greedy and greedy-like algorithms by
generalizing on-line computation. This approach formulates a much wider class of greedy algorithms than previous
ones such as the matroids, greedoids and matroid embeddings, and also gives rise to the study of the approximation
power of greedy algorithms. For example, with respect to priority algorithms we are able to prove unconditional lower
bounds on the approximation ratio of such algorithms. By unconditional we mean that the statements do not base their
validity on assumptions like P �= NP .

Three restrictions are defined for the (general) model of priority algorithm, namely: fixed, memoryless and greedy.
During the study on the approximation power for classes of priority algorithms for Job Scheduling, questions concerning
relations among these classes were raised in [3]. In this paper we also study classes of priority algorithms for Job
Scheduling. Our techniques are model-specific (i.e. for Job Scheduling) but we believe that similar techniques can be
applied for priority models defined for other combinatorial problems. The main technical contribution of this paper
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concerns a thorough comparison among classes of priority algorithms, and the definition of a memory hierarchy for
priority algorithms which is shown to be robust.

Previous work. Borodin et al. [3] initiated the study of priority algorithms. In [3] classes of priority algorithms are
defined for variations of the Job Scheduling and the Makespan problems. Priority algorithms and lower bounds on
the approximation ratio for classes of priority algorithms are shown. The subset model for the Makespan problem,
defined in [3], is considered by Regev [7] who shows a lower bound on the approximation ratio of any fixed-priority
algorithm. There are also works formulating problems other than scheduling in the context of prioritized computation.
These models can be adjusted in a natural way to incorporate the memoryless, fixed and greedy restrictions on the
priority model. Angelopoulos and Borodin [2] define and study priority algorithms for two well-known NP-hard
optimization problems, Set Cover and (uncapacitated) Facility Location. Motivated by similar works in the field of
on-line computation, Angelopoulos [1] considers randomized classes of priority algorithms. Priority algorithms for
graph problems are studied by Impagliazzo and Davis [4]. They study the approximation power of priority algorithms
for the Shortest Path, Steiner Tree, Weighted Vertex Cover and Independent Set problems; they present an abstract
model for priority algorithms; they describe an abstract way of capturing the notion of memoryless algorithm, and they
present a general lower bounding technique in terms of a combinatorial game.

Priority algorithms for Job Scheduling. We use the term “priority algorithms” to refer to “priority algorithms for the
Job Scheduling problem”. In the general (adaptive) priority model the computation proceeds in rounds. In each round:
(i) a total ordering is chosen over all possible (not-yet-considered) jobs and (ii) the next, highest priority, available
job is presented to the algorithm which makes an irrevocable decision to reject or to schedule this job (specifying
the processor and the starting time). The determined orderings and the decisions are arbitrarily complex (maybe non-
computable) functions of the so far scheduled and rejected jobs. A natural restriction to this model is the fixed-priority
model where the ordering is determined only once in the beginning. We define the greedy restriction to be such that
when a greedy-priority algorithm reads a job that can be scheduled, it necessarily schedules it. Also we define the
memoryless restriction to refer to algorithms where every decision to schedule/reject a job and the determined ordering
are based only on the scheduled (not on the rejected) jobs. We denote as PRIORITY the (unrestricted) class of adaptive
priority algorithms. If the class is restricted to the class of fixed, greedy and memoryless priority algorithms, we add
the prefix FIXED (or F for short), GREEDY (G) and MEMORYLESS (M), respectively.

In [3] the authors give some indications that “greediness is a real restriction to the model”. These indications stem from
a randomized analog studied (for the Job Scheduling problem). In [4] separation results based on the approximation ratio
are presented for classes of priority algorithms for graph problems. This will not work in the case of Job Scheduling. The
LPT (Longest Processing Time first) priority algorithm is optimal w.r.t. its approximation ratio for one processor Interval
Scheduling with proportional profits [3]. Since, LPT ∈ MEMORYLESS-GREEDY-FIXED-PRIORITY it is impossible to
separate such classes of priority algorithms based on the approximation ratio. Instead we show that there exists a natural
setting in which we can show such a separation. We base our separation results on the weaker notion of not-feasible-
simulation introduced in Definition 1. Specifically, we show that a given priority algorithm A cannot be simulated by
any priority algorithm belonging to a given class C, showing that no algorithm from C can do as well as A on every set
of jobs.

Contribution. We compare classes of priority algorithms for the (non-preemptive) Job and Interval Scheduling on
one and more than one (identical) machine environments. Our study shows that restricting (using one of the three
above mentioned restrictions) a given class of priority algorithm usually results in a weaker class. In this sense we have
a natural notion of hierarchy among classes of priority algorithms. Taking into account all possible combinations of
restrictions, for classes of priority algorithms, we have eight classes. We develop some basic combinatorial tools that
we use to construct input instances so as to compare every possible pair of classes of priority algorithms for the Job
Scheduling Problem. The separation results are based on the (weak) notion of not-feasible-simulation. In Section 2 we
define relations that capture this notion. One open question was whether greediness is a real restriction to the model [3].
We answer this question affirmatively by separating GREEDY-PRIORITY from PRIORITY even in case of one processor
Interval Scheduling with proportional profits. Furthermore, we provide a comparison for every pair of classes of priority
algorithms in case of: (i) Job Scheduling, (ii) Interval Scheduling for one processor machine environments and (iii)
Interval Scheduling on multiple processors. For each case we have 64 comparisons. With respect to cases (ii) and (iii),
the same relations hold between every pair of priority algorithm classes. Thus, in total we have 128 lemmas (Section
4) which are corollaries of seven main lemmas (Section 3). One of our main contributions regards memory models for
priority algorithms. In Section 5 we define an (infinite) hierarchy of classes of priority algorithms of bounded memory.
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We show that this hierarchy is robust; that is, in general, priority algorithms that remember k rejected jobs cannot be
simulated by priority algorithms that have memory only for k − 1 rejected jobs. In the same section we show that
another natural bounded memory hierarchy, where the memory of the algorithm consists of bits, is also robust.

2. Preliminaries

A job J is (id, r, d, p, w) ∈ N5, where id is the job descriptor, r, d, p is its release, deadline and processing time
and w is its profit (weight). Furthermore, r < d and p�d − r . We omit id given that it is denoted by the job subscript
(for example Ji). An interval is a restricted form of job where p = d − r . That is, an interval J is well defined by
J = (id, r, d, w). In case of proportional profit p = w a job is defined as (id, r, d, p) and an interval is defined as
(id, r, d). For two distinct (i �= j ) jobs Ji = (i, r, d, p, w), Jj = (j, r, d, p, w) we may abuse notation by writing
Ji = Jj meaning that Ji and Jj have the same release, deadline, processing time and profit. An instance of the non-
preemptive Job (Interval) Scheduling on identical machines problem (P |rj | ∑ wj Ūj in [5] notation) consists of m
machines and n jobs (intervals). The goal is to assign jobs to machines maximizing the sum of profits of the scheduled
jobs. Given a finite set of jobs S and a priority algorithm A, we write A(S) to denote the set of jobs scheduled by A
when computing on S. Also, wJ denotes the profit of job J and we write profit(S) = ∑

J∈S wJ .
In this paper the memoryless-priority algorithms make decisions by having access to all the information of a scheduled

job (including its identifier) and on which processor it has been scheduled. Minor modifications to the proofs of Section
3 make the lemmas hold for weaker definitions of memoryless models.

Definition 1.

• For two classes of priority algorithms C1 and C2, C1 is partially dominated by C2, D(C1, C2), iff there exists a
priority algorithm A ∈ C2, such that for every algorithm A′ ∈ C1 there exists a finite set of input jobs S such that
profit(A(S)) > profit(A′(S)).
The D-relation describes the case where a priority algorithm cannot be simulated by priority algorithms belonging
to another class, even when this simulation is not computable.

• If for every A ∈ C1 there exists an A′ ∈ C2, such that for every input instance S, profit(A(S))�profit(A′(S)) then
we write C1 �C2. Note that C1 �C2 means that C1 can be simulated by C2, that is ¬D(C2, C1) holds.

• If C1 �C2 and C2 �C1 then we write C1 ≈ C2. If D(C1, C2) and C1 �C2 then we write C1 < C2. If it is true that
D(C1, C2) and D(C2, C1) then we write C1 ⊥ C2, that is C1 and C2 are essentially incomparable.

It easily follows that relation D is not transitive, whereas relations � and < are. Also, the relation < defines a
partial order since it is also anti-symmetric; relations ⊥ and ≈ are symmetric. The following proposition is a direct
consequence of the definitions.

Proposition 1. (i) Let C1, C2, C
′
1, C

′
2 be classes of priority algorithms. If C′

1 �C1 and C2 �C′
2 and D(C1, C2) then

D(C′
1, C

′
2). (ii) If C and C′ are classes of priority algorithms then there exists a unique R among {<, >, ≈, ⊥}, such

that C R C′ (where > has the obvious definition).

Lemma 2. M-G-PRIORITY ≈ M-PRIORITY.

This result (from [3]) means that in case of a memoryless-priority algorithm, greediness is not a real restriction. This
lemma, as well as those that directly follow from it, are the only ones where greediness is not a restriction. Lemma
2 is the only previous result concerning comparison among classes of priority algorithms for Job Scheduling. It also
holds for every variation of the Job Scheduling problem considered in this work, since its proof is based on a (general)
simulation argument.

Gadgets used throughout the constructions of the proofs. We systematically construct instances to separate classes
of priority algorithms. In our proofs we use three types of “gadgets”: (i) indicator jobs, (ii) switches and (iii) blockers.
An indicator job is a job (or interval) that works as a “promise for the following jobs in the input set, giving advantage
to an adaptive over all fixed-priority algorithms. A switching gadget is (intuitively) used to implement memory bits
(giving advantage to algorithms with memory), for a set of jobs (or intervals) where their rejection or non-presence
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provides information about the rest of the jobs in the input instance. A blocker is a job which helps a greedy algorithm
to overcome part of its greediness when the blocker is scheduled in a place which prevents other jobs/intervals from
being scheduled.

3. Partially dominated classes of priority algorithms

All the D-relation proofs presented in this section are constructive. Specifically, in order to prove D(C1, C2) we
give an algorithm in C2, and a specific finite set of inputs S, such that every algorithm in C1 performs worse than the
algorithm in C2, for at least one subset of S.

Remark 1. All the separation lemmas presented in this section also hold in case of machine environments with m > 1
identical processors. The modification is easy. Add m − 1 jobs each of which overlaps with every other job in the
input set considered in the initial proof. The set of lemmas presented in this section is minimal. That is, all the D-
relations proved here are in the strongest possible form, in the sense that removing restrictions from the first argument
or restricting the second argument makes the relation not hold. Observe that the given simulations hold for the arbitrary
profit case whereas for the proofs of D-relations it suffices to consider the proportional profit case, thus making our
results stronger. It is interesting to note that in all separation results the presented algorithms do not gain optimal profit
on every subset of the presented set of jobs. In [6] we study priority algorithms that gain optimal profit on every subset
of given sets and we also study related complexity questions. Moreover, note that our examples are engineered in such
a way that by scaling the job profits or by adding multiple non-overlapping copies of the input set examples we can
construct examples of sets of jobs where the two separated priority classes have arbitrarily large gaps in the gained
profit.

3.1. Partially dominated classes of priority algorithms for one processor Interval Scheduling

We consider one machine environments where the jobs are intervals of proportional profit. We provide the full proof
of Lemma 3 and we sketch the rest since the arguments are of very similar flavor.

Lemma 3. D(FIXED-PRIORITY, MEMORYLESS-GREEDY-PRIORITY)

Proof. Let S = {J1, J2, J3, J4}, where J1 = (0, 1), J2 = (1, 3), J3 = (3, 5), J4 = (2, 5). Here J1 corresponds to an
indicator job. Let A ∈ M-G-PRIORITY be the following algorithm, with initial ordering J1 > J2 > J3 > J4:

• If J1 is in the input then schedule it and determine an ordering starting with J4 and proceed greedily.
• Else, schedule greedily (that is J2, J3 and then J4).

Let A′ ∈ F-PRIORITY. If in the ordering of A′, J2 or J3 precedes (has higher priority than) J4 then on input
S′ = {J1, J2, J4} (or on {J1, J3, J4}) profit(A′(S′))�3 < 4 = profit(A(S′)). Else if J4 precedes J2 and J3 then on
input S′ = {J2, J3, J4} profit(A′(S′))�3 < 4 = profit(A(S)). �

Lemma 4. D(GREEDY-PRIORITY, FIXED-PRIORITY)

Proof sketch. Let S = {J1, J2, J3, J4}, J2 = (0, 2), J3 = (2, 4), J4 = (1, 4) and J1 = (2 − �, 2 + �), for a fixed
� < 1 (J1 is an indicator job). For every FIXED-PRIORITY there exists a subset of S where the following algorithm
A ∈ FIXED-PRIORITY, with ordering J1 > J4 > J2 > J3 gains more profit: (i) If J1 is read from the input then reject
it, and schedule greedily (schedule as many intervals as possible). (ii) Else if J1 is not the first interval read (that is, J1
is not rejected when one of J4, J2, J3 is read) then reject J4 (if present) and schedule the rest greedily. �

Lemma 5. D(GREEDY-FIXED-PRIORITY, MEMORYLESS-FIXED-PRIORITY)

Proof sketch. Let S = {J1, J2, J3, J4}, where J1 = (0, 1), J2 = (1, 3), J3 = (3, 5), J4 = (2, 5). Intuitively, J1 is an
indicator job. The lemma is proved by considering the following algorithm A ∈ M-F-PRIORITY, with fixed ordering
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J1 > J4 > J2 > J3: (i) If J1 is present then schedule it, reject J4 (if present) and schedule the rest greedily. (ii) Else
schedule greedily. �

Lemma 6. D(MEMORYLESS-GREEDY-PRIORITY, GREEDY-PRIORITY)

Proof sketch. Let S = {J1, J2, J3, J4, J5} such that J1 = J2 = (0, 1) (J1, J2 is a switching gadget) and J3 =
(1, 3), J4 = (3, 5), J5 = (2, 5). The lemma is proved by considering A ∈ G-PRIORITY, with initial ordering J1 >

J2 > J3 > J4 > J5. A has the following description: (i) If J1 and J2 are both present then determine the ordering
J5 > J3 > J4. (ii) Else schedule greedily keeping the initially determined ordering. �

3.2. Lemmas that are different in case of one processor Interval Scheduling, multiple processors Interval Scheduling
and Job Scheduling problem

The following lemma corresponds to the case of m = 2 processors, Interval Scheduling with proportional profits
problem. We provide full-proofs for Lemmas 7 and 8 since they are getting a bit more involved than the proofs of the
previous subsection.

Lemma 7. D(MEMORYLESS-PRIORITY, GREEDY-FIXED-PRIORITY), for proportional profit Interval Scheduling on
two-machine environments.

Proof. Say that we have two processors P1 and P2. Let S = {J1, J2, J3, J4, J5, J6, J7, J8}, where: (i) J1 = J2 = J3 =
(0, 1) are the switches, (ii) J4 = J6 = (1, 3), J5 = J7 = (3, 5) and J8 = (2, 5) (the intervals J4 and J5 are used as
blockers). Recall that the blockers help us to overcome the fixed and the greedy nature of the algorithm since we use
them to reject J8 (if needed). Let A ∈ G-F-PRIORITY with ordering J1 > J2 > J3 > J4 > J5 > J8 > J6 > J7. A is
as follows: (i) Schedule greedily from {J1, J2, J3}. (ii) If all J1, J2 and J3 are present then schedule J4 at P1 and J5 at
P2. (iii) Else schedule both J4 and J5 at P1. (iv) Schedule the rest greedily.

Let A′ ∈ MEMORYLESS-PRIORITY. If A′ has at least the same profit as A on every input, then on input S, A′ must
schedule all of J4, J5, J6, J7. Assume that U ∈ {J4, J5, J6, J7} is the one read last through this run of A′. Since
A′ is deterministic, when running on S′ = S\{U} A′ still rejects J8 (by scheduling all of {J4, J5, J6, J7}\{U}). Let
U ′ ∈ {J1, J2, J3} be the interval read last when A′ runs on S′ and thus U ′ is the one not scheduled. Since A′ is
memoryless, on input S′′ = S′\{U ′} A also rejects U and therefore profit(A′(S′′)) = 7 < 8 = profit(A(S′′)). �

The same lemma holds in case of the Job Scheduling problem for one processor.

Lemma 8. D(MEMORYLESS-PRIORITY, GREEDY-FIXED-PRIORITY), for proportional profit Job Scheduling on one-
machine environments.

Proof. The representation of the input is given in Fig. 1. This is the only proof of this section where we do not use
Interval Scheduling. In the figure three types of objects are depicted: (a) {J1, J2, J3, J4, J5} are proportional profit
intervals. (b) Job J6 is a proportional profit job and its release and deadline times are depicted at the ends of the dashed
line. (c) {h1, h2} are the two holes. The holes are not jobs (or intervals). They are “time intervals” lying between the
intervals of (a). Notice that the job J6 has processing time equal to the length of each hole. Regarding the processing

J1

J2

J4 J5

J3

h1 h2

J6

Fig. 1. Graphical representation of the input for the proof of the Lemma 8.
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time: J1, J2 have processing time 1, J4, J5 have processing time 2, J3 has processing time 3, and J6 strictly less
than 1, say 0.9. Consequently the length of each hole is 0.9. Thus, J1 and J2 are used as switches and J6 as a
blocker. Say that A ∈ G-F-PRIORITY has job ordering J1 > J2 > J6 > J3 > J4 > J5, and works as fol-
lows: (i) Schedule greedily from {J1, J2}. (ii) If J1 and J2 are both present: schedule J6 in h2 (that is preventing
J3 from being scheduled) and schedule the rest greedily. (iii) If J1 or J2 is not present: schedule J6 in h1 and the rest
greedily.

Let A′ ∈ M-PRIORITY. If A′ has at least the same profit as A on every input, then on input S A′ schedules J4, J5.
Let U ∈ {J4, J5} be the one scheduled last by A′. Thus on input S′ = S\{U} A′ rejects J3 since it still schedules one
among {J4, J5}. Let U ′ ∈ {J1, J2} be the rejected interval (among {J1, J2}) when A′ was running on S′. Since A′ is
memoryless, on input S′′ = S′\{U ′}, profit(A′(S′′)) = 3.9 < 4.9 = profit(A(S′′)). �

Things are different in case of proportional profit Interval Scheduling on one processor. An immediate corollary
of the following lemma and the derived corollary D(G-F-PRIORITY, M-G-PRIORITY) is that M-G-F-PRIORITY ≈
G-F-PRIORITY < M-G-PRIORITY ≈ M-PRIORITY. This corollary does not hold in case of Job Scheduling or Inter-
val Scheduling on more than 1 processor.

Lemma 9. MEMORYLESS-GREEDY-FIXED-PRIORITY ≈ GREEDY-FIXED-PRIORITY, in case of Interval Scheduling
and m = 1. This directly implies that in case of Interval Scheduling and m = 1, GREEDY-FIXED-PRIORITY <

MEMORYLESS-PRIORITY.

Proof. This proof is a trivial simulation. Since A ∈ G-F-PRIORITY, A cannot make any decisions (because we
have only one machine and intervals) based on the already rejected and scheduled intervals. Hence, A ∈ M-G-F-
PRIORITY. �

4. Comparing classes of priority algorithms

We compare every two classes of priority algorithms for the Job Scheduling problem. Adding a restriction to a class
of priority algorithms most of the time yields a weaker class. In this sense the corresponding hierarchy appears to be
almost robust. We have three cases: (i) Job Scheduling on any number of processors (recall Remark 1), (ii) Interval
Scheduling on m�2 processors and (iii) Interval Scheduling on one processor (m = 1). Since, all the “D-relations”
that hold for Job Scheduling (m�1) hold also for Interval Scheduling on m�2, then the same relations between classes
of priority algorithms hold in these two cases. Table 1 concerns the comparison of classes for (i) and (ii) and Table
2 concerns (iii). Each table entry contains the relation and the lemmas used to derive this relation. If the table entry
(r, c) contains the relation R, the class which corresponds to the rth row is C and the class which corresponds to the
cth column is C′, then we read “C R C′ is true”. Only the upper triangular part of the table is filled, since all other
relations trivially follow. PR is an abbreviation for PRIORITY. Also, notice that the column M-PR could be missing as
well, because M-PR ≈ M-G-PR.

Table 1
Comparison between classes of priority algorithms in the cases of (i) general Job Scheduling (m�1) and (ii) Interval Scheduling where m�2

F-PR G-PR G-F-PR M-PR M-F-PR M-G-PR M-G-F-PR

PR > 3 > 4 > 3 > 6 > 6 > 6 > 6
F-PR ⊥ 3,4 > 4 ⊥ 2,3,4 > 2,4 ⊥ 3,4 > 2,4
G-PR > 3 > 6 > 2,3 > 6,2 > 6,2
G-F-PR ⊥ 3,7or 8 ⊥ 5,7 or 8 ⊥ 3,7or 8 > 7 or 8
M-PR > 3 ≈ 2 > 3
M-F-PR < 2,3 > 5
M-G-PR > 3
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Table 2
Comparison between classes of priority algorithms for one processor, proportional profit, Interval Scheduling

F-PR G-PR G-F-PR M-PR M-F-PR M-G-PR M-G-F-PR

PR > 3 > 4 > 3 > 6 > 3 > 6 > 3
F-PR ⊥ 3,4 > 4 ⊥ 2,3,4 > 2,4 ⊥ 3,4 > 2,4
G-PR > 3 > 6,2 > 2,3 > 6 > 6
G-F-PR < 3,9 < 5,9 < 3,9 ≈ 9
M-PR > 3 ≈ 2 > 3
M-F-PR < 2,3 > 5
M-G-PR > 3

5. Memory and priority algorithms

Observe that so far we have considered two extremes regarding priority algorithms for the Job Scheduling problem;
algorithms with memory and memoryless algorithms. Note that for an algorithm with memory it suffices to only have
access to the sets of scheduled and rejected jobs (in the sense that given an algorithm which maintains its memory
contexts throughout its execution, we can iteratively reconstruct them by just checking the description of the algorithm
and the set of scheduled and rejected jobs).

We now give two definitions for bounded memory which imply natural memory hierarchies that we show to be robust
in most settings.

Bounded memory model with irrevocable store and jobs.

Definition 2. We write for a priority algorithm A, that A ∈ M(k) − C where C is a class of priority algorithms with
memory, to mean that A makes its (irrevocable) decisions by remembering any set of rejected jobs of cardinality less
than or equal to k ∈ Z�0. Each decision of A to store a job in its memory is also irrevocable; that is, when A stores a
rejected job this job cannot be removed/updated later on.

Remark 2. Looking at the proof of Lemma 4 we see that Lemma 2 cannot be extended even when we have memory
for only one rejected job. Actually, the same proof (as the one for Lemma 4) shows that D(M(1)-GREEDY-PRIORITY,
M(1)-FIXED-PRIORITY).

Notice that in Definition 2 the algorithm is allowed to decide whether it will store a rejected job in its memory or
not. The following theorems are proved (even) for the weaker case where the algorithm (on the right-hand side of the
relation D) stores, without choice, the first up to k, so far rejected jobs.

Theorem 10. We consider two different settings. (i) Interval Scheduling where the machine environment consists of one
processor and C stands for any one among {FIXED-PRIORITY, GREEDY-PRIORITY, PRIORITY}. (ii) Job Scheduling and we
have a machine environment of m�1 identical processors, or Interval Scheduling and we have a machine environment
of m�2 identical processors, and C stands for one among {GREEDY-FIXED-PRIORITY, FIXED-PRIORITY, GREEDY-
PRIORITY, PRIORITY}. Given (i) or (ii) we have that M(k + 1) − C > M(k) − C.

A corollary of Lemma 9 is M(k)-G-F-PRIORITY ≈ G-F-PRIORITY for Interval Scheduling on one machine environ-
ment and every k ∈ Z�0. Theorem 10 is a corollary of the three following lemmas (also recall Remark 1).

Lemma 11. For the two machine environment Interval Scheduling,
D(M(k)-PRIORITY, M(k + 1)-G-F-PRIORITY) even for proportional profit intervals.

Proof sketch. We do not give the full proof of this lemma since it is very similar to the proof of Lemma 7. Say
that the two processors are P1 and P2. Let S = {Ji1 , . . . , Jik+3} ∪ {J1, J2, J3, J4, J5} be a set of intervals where (i)
Ji1 = Ji2 = · · · = Jik+3 = (0, 1) are the switches, (ii) J1 = J3 = (1, 3), J2 = J4 = (3, 5) and J5 = (2, 5), (iii) the
jobs J1 and J2 are used as blockers. Let A ∈ M(k + 1)G-F-PRIORITY with initial ordering Ji1 > Ji2 > · · · > Jik+3 >
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J1 > J2 > J5 > J3 > J4. A is as follows:

• Schedule greedily from {Ji1 , . . . , Jik+3}.
• If all Ji1 , . . . , Jik+3 are present then schedule J1 at P1 and J2 at P2.
• Else schedule both J1 and J2 at P1.
• Schedule the rest greedily.

Since the algorithm A can store all possibly rejected intervals and any algorithm with memory bounded to k rejected
jobs cannot, this proof follows in a very similar way as the proof of Lemma 7. �

Lemma 12. For the one machine environment Job Scheduling,
D(M(k)-PRIORITY, M(k + 1)-G-F-PRIORITY).

Proof sketch. This proof is also very similar to the proof of Lemma 8. Instead of having two intervals of the same
release and deadline times, we now have k + 2 intervals of the same form. The rest of the proof is similar to the one of
Lemma 8 with all the modifications made in the obvious way. �

Actually, we can take Lemmas 7 and 8 as corollaries of the above two.

Lemma 13. For the one machine environment Interval Scheduling,

(i) D(M(k)-PRIORITY, M(k + 1)-F-PRIORITY),
(ii) D(M(k)-PRIORITY, M(k + 1)-G-PRIORITY).

Proof. (i) Let S = {Ji1 , Ji2 , . . . , Jik+2} ∪ {J1, J2, J3}, where Ji1 = Ji2 = · · · = Jik+2 = (0, 1), J1 = (1, 3),

J2 = (3, 5), J3 = (2, 5). Let A ∈ M(k + 1)-F-PRIORITY with ordering Ji1 > Ji2 > · · · > Jik+2 > J3 > J1 > J2 and
the following description:

• Schedule greedily from {Ji1 , Ji2 , . . . , Jik+2}.
• If all Ji1 , Ji2 , . . . , Jik+2 are present then reject J3 (if present) and schedule the rest greedily.
• Else schedule greedily.

Let A′ ∈ M(k)-PRIORITY. If A′ has at least the same profit as A then on input S schedules J ∈ {Ji1 , . . . , Jik+2}, J1
and J2 (thus rejecting J3). Say that U ∈ {J1, J2} is the one scheduled last (among J1, J2). On the set S′ = S\{U}, A′
schedules the remaining one from {J1, J2}. Thus, J3 is rejected. In the run of A′ on S′, there exists at least one interval
J ′ ∈ {Ji1 , Ji2 , . . . , Jik+2} rejected and not stored in memory. Since A′ has memory for only k rejected jobs it schedules
the same jobs on S′ and on S′′ = S′\{J ′}. Thus, profit(A′(S′′)) = 3 < 4 = profit(A(S′′)).

We show D(M(k)-PRIORITY, M(k + 1)-G-PRIORITY) using a similar argument. The algorithm A is modified so as
to reorder jobs (giving J3 low Priority) instead of rejecting J3. �

Bounded memory with updates and bits.

We consider a modification of the bounded memory model for priority algorithms for the Job Scheduling problem.

Definition 3. Let C be a class of priority algorithms with memory. We write Mb(k) − C to denote the class of priority
algorithms C where an algorithm from this class has k memory bits. In every round an algorithm from Mb(k) − C can
update any number of its memory bits. We assume that initially all memory bits are zero.

The same theorem, as in the irrevocable storage memory management model, holds also for this memory model.

Theorem 14. We consider two different settings. (i) Interval Scheduling, where the machine environment consists of one
processor and C stands for any one among {FIXED-PRIORITY, GREEDY-PRIORITY, PRIORITY}. (ii) Job Scheduling where
we have a machine environment of m�1 identical processors, or Interval Scheduling and we have a machine environ-
ment of m�2 identical processors and C stands for one among {FIXED-PRIORITY, GREEDY-PRIORITY, GREEDY-FIXED-
PRIORITY, PRIORITY}. Given (i) or (ii) we have that Mb(k + 1) − C > Mb(k) − C.
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We show this theorem by modifying the job sets used in the proofs of Lemmas 11–13. We present the proof only in
the case of the fixed-priority D-relation. The others follow in the obvious way (by modifying appropriately the proofs
of Lemmas 11–13).

Lemma 15. D(Mb(k)-PRIORITY, Mb(k + 1)-FIXED-PRIORITY)

Proof. We prove even for proportional profit Interval Scheduling on one machine environment. Fix k ∈ Z�0. Let
S1 = {J0, J1, . . . , J2k+1−1}, S2 = {J ′, J ′′, J } and S = S1 ∪ S2, where J0 = (0, 2), J1 = J2 = · · · = J2k+1−1 = (0, 1),
J ′ = (2, 4), J ′′ = (4, 6), J = (3, 6). We will only consider inputs where J0 is present. Consider the following
algorithm A ∈ Mb(k + 1)-FIXED-PRIORITY with ordering J0 > J1 > J2 > · · · > J2k+1−1 > J > J ′ > J ′′:

• Accept J0 (and reject other intervals from S1). Use the k + 1 memory bits to store the value of a counter. When
rejecting an interval from S1, if the decimal value of the counter is less than 2k+1 − 1 then increase the counter by
1; otherwise leave the counter at 2k+1 − 1.

• After having read everything from S1, if the counter is 2k+1 −1 then reject J (if present) and schedule the rest greedily.
Else, schedule greedily.

Fix an arbitrary algorithm A′ ∈ PRIORITY. Note that if A′ has at least the same profit as A then it accepts J0 (and
it rejects every other interval from S1). It is easy to see that if A′ gains at least the same profit as A then J0 must be
read before every other job from S1. Suppose that the first interval A′ reads is Ji, i > 0. Clearly, A′ has to accept this
interval. Therefore, on input {Ji, J0} A′ gains less profit than A. Now, we will show that if A′ has at least the same profit
as A on every input then: if the input contains every interval from S1 then A′ must read every interval from S1\{J0}
before reading an interval from S2. Fix an input S′ where S1 ⊆ S′. If A′ reads a proper subset S′

1 � (S1\{J0}) before
reading an interval from S2 then we have the following. Consider the first interval A′ reads from S2. Clearly, A′ has
to accept this interval. If the first interval A′ reads from S2 is J ′ (or J ′′) then on input S′

1 ∪ {J, J ′} (or S′
1 ∪ {J, J ′′})

A′ gains less profit than A. Else, the first interval it reads from S2 is J and on input S1 ∪ S2 we have that A′ gains less
profit than A. Therefore, if the input contains S1 and A′ has at least the same profit as A on every input then A′ has read
at least every interval from S1\{J0} before reading an interval from S2.

Furthermore, let us now assume A′ ∈ Mb(k)-PRIORITY. We define the memory state of A′ after a round to be the
content of its k memory bits. Consider a run of A′ on S. Since, A′ has k memory bits and the intervals in S1\{J0} are
2k+1 − 1, by the pigeonhole principle a memory state has to repeat when A′ is reading intervals from S1\{J0}. Say
that between the two occurrences of the same memory state A′ has read the intervals from Ŝ ⊆ S1. If A′ has at least
the same profit as A then it schedules J1 and J2 from S2. Say that U ∈ {J1, J2} is the one read last among {J1, J2}.
Therefore, on input S′ = (S1\Ŝ) ∪ {U, J } we have that profit(A′(S′)) = 4 < 5 = profit(A(S′)). �
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