
CSC2422 Fall 2022: Algorithm Design, Analysis
and Theory

An introductory (i.e. foundational) level
graduate course.

Allan Borodin

November 23, 2022; Lecture 9

1 / 35



Brief Announcements and todays agenda

Assignment 3 due Wednesday December 7, 1PM. So far I have posted
two questions.

Todays agenda

The SDP/vector program approach for Max-2-Sat

Other applications of vector program rounding; cardinality constraints.

A simple deterministic polynomial time algorithms for 2-SAT

A relatively simple algorithm for 3-SAT that is more efficient than the
naive alglorithm.

The random walk algorithm for 2-SAT

The random walk algorithm for k-Sat

The exponential time hypothesis (ETH) and the strong exponential
time hypothesis (SETH).
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The SDP/vector program approach: Max-2-Sat

We briefly consider an important extension of the IP/LP approach,
namely representing a problem as a strict quadratic program and then
relaxing such a program to a vector program. Vector programs are
known to be equivalent to semidefinite programs.

For our purposes of just introducing the idea of this approach we will
not discuss SDP concepts but rather just note that such programs
(and hence vector programs) can be solved to arbitrary precision
within polynomial time. This framework provides one of the most
powerful optimization methods.

We illustrate the approach in terms of the Max-2-Sat problem. A very
similar algorithm and analysis produces the same approximation ratio
for the Max-Cut problem.

I recommend the Vazirani text “Appoximation Algorithms” for this topic
(and many other topics related to this course).
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The quadratic program for Max-2-Sat

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {0, 1} truth value val(C ) of each clause C in
terms of these {−1, 1} variables.

1 val(xi ) = (1 + yiy0)/2
val(x̄i ) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C ) = 1− val(x̄i ∧ x̄j) = 1− ( 1−yiy0
2 )(

1−yjy0
2 ) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C ) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C ) = (3− yiy0 − yjy0 − yiyj)/4
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The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi )

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.
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The vector program relaxation for Max-2-Sat
We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value

2(
∑

aijProb[yi = yj ] +
∑

bijProb[yi 6= yj ]) ; Prob[yi 6= yj ] =
thetaij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).
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The densest subgraph problem

The densest subgraph problem is defined as follows:

Given a graph G = (V ,E ), find a subset V ′ ⊆ V so as to maximize
|e:u,v∈V ′|
|V ′| ; that is, to maximize the density (or equivalently the average

degree) in a subgraph of G .

There is also a directed graph version of this problem. We will consider
the undirected case.

The densest subgraph problems can be solved in polynomial time by a flow
based algorithm as described in Lawler’s 1976 text and improved in Gallo
et al [1989]. There is also an LP duality based optimal method given in
Charikar [2000] that is the starting point for the MapReduce (1 + ε)
approximation algorithm due to Bahmani, Goel and Munagala [2014].

The (1 + ε) approximation follows a MapReduce 2(1 + ε) approximation by
Bahmani, Kumar and Vassilvitskii [2012] based on the Charikar greedy
2-approximation. (Note that these papers use approximation ratios ≥ 1.)
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Some comments on the densest subgraph problem
One immediate application is that the densest subgraph can be used to
identify a “community” in the web or a social network. There are other
applications as well in biological networks.

The k-densest subgraph problem asks for the densest subgraph V ′ of size
|V ′| = k. As far as I know Feige, Peleg and Kortsarz [2001] have the

current best approximation O(n
1
3
+δ) for the k-densest subgraph problem.

It is also possible to achieve approximations slightly better than n/k and in
particular, for k = Θ(n).

Obviously if one can (approximately) solve the k-densest subgraph
problem then one can (approximately) solve the ”densest subgraph with at
least (or at most) k vertices. But the converse is not apparentlly true.
Andersen and Chellapilla [2009] show the following:

There is a 3-approximation algorithm for the “at least k vertices”
variant.
If there is a γ approximatin for the “at most k vertices” variant then

there is an γ2

8 approximation for the k-densest subgraph problem
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Set function maximization

Densest subgraph, max cut, max-di-cut and max-sat are problems where
the goal is to maximize a non-monotone set function and hence (given
that they are non-monotone) make sense in their unconstrained version.

Of course, similar to monotone set function maximization problems (such
as max coverage), these problems also have natural constrained versions,
the most studied version being a cardinality constraint.

More generally, there are other specific and arbitrary matroid constraints,
other independence constraints, and knapsack constraints.
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Cardinality constrained set function maximization
Max-k-densest subgraph, max-k-cut, max-k-di-cut, max-k-uncut and
max-k-vertex-coverage are the natural cardinality constrained versions of
well studied graph maximization problems. They all are of the following
form:

Given an edge weighted graph G = (V ,E ,w) with non negative edge
weightes w : E → R, find a subset S ⊆ V with |S | = k so as to maximize
some set function f (S). (Of course, In the unweighted versions, w(e) = 1
for all e ∈ E .)

For example, the objective in max-k-uncut is to find S so as to maximize
the edge weights of the subgraphs induced by S and V \ S . That is, in a
social network, divide the graph into two “communities”.

NOTE: Max-k-sat is not the cardinality constrained version of max-sat in
the same sense as the above problems. Although not studied (as far as I
know), the analogous problem would be to find a set of propositional
variables of cardinality k so as to maximize the weights of the satisfied
clauses.
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The SDP/vector program algorithms for the
cardinality constrained problems

In what follows, I will briefly sketch some of the SDP based analysis in
Feige and Langberg [2001]. This paper was proceeded and followed by a
substantial number of important papers including the seminal Goemans
and Williamson [1995] SDP approximation algorithm for max-cut.

(See , for example, Feige and Goemans [1995] and Frieze and Jerrun
[1997] for proceeding work and Halperin and Zwick [2002], Han et al
[2002] and Jäger and Srivastav for some improved and unifying results.)

There are also important LP based results such as the work by Ageev and
Sviridenko [1999, 2004] that introduced papage rounding.
Many papers focus on the bisection versions where k = n/2 and also
k = σn for some 0 < σ < 1 for which much better approximations atre
known relative to results for a general cardinality k constraint.
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The Goemans and Williamson program algorithm for
max-cut

As stated in Lecture 6, vector programs can be solved to arbitrary
precision within polynomial time.

We introduce {-1,1} variables yi corresponding to the vertex variables
xi . We also need a homogenizing variable y0; the intended meaning is
that vertex vi ∈ S and iff yi = y0.

The max-cut problem can then be represented by tbhe following
(strict) quadratic programming problem:

Maximize 1
2

∑
1≤i<j≤n wij(1− yiyj) subject to

y2i = 1 for 0 ≤ i ≤ n

This is relaxed to a vector program by introducing vectors on the unit
sphere in vi ∈ Rn+1 where now the scalar multiplication becomes the
vector inner product.
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The rounding of the vector program

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value∑
1≤i<j≤n wijPr[vi and vj are separated] =

∑
1≤i<j≤n wij

θij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).
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Extending the vector program formulation for the
cardinality constraint

The basic idea is to add an additional constraint:

n∑
i=1

viv0 = 2k − n

It turns out that it is sometimes important to define an improved
relaxation by using instead (for all j ∈ {0, . . . , n}) the “caraidnality
constraints”:

∑n
i=1 vivj = vjv0(2k − n)

For vectors vj in the unit sphere, these constraints are equivalent to the
constraints

∑n
i=1 vi = v0(2k − n)

It also turns out that sometimes problems also use the following “triangle
inequality constraints”: vivj + vjvk + vkvi ≥ −1
and vivj + vjvk + vkvi ≥ −1 for all i , j , k ∈ {0, 1, . . . , n}
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What else has to be done?

Skipping some important considerations (not used for the max-k-coverage
and max-k-densest subgraph problems) regarding how to merge this
SDP/vector program relaxation with the LP max-cut formulation by Ageev
and Svridenko, there is one very essential consideration that we have
ignored thus far.

The random hyperplane rounding insures the required probability that the
round vectors will be separated. BUT this rounding does not enforce the
desired k cardinality constraint.

This is rectified by Feige and Langberg by modifying the s SDP results so
as to penalize the resulting sets S by a penalty depending on the deviation
from the desired cardinality k.

Namely, they run the SDP sufficiently many times and output the set that
maximizes Z = w(S)

OPTSDP
+ θ1

n−|S|
n−k + θ2

|S|(2k−|S |)
n2

where w(S) is the SDP
rounded output, OPTSDP is the optimum relaxed value, and the θ are
appropriately optimized scalars.
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The formulation for other set function maximization
problems

The formulation and idea of the relaxation follows the same idea by mainly
changing the objective function. (Recall the objective for max-2-sat.)

For the max-k-densest subgraph problem, the objective (wrt.

yi ∈ {−1, 1}) is to maximize
∑

eij∈E wij
1+yiy0+yjy0+yiyj

4

The max-k-vertex-coverage problem a special case of the max
coverage where each element (i.e. an edge) occurs in eactly two of
the sets (i.e. vertices).

The objective is to maximize
∑

eij∈E wij
3+yiy0+yjy0−yiyj

4
Here by monotocity we do not have to worry about outputs with
|S | < k

Now to compensate for |S | > k , we optimize Z = w(S)
OPTSDP

+ θ n−|S |n−k .
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The results in Feige and LangbergThe results in Feige and Langbergapproximation algorithms 177

TABLE 1
Approximation ratios achieved on our four maximization problems. Our results appear in

columns in which the SDP technique is mentioned.

Problem Technique Approximation ratio Range

Max-VCk Random 1− "1− k/n#2 all k
Greedy max"1− 1/e! 1− "1− k/n#2# all k
LP 3

4 all k
SDP 0.8 k ≥ n/2
SDP 0.8 k size of

minimum VC
SDP 3/4 +ε all k, universal

ε > 0

Max-DSk Random k"k−1#
n"n−1# all k

Greedy O"k/n# all k
LP k

n
"1− ε# all k, every

ε > 0
SDP k/n+ εk k ∼ n/2

Max-Cutk Random 2k"n−k#
n"n−1# all k

LP 1
2 all k

SDP 1/2 + ε all k, universal
ε > 0

Max-UCk Random/LP 1− 2k"n−k#
n"n−1# all k

SDP 1/2 + εk k ∼ n/2

Max-VCk problem can be viewed as a special case of the Max-k-Coverage
problem.

Several algorithms approximate Min-VC within a ratio of 2, and it is a
long standing open problem whether an approximation ratio of 2 − ε for
some fixed ε > 0 can be achieved in polynomial time.

For Max-VCk we are not yet in a position to formulate a conjecture about
the best possible approximation ratio. The simple algorithm that uniformly
picks a random subset U ⊆ V of size k has an expected approximation
ratio of 1 − "1 − k/n#2. A greedy approximation algorithm presented in
[Hoc95] has an approximation ratio of max"1 − 1/e! 1 − "1 − k/n#2#. An
algorithm based on linear programming was shown in [AS99] to have an
approximation ratio of 3/4.

We present an algorithm based on semidefinite programming that has an
approximation ratio of at least 3/4 + ε some universal constant ε > 0 and
all values of k. When k ≥ n/2, or when k is at least the size of the minimum
vertex cover in the input graph, we achieve an approximation ratio above
0.8. Our algorithm and its analysis use ideas from [NT75, GW95, FG95,
FJ97].

‘
12 / 1

‘
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The results in Jäger and Srivastav
I think the following represents the latest improvements in cardinality
constrained set function maximization for k = σn from Jäger and
Srivastav [2005]The results in Jäger and Srivastav

I think the following represents the latest improvements in cardinality
constrained set function maximization for k = �n from Jäger and
Srivastav [2005]

Problem � Prev. Our Method

MAX-k-CUT 0.3 0.527 0.567

MAX-k-UNCUT 0.4 0.5258 0.5973

MAX-k-DIRECTED-CUT 0.5 0.644 0.6507

MAX-k-DIRECTED-UNCUT 0.5 0.811 0.8164

MAX-k-DENSE-SUBGRAPH 0.2 0.2008 0.2664

MAX-k-VERTEX-COVER 0.6 0.8453 0.8784

Table 1: Examples for the improved approximation factors

In summary, we see that our technique of combining the analysis of the random
hyperplane with mathematical programming leads to improvements over many
previously known approximation factors for the maximization problems consid-
ered in this paper. This shows that a more systematic analysis of the semidef-
inite relaxation scheme gives better approximation guarantees and opens room
for further improvements, if better methods for choosing an optimal parameter
set can be designed.

2 The Algorithm

For S ✓ V the set of edges E can be divided in the following way:

E = S1 [̇S2 [̇S3 [̇S4,

where

S1 = {(i, j) | i, j 2 S},

S2 = {(i, j) | i 2 S, j 2 V \ S},

S3 = {(i, j) | i 2 V \ S, j 2 S},

S4 = {(i, j) | i, j 2 V \ S}.

As we will see, we distinguish the six problems MAX-k-CUT, MAX-k-UNCUT,
MAX-k-DIRECTED-CUT, MAX-k-DIRECTED-UNCUT, MAX-k-DENSE-
SUBGRAPH, MAX-k-VERTEX-COVER by four {0, 1} parameters a1, a2, a3, a4.
All these problems maximize the sum of a subset of the four edge classes
S1, S2, S3, S4.
For i = 1, 2, 3, 4 we define ai as 1, if the problem maximizes the edge weights
of Si, and 0 otherwise. The following values a1, a2, a3, a4 lead to the specific
problems:

3

‘

13 / 1
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A simple deterministic polynomial time algorithms
for 2-SAT and an improved exponential algorithm
for 3-SAT
We now turn to the k-SAT and SAT decision problems. As peviously
mentioned, 2-SAT is decideable in polynomial time while k-SAT for k ≥ 3
is NP complete. Note however, that Max-2-SAT is NP-hard.

Here is a quick sketch as to how to decide a 2SAT in polynomial time.
Consider a 2CNF formula F in n variables. We consider each clause (x ∨ y)
as an implication ¬x ⇒ y and equivalently ¬y ⇒ x . We then constuct a
directed graph on 2n nodes corresponding to the 2n literals and edges
corresponding to the inplications above;i.e. x ⇒ y induces an edge (x , y).
We then claim that F is satisfiable iff there does not exist a variable x
such that there is a directed path from x to ¬x and a path from ¬x to x .

Clearly k-SAT (for a CNF formula with n variables, m clauses and at most
k literals/clause) can trivially be decided in time Õ(2nm). We will tend to
discuss time bounds in terms of the soft Õ notation which hides lower
order terms. Note that the length of the formula is at least m so we will
ignore any dependence on m. 19 / 35



A relatively simple deterministic algorithm for 3-SAT

Consider a 3-CNF formulai with n variables and m clauses. While there are
any clauses with 3 lterals (for example, x , y , z), branch on each of the 7
possible settings for (x , y , z) that can make the clause true.

In this way, we are creating a 7-ary tree where each node specifies a truth
value setting on threee distinct variables. We discontinue a branch
whenever we falsify a clause.

On any branch the current truth value setting can satisfy some clauses
which can then be eliminated. In other clauses, one or two variables will
be eliminated.

We continue to do this until there are no clauses remaining that have
three literals. If any branch satisfies all clauses or if we are left with only
consistent unit clauses, the given formula is saisfiable. If we are left with
two contradictory unit clauses, we are also done and the given formula is
unsatisfiable.
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Finishing the simple deterministic algorithm for
3-SAT

Otherwise at each branch, we have a 2-SAT formula for which we can
determine satisfiability.

The depth of the truth value tree is at most n/3 since we were eliminating
3 distinct variables at each level.

Hence the time complexity is

O(7n/3poly(m)) = 2log27n/3poly(m) ≈ 2
2.81
3

npoly(m)) ≈ Õ(1.913)n which
improves the exponent obtained by naively trying all 2n truth values.

We note again that the encoded length of the given formula is O(m log n))
so we can ignore the poly(m) factor with regard to understanding what is
the best possible possible exponent (assuming the time complexity is
exponential in n).
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A modification of the previous “7-way branching”
algorithm
Instead of brancing on all 7 possible satusfying truth assignments for a
given clause, here is a mlodification which we can call a “3-way branching”
algorithm. Here is am using lecture slides by Willam Gasarch.

Again consider a clause with 3 literals, say x , y , z . Then either the formual
is true setting x = true, or x = false, y = true, or
x = false, y = false, z = true.

Viewed as a recursive algorithm, we get the recurrence
T (n) = T )n − 1) + T (n − 2) + T ((n − 3) instead of the recurrence
T (n) = 7T (n − 3).

Aiming for T (n) roughly equal to αn for some α, we would have
α3 = α2 + α + 1 yielding T (n) ≈ O((1.84)n.

And some tweaking of this 3-way branching algorithm leads to an
algorithm with time compleixty O((1.618)n).
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The random walk algorithm for 2-Sat

Although there is a deterministic polynomial time algorithm for 2-Sat,
it is worth considering an interesting randomized algorithm for 2-SAT
which will motivate a randomized algorithm for 3-SAT (and k-SAT
for any fixed k).

The randomized algorithm for 2-SAT (due to Papadimitriou [1991]) is
based on a random walk on the line graph with nodes {0, 1, . . . , n}.
We view being on node i as having a truth assignment τ that is
Hamming distance i from some fixed (unknown) satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi ) = 1− τ(xi ).
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The expected time to reach a satisfying assignment
When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.
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The basics of finite Markov chains
A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i ] = Pij and
hence Prob[Xt+1 = j ] =

∑
i Prob[Xt+1 = j |Xt = i ]Prob[Xt = i ].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i ]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji

25 / 35



Stationary distributions
Define qt = (qt1, q

t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi .
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Back to random walks on graphs
Let G = (V ,E ) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G ) be the expected time to visit every vertex, starting from u
and define C (G ) = maxu Cu(G ) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G ) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula. We can
use the Markov inequality to obtain the probability 1

c of not finding a
satisfying assignment within c · 2n2. 27 / 35



Extending the random walk idea to k-SAT
The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). We could view the approach as a
local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood is likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve

upon the previously stated running time of Õ(2
log2 7

3 n) ≈ 2.94n, for
formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.
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Schöning’s k-SAT algorithm
The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability
p ≈ [(1/2)(k/k − 1)]n. (It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e )c .
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The analysis of the claim for 3SAT

Let’s assume we have one satisfying assignment x∗ and that this satisfying
solution is Hamming distance u from our starting assignment x . The
probability of choosing this satisfying assgnment x∗ is 2−n

(n
u

)
.

The probability that in the first 3u steps, at least 2u are in te right
direction is(3u
2u

)
(1/3)2u)(2/3)u) =

(3u
u

)
(1/3)2u(2/3)u

Using Stirling’s approximation we have (for u ≥ 3)(3u
u

)
≥ 1√

5u
33u

22u

Then the probability of hitting the satisfying formula is at least∑n
u=0 2−n

(n
u

)(3u
u

)
(1/3)2u(2/3)u

≥ 1√
5n

2−n
∑n

u=0

(n
u

)
33u

22u
1
32u

2u

3u

= 1√
5n

2−n(1 + 1
2)n = 1√

5u
(34)n
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The ETH and SETH assumptions

The P 6= NP hypothesis provides evidence for a large class of problems
that are not in polynomial time (assuming the hyprothesis is true).

In a similar way, the goal of fine-grained complexity is to try to identify a
more precise time bounds for problems known to be in polynomial time.

To do so (since we do not presently have the ability to prove unconditional
results), we rely on different assumptions.

The Exponential Time Hypothesis (ETH); ∃δ : 3-SAT is not decideable in
time O(2(1+δ)n.

The Strong Exponential Time Hypothesis (SETH); ∀γ < 1: SAT is not
decideable in time O(2γn).

31 / 35



Sublinear time and sublinear space algorithms

We consider two contexts in which randomization is usually necessary. In
particular, we will study sublinear time algorithms and then the (small
space) streaming model.

An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. Such an algorithm must provide an answer
without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.

The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.

The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.

This topic will take us beyond search and optimization problems.
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A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi )
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time
(and hence sublinear) algorithm; namely, choose an arbitrary point
x ∈ M and compute D = maxj d(x , xj). By the triangle inequality, D
is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an explicitly presented
space (such as d dimensional Euclidean space), the points could be
explicitly given as inputs and then the input size is n and not n2.
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Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

We will consider the following examples:
1 Finding an element in an (anchored) sorted list [Chazelle,Liu,Magen]
2 Estimating the average degree in a graph [Feige 2006]
3 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
4 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.
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Finding an element in an (anchored) sorted list
Suppose we have an array A[i ] for 1 ≤ i ≤ n where each A[i ] is a pair
(xi , pi ) with x1 = min{xi} and pi being a pointer to the next smallest
value in the linked list.
That is, xpi = min{xj |xj > xi}. (For simplicity we are assuming all xj
are distinct.)
We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = xj .

A
√
n algorithm for searching in anchored sorted linked list

Let R = {ji} be
√
n randomly chosen indices plus the index 1.

Access these {A[ji ]} to determine k such that xk is the largest of the
accessed array elements less than or equal to x .
Search forward 2

√
n steps in the linked list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when x ∈ {A[i ]}) will fail to
return j such that x = A[j ] with probability at most 1/2.
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