
CSC2420: Algorithm Design, Analysis and
Theory
Fall 2022

An introductory (i.e. foundational) level
graduate course.

Allan Borodin

November 16, 2022

1 / 35

Week 8

Announcements

Assignment 2 is complete and due Wednesday, November 23 at 1PM.
There are three questions. I did not add an additional question.

Todays overlay ambitious agenda

I will repeat comments from Week 7 introducing randomized
algorithms.

The Schwartz-Zipple lemma and polynomial identity testing.

The naive randomize algorithm for Max-k-Sat and de-randomization

Johnson’s algorithm and improvements.

Input models for online and greedy algorithms for Max-Sat

Randomized rounding of an LP.

Max-cut and Max-di-cut: naive randomized algorithm

Non-monotone submodular maximization: the double sided greedy
algorithm.

De-randomizing by paralelization

Max-cut and Max-2-Sat: randomized rounding of a vector program
2 / 35

An old but new topic: randomized algorithms

Our next theme will be randomized algorithms. Of course we have already
seen randomization in a few online algorithms. However, for the main part,
our previous themes have been on algorithmic paradigms, so far online
algorithms, variants of greedy and local-search and primal dual algorithms.
Randomization is not per se an algorithmic paradigm (in the same sense as
greedy algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.

3 / 35

An old but new topic: randomized algorithms

Our next theme will be randomized algorithms. Of course we have already
seen randomization in a few online algorithms. However, for the main part,
our previous themes have been on algorithmic paradigms, so far online
algorithms, variants of greedy and local-search and primal dual algorithms.
Randomization is not per se an algorithmic paradigm (in the same sense as
greedy algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.

3 / 35

The why of randomized algorithms

There are applications (e.g. simulation, cryptography, interactive
proofs, sublinear time algorithms, small space streaming algorithms,
contention resolution in a distributed system) where randomization is
necessary.
We can use randomization to improve approximation ratios.
Often a naive randonization provides “good” results.
Even when a given algorithm can be efficiently derandomized, there is
often conceptual insights to be gained from the initial randomized
algorithm.
In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?
One important aspect of randomized algorithms (in an offline setting)
is that the probability of success can be amplified by repeated
independent trials of the algorithm.

4 / 35

Some applications of randomized algorthms to the
online setting

In addition to the important role of randomization in the more standard
offline algorithm setting, as we have already seen, randomization plays a
very central role in online algorithms as the online setting is particularly
vulnerable to worst case adversarial examples. Here are some results we
will consider in the online setting:

1 Naive exact max-k-sat algorithm

2 De-randomization by the method of conditional expectation

3 The Buchbinder et al two sided online greedy algorithm for the
unconstrined maximization of a non-monotone submodular function.
and application to max-sat.

4 Online with advice and relation to randomized online algorithms

5 De-randomization using two and multi pass algorithms

But first a few more comments on randomization and complexity theory.

5 / 35

Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

We will see that often a naive randomization provides the best current
results. One can think of naive randomization as a paradigm. That is,
instead of looking for a particular solution, try a random solution.

6 / 35

Polynomial identity testing

The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.

Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

7 / 35

Schwartz-Zipple Lemma

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact that a
univariate polynomial of degree d can have at most d zeros.

8 / 35

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm, the
determinant can be computed in O(n2.373) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

9 / 35

The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Note: For the following maximization problems, we will follow the
prevailing convention by stating competitive ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
As already noted, since exact Max-k-Sat generalizes the exact k- SAT
decision problem, it is clearly an NP hard problem for k ≥ 3. It is
interesting to note that while 2-SAT is polynomial time computable,
Max-2-Sat is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.

10 / 35

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

11 / 35

Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?

12 / 35

(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved by the use of

semi-definite programming (SDP) and randomized rounding.

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?

13 / 35

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
14 / 35

Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true. Otherwise use F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ y .

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.
Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.

15 / 35

Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is another example of the random order
model (ROM), a randomized variant of online algorithms.

To precisely model the Max-Sat problem within an online or priority
framework, we need to specify the input model.

In increasing order of providing more information (and possibly better
approximation ratios), we can consider (on the next slide) four input
models.

16 / 35

The MaxSat online and priority input models

M0 Each propositional variable x is represented by the names of the
positive and negative clauses in which it appears.

M1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in
which it appears negatively.

M2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

M3 The variable x is represented by a complete specification of each
clause it which it appears.

The naive randomized algorithm can be implemented in a “model 0”
where we don’t even specify the lenths of the clauses and Johnson’s
algorithm can be implemented using input model 1.

17 / 35

Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnson’s algorithm in the ROM model is at
most 2

√
15–7 ≈ .746 < 3/4 , noting that 3

4 is the ratio first obtained
by Yannakakis’ IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.

18 / 35

A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.

The Slack algorithm is a randomized online algorithm (i.e. adversary
chooses the ordering) where the variables are represented within input
Model 1.

This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is input model 0.

Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within input
model 2. This provides a sense in which to claim the that Poloczek
and Schnitger Slack algorithm “cannot be derandomized”.

The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.

19 / 35

Revisiting the “cannot be derandomized comment”

Spoiler alert: we will be discussing how algorithms that cannot be
derandomized in one sense can be deramdomized in another sense.

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic algorithm by a result
of Huang and Borodin [2014].

However, Buchbinder and Feldman [2016] show how to derandomize
the Buchbinder et al algorithm into an algorithm that generates 2n
parallel streams where each stream is an online algorithn.

The Buchbinder et al USM algorithm is the basis for a randomized
3/4 approximation online MaxSat (even Submodular Max Sat)
algorithm.

Pena and Borodin show how to derandomize this 3/4 approximation
algorithm following the approach of Buchbinder and Feldman.

Poloczek et al [2017] de-randomize an equivalent Max-Sat algorithm
using a 2-pass online algorithm.

20 / 35

Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.

21 / 35

Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k)k . Then

Prob[Cj is satisifed] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.
(The derandomized algorithm will still be solving LPs.)

22 / 35

The weighted max-cut and max-di-cut problems

Given a graph G = (V ,E), the max-cut objective is to partition the
vertices into subsets S and T so as to maximize
|{(u, v) ∈ E |u ∈ S , v ∈ T}|.
In the weighted max-cut problem, there is a weight function w : E → R+

and the objective is to maximize
∑

(u,v)∈E |u∈S,v∈T w(u, v).

In the max-di-cut problem, we are given a directed graph G = (V ,E) and
the objective is to partition the vertices into subsets S ,T so as to
maximize |{< u, v >∈ E |u ∈ S , v ∈ T}|. Here I am using the notation
< u, v > to indicate that the edge is a directed edge from u to v .

In the weighted max-di-cut problem, there is again a weight fuction
w : E → R+ and the objective is to maximize∑

<u,v>∈E |u∈S ,v∈T w(< u, v >).

23 / 35

The most naive randomized algorithms for weighted
max-cut

Consider max-cut and random and independently set each u to be in S
with probability 1

2 .

What is the (expected) approximation bound for this naive algorithm?

For any edge (u, v), it is easy to see that the probability that the random
assignment assigns different values to u and v is exactly 1

2 . Hence, the
expected approximation ratio is 1

2 and similar to the discussion of the naive
randomized algorithm for exact-max-2 -sat, this is a totality ratio.

And like the de-randomization of the exact-max-2-sat algorithm, the
de-randomization for the max-cut algorithm can be implemented as a
deterministic online algorithm. How would you represent the graph and
what information (if any) about the graph is needed initially and what
information do you need to maintain so as to implement the
de-randomization as a deterministic algorithm? Can you state the
de-randomized algorithm without reference to the randomized algorithm?

24 / 35

The same naive algorithm for weighted max-di-cut

Suppose we use the same naive algorithm for weighted max-di-cut. What
is the resulting expected approximation ratio?

Now the expected ratio is only 1
4 since now there is only 1

4 probability of
choosing u ∈ S and v ∈ T .

This algorithm can also be de-randomized and there is an implementation
as a deterministic online algorithm IF the algorithm is given some initial
information about the graph. What information is needed?

Somewhat strange fact: The de-randomization can be implemented
achieving competitive ratio 1

3 improving upon the expectation. The
de-randomization of the max-cut algorithm does not result in an improved
approximation ratio.

Max-cut and max-di-cut are the prime examples of non-monotone
submodular functions. In the development to follow we will see relatively
simple randomized algorithm (but not at all naive) that achieves the ratio
1
2 for any submodular function.

25 / 35

Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation (assuming an exponental number of
value oracle calls), was augmented by Dobzinski and Vondrak showing
the same bound for an explicitly given instance under the assumption
that RP 6= NP.

26 / 35

The Buchbinder et al (1/3) and (1/2)
approximations for USM

In the FOCS [2012] conference, Buchbinder et al gave an elegant linear
time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi
then Xi := Xi−1 ∪ {ui};Yi := Yi−1

else Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For
27 / 35

The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.

That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.

Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.

This fact leads to the main lemma for the deterministic case:

f (OPTi−1 − f (OPTi) ≤ [f (Xi − f (Xi−1] + [f (Yi)− f (Yi−1]

Here OPTi = (OPT ∪ {Xi}) ∩ Yi so that OPTi coincides with Xi and
Yi for elements 1, . . . i and coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and OPTn = Xn = Yn. That
is, the loss in OPT s value is bounded by the total value increase in
the algorithm’s solutions.

28 / 35

Applying the algorithmic idea to Max-Sat

Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘

29 / 35

Buchbinder et al Submodular Max-Sat

Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P) + f2(C ∩ (C \ P)).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P) and f2(C ∩ (C \ P)).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N) ≥ f1(N) + f2(N) ≥ g(OPT), the claimed
(3/4)-approximation is obtained.

REFERENCES

[1] A. A. Ageev and M. I. Sviridenko. An 0.828 approximation
algorithm for the uncapacitated facility location problem. Dis-
crete Appl. Math., 93:149–156, July 1999.

[2] Shabbir Ahmed and Alper Atamtürk. Maximizing a class
of submodular utility functions. Mathematical Programming,
128:149–169, 2011.

[3] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan
Vondrák. Maximizing a monotone submodular function subject
to a matroid constraint. To appear in SIAM Journal on
Computing.

[4] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Depen-
dent randomized rounding via exchange properties of combi-
natorial structures. In FOCS, pages 575–584, 2010.

[5] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submod-
ular function maximization via the multilinear relaxation and
contention resolution schemes. In STOC, pages 783–792, 2011.

[6] V. P. Cherenin. Solving some combinaotiral problems of op-
timal planning by the method of successive calculations. Pro-
ceedings of the Conference on Experiences and Perspectives
on the Applications of Mathematical Methods and Electronic
Computers in Planning, Mimeograph, Novosibirsk, 1962 (in
Russian).

[7] G. Cornuejols, M. L. Fisher, and G. L. Nemhauser. Location of
bank accounts to optimize float: an analytic study of exact and
approximate algorithms. Management Sciences, 23:789–810,
1977.

3For every algorithm, assuming a representation of sets allowing addition
and removal of only a single element at a time, one can maintain the
complement sets of all sets maintained by the algorithm without changing
the running time. Hence, we need not worry about the calculation of N −
N1.

655

30 / 35

Further discussion of the Unconstrained Submodular
Maximization and Submodular Max-Sat algorithms

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic online or priority style
algorithm by a result of Huang and Borodin [2014]. Like the Poloczek
result, we claimed that this was “in some sense” evidence that this
algorithm cannot be derandomized.

Their algorithm is shown to have a 3
4 approximation ratio for

Monotone Submodular Max-Sat.

Poloczek et al [2017] show that the Buchbinder et al algorithm turns
out to be equivalent to a previous Max-Sat algorithm by van Zuylen.

31 / 35

The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2 (SATi + W − UNSATi) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi) be the value of w(Bi)− w(Bi−1) when xi is
set to true (resp. false).

32 / 35

The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2 (SATi + W − UNSATi) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi) be the value of w(Bi)− w(Bi−1) when xi is
set to true (resp. false).

32 / 35

The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2 (SATi + W − UNSATi) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi) be the value of w(Bi)− w(Bi−1) when xi is
set to true (resp. false).

32 / 35

The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remiaing n− i
variables are set as in x∗. (Note: x∗ is not calculated.)

The analysis follows as in Poloczek and Schnitger, Poloczek, and explicitly
in Buchbinder et al. One shows the following:

ti + fi ≥ 0

E[w(OPTi−1)− w(OPTi)] ≤ E[w(Bi)− w(Bi−1)]

33 / 35

The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remiaing n− i
variables are set as in x∗. (Note: x∗ is not calculated.)

The analysis follows as in Poloczek and Schnitger, Poloczek, and explicitly
in Buchbinder et al. One shows the following:

ti + fi ≥ 0

E[w(OPTi−1)− w(OPTi)] ≤ E[w(Bi)− w(Bi−1)]

33 / 35

The Buchbinder and Feldman derandomization of
the USM algorithm

Contrary to the Poloczek, (resp. Huang and B.) priority
inapproximations for Max-Sat (resp. USM), there is another sense in
which these algorithms can be derandomized.

In fact the derandomization becomes an “online algorithm” in the
sense that an adversary is choosing the order of the input variables.
However rather than creating a single solution, the algorithm is
creating a tree of solutions and then takng the best of these.

The idea is as follows. The analysis of the randomized USM
approximation bound shows that a certain linear inequality holds at
each iteration of the algorithm. Namely,

E [f (OPTi−1 − f (OPTi)] ≤ 1

2
E [f (Xi)− f (Xi−1) + f (Yi)− f (Yi−1]

That is, the expected change in restricting OPT in an iteration (by
setting the i th variable) is bounded by the average change in the two
values being maintained by the algorithm.

34 / 35

Continuing the Buchbinder and Feldman
derandomization idea

These inequalities induce two additional inequalties per iteration on
the distributions of solutions that can exist at each iteration.

This then gets used to describe an LP corresponding to these 2i
constraints we have for the distributions that hold at each iteration of
the algorithm.

But then using LP theory again (i.e. the number of non-zero variables
in a basic solution). It follows that we only need distributions with
support 2i at each iteration rather than the naive 2i that would follow
from just considering the randomized tree.

Finally, since there must be at least one distribution (amongst the
final 2n distributions) for which the corresponding solution is at least
as good as the expected value. Thus if suffices to take the max over a
“small” number of solutions.

35 / 35

	Week 8

