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Week 7

Announcements

I have posted the start of Assignment 2.

Todays agenda

We ended the October 18 class having stated and analyzed the
oblivious local search algorithm for weighted exact max-2-sat. We
then stated the non-oblivious local search algorithm for weighted
exact max-2-sat. That is where we will continue the discussion.

Warning: I have been ignoring time complexity and even convergence
in discussing local search algorithms. There is usually a simple way to
guarantee polynomial time at a negligible loss in the approximation
ratio. Namely, we can either insist that every local improvement is a
sufficiently good improvement or scale the weights to say be integers.
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The non-oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
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Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Renaming variables, we can assume that τ is the all true assignment.

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1
2P2,j − 3

2P1,j + 1
2N1,j + 3

2N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain
3W (S0) ≤W (S1) + W (S2)
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Some experimental results concerning Max-Sat

Of course, one wonders whether or not a worse case approximation
will actually have a benefit in “practice”.
“In practice”, local search becomes more of a “heuristic” where one
uses various approaches to escape (in a principled way) local optima
and then continuing the local search procedure. Perhaps the two most
commonly used versions are Tabu Search and Simulated Annealing.
Later, we will also discuss methods based on online algorithm and
“random walks” and other randomized methods (and their
derandomizations). .
We view these algorithmic ideas as starting points.
But for what it is worth, here are some 2010 experimental results
both for artifically constructed instances and well as for one of the
many benchmark test sets for Max-Sat.
Recent experimental results by Poloczek and Willamson show that
various ways to use greedy and local search algorithms can compete
(wrt. various test sets) with “state of the art” simulated annealing
algorithms and walk-sat algorithms while using much less time.
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Experiment for unweighted Max-3-Sat
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Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin]
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Experiments for benchmark Max-Sat Instances

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson 2017

Note: 2Pass is a deterministic “2-pass online algorithm” that is derived
from a randomized online algorithm that we will discuss “soon”.
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Oblivious and non-oblivious local search for k + 1
claw free graphs

Consider the k set packing problem and its generalization to (k + 1)
claw free graphs. (The intersection graph of a k-set instance is a
k + 1 claw free graph where each vertex represents a k-set and there
is an edge whenever two sets intersect.)
We again consider the weighted max (independent) vertex set in a
k + 1 claw free graph. (The greedy and oblivious local search
approximations for the weighted k set packing problem generalize to
k + 1 claw free graphs.)
The standard greedy algorithm and the 1-swap oblivious local search
both achieve a k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .
NOTE: I am trying to use a convention where we use fractional
approximation ratios that are absolute constants and ratios greater
than 1 for maximization problems when the ratios are parameterized.
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Berman’s [2000] non-oblivious local search

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 1

2k + 1 approximation.

For the weighted MIS, the “`-swap” oblivous local search results in a
k + ε approximation ratio for any constant ` where ε deopends on `.

Chandra and Halldóssron [1999] show that by first using a standard
greedy algorithm to initialize a solution and then using a “greedy”
oblivious local search, the approximation ratio improves to 2

3 (k + 1)

Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?

Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution with many small weight vertices.

Berman chooses the potential function g(S) =
∑

v∈S w(v)2. Ignoring
some small ε’s, his k-swap non-oblivious local search achieves an
approximation ratio of 1

2 (k + 1) for WMIS on k + 1 claw-free graphs.
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A little more detail on the Chandra and Halldóssron
greedy + local search algorithm

For the oblivious local search results when we didn’t care about the choice
of the initial solution, it didn’t matter which local improvement we make.

Chandra and Halldóssron show that for their 2
3 ratio result the choice local

improvement does matter. They use the best local improvement (i.e.,
swapping in the best vertex and extending to a maximal independent set).

In contrast, a poor choice of a local improvement won’t improve upon the
approximation that is achieveed without using a greedy initial solutiom.

They also consider an algorithm ANYα where the improvement must
improve by at least an α factor and show that for a suitable choice of α,
the algorithm achieves a ratio 4(k+1)

5 .

They show that this 4
5 ratio is asymptiocally the best ratio for any α.

NOTE: I am not aware of other theoretical results showing how an initial
greedy (or random) solution can impove the local search guarantee.
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The (metric) facility location and k-median problems

Two extensively studied problems in operations research and CS
algorithm design are the related uncapacitated facility location
problem (UFL) and the k-median problem. In what follows we restrict
attention to the (usual) metric case of these problems defined as
follows:

Definition of UFL

Input: (F ,C , d , f ) where F is a set of faciltites, C is a set of clients or
cities, d is a metric distance function over F ∪ C , and f is an opening cost
function for facilities.
Output: A subset of facilities F ′ minimizing

∑
i∈F ′ fi +

∑
j∈C d(j ,F ′)

where fi is the opening cost of facility i and d(j ,F ′) = mini∈F ′d(j , i).

In the capacitated version, facilities have capacities and cities can
have demands (rather than unit demand). The constraint is that a
facility can not have more assigned demand than its capacity so it is
not possible to always assign a city to its closest facility.
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UFL and k-median problems continued

Deifnition of k-median problem

Input: (F ,C , d , k) where F ,C , d are as in UFL and k is the number of
facilities that can be opened.
Output: A subset of facilities F ′ with |F ′| = k minimizing

∑
j∈C d(j ,F ′)

These problems are clearly well motivated. Moreover, they have been
the impetus for the development of many new algorithmic ideas.

There are many variants of these problems and in many papers the
problems are defined so that F = C ; that is, any city can be a facility.
If a solution can be found when F and C are disjoint then there is a
solution for the case of F = C .
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UFL and k-median problems continued

It is known (Guha and Khuller) that UFL is hard to approximate to
within a factor better than 1.463 assuming NP is not a subset of
DTIME (nlog log n) and the k-median problem is hard to approximate to
within a factor better than 1 + 1/e ≈ 1.736 (Jain, Mahdian, Saberi).

The UFL problem is better understood than k-median. After a long
sequence of improved approximation results the current best
polynomial time approximation is 1.488 (Li, 2011).

For k-median, until recently, the best approximation was by a local
search algorithm. Using a p-flip (of facilities) neighbourhood, Arya et
al (2001) obtain a 3 + 2/p approximation which yields a 3 + ε
approximation running in time O(n2/ε).

Li and Svennsson (2013) have obtained a (1 +
√

3 + ε) approximation
running in time O(n1/ε2

). Surprisingly, they show that an α
approximate “pseudo solution” using k + c facilities can be converted
to an α + ε approximate solution running in nO(c/ε) times the
complexity of the pseudo solution.
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Some additional comments on local search

An interesting (but probably difficult) open problem is to use a non
oblivious local search for either the UFL or k-median problems.

But suffice it to say now that local search is the basis for many
practical algorithms, especially when the idea is extended by allowing
some well motivated ways to escape local optima (e.g. simulated
annealing, tabu search) and combined with other paradigms.

Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
theoretically analyzed. It is not surprising then that there hasn’t been
much interest in formalizing the method and establishing limits.

LP is itself often solved by some variant of the simplex method, which
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

I No such method is known to run in polynomial time in the worst case.
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More general independence systems

As we noted, there are many equivalent ways to define matroids. In
particular, the exchange property immediately implies that in a matroid M
every maximal independent set (called a base) has the same cardinality,
the rank of M. We can also define a base for any subset S ⊆ U. Matroids
are those independence systems where all bases have the same cardinality.
Let k be a positive integer. A (Jenkyns) k-independence system satisfies
the weaker property that for any set S and two bases B and B ′ of S ,
|B|
|B′| ≤ k . Matroids are precisely the case of k = 1.
Examples:

The intersection of k matroids

Mestre’s k-extendible systems where the matroid exchange property is
replaced by : If S ⊆ T and S ∪ {u} and T are independent, then
∃Y ⊆ T − S : |Y | ≤ k and T − Y ∪ {u} is independent.

Independent sets in k + 1 claw free graphs. In such graphs, the
neighbourhood of every node has at most k independent vertices.
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The standard greedy algorithm for k-systems and
k + 1 claw free graphs

Jenkyns shows that the standard greedy algorithm is a 1
k -approximation for

maximizing a linear function subject to independence in a k-independence
system. It follows (as we already know from our earlier study of greedy
algorithms) that the standard greedy algorithm is a 1

k -approximation for
independence in a k + 1 claw free graph.

The same approximation applies for a 1-exchange local search algorithm.
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Submodular functions

Let U be a universe. In what follows, we will only be interested in set
functions that satisfy f (S) ≥ 0 for all S ⊆ U. We will also assume
functions are normalized in that F (∅) = 0, These assumptions are not
that essental but they are standard and without these assumptions
statements and proofs become somewwhat more complex.

A sublinear set function satisfies the property that
f (S ∪ T ) ≤ f (S) + f (T ) for all subsetes S ,T of U.

When f (S ∪ T ) + f (S ∩ T ) = f (S) + f (T ), the function is a linear
(also called modular) function.

A submodular set function f : U → R satisfies the following property:
f (S ∪ T ) + f (S ∩ T ) ≤ f (S) + f (T )

It follows that modular set functions are submodular and submodular
functions are sublinear.

Submodular functions can be monotone or non-monotone. A
monotone submodular function also satisifes the property that
f (S) ≤ f (T ) whenever S ⊆ T .
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An alternative characterization and examples of
submodular functions

Submodular functions satisfy and can also be defined as those satisfying a
decreasing marginal gains property. Namely,
For S ⊂ T , f (T ∪ {x} − f (T ) ≤ f (S ∪ {x})− f (S). That is, adding
additional elements has decreasing (more precisely, non increasing)
marginal gain for larger sets.

Most applications of submodular functions are for monotone submodular
functions. For example, in practice, when we are obtaining results from a
search engine, as we obtain more and more results, we tend to obtain less
additional value.

Modular functions are monotone.

The rank function of a matroid is a monotone submodular function.

The two most common examples of non-monotone submodular functions
are max-cut and max-di-cut (i.e., max directed cut)
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Monotone submodular function maximization

The monotone problem is only interesting when the submodular
maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k )k

approximation for a cardinality k constraint.

Standard greedy for submodular functions wrt cardinality constraint

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}

End While 19 / 64



Proof: greedy approx for monotone submodular
maximization subject to cardinality constraint

We want to prove the 1− (1− 1
k )k approximation bound.

Let Si be the set after i iterations of the standard greedy algorithm and let
S∗ = {x1, . . . , xk} be an optimal seti so that OPT = f (S∗). For any set S
and element x , let fS(x) = f (S ∪ {x})− f (S) be the marginal gain by
adding x to S . The proof uses the following sequence of inequalities:
f (S∗) ≤ f (Si ∪ S∗) by monotonicity

≤ f (Si )+(f (Si∪{x1})−f (Si ))+(f (Si )∪{x1, x2}−f (Si∪{x1}))+. . .
(by submodularity; question 5(a) on assignment)

≤ f (Si ) + fSi (x1) + fSi (x2) + . . . fSi (xk)
(again by submodularity)

≤ f (Si ) + k · (f (Si+1 − f (Si )) by the greedy assumption

Equivalently, f (Si+1 ≥ f (Si ) + 1
k (f (OPT )− f (Si )

The proof is completed by showing f (Si ) ≥ (1− (1− 1
k )i ) · OPT by

induction on i .
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Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and a 1-exchange local search algorithm (that will follow)
achieve a 1

2 approximation for maximzing a monotone submodular
function subject to an arbitrary matroid constraint.

They also showed that this bound was tight for the greedy and
1-exchange local search algorithms.
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Monotone submodular maximization subject to a
matroid constraint
We need some additional facts about matroids and submodular functions.

Brualdi [1969] Let O and S be two independent sets in a matroid of
the same size (in particular they could be two bases). Then there is a
bijection π between O \ S and S \ O such that for all
x ∈ O, (S \ {π(x)}) ∪ x is independent.
We have the following facts for a submodular function f on a ground
set U:

1 Let C = {c1, . . . , c`} ⊆ U \ S . Then

∑̀

i=1

[f (S + ci )− f (S)] ≥ f (S ∪ C )− f (S)

2 Let {t1, . . . , t`} be elements of S . Then

∑̀

i=1

[f (S)− f (S \ {ti}] ≤ f (S)
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The 1-exchange local search algorithm

We can start with any basis S (eg using the natural greedy algorithm).
Then we keep trying to find an element of x /∈ S such that
(S \ {π(x)}) ∪ {x} > f (S). Here π is the bijection as in Brualdi’s result.

The previous local seach algorithm provides a 1
2 -approximation for

maximizing a monotone submodular funstion.
Now let S be a local optimum and O an optimal solution. By local
optimality, for all x ∈ O \ S , we have

f (S) ≥ f ((S \ {π(x)}) ∪ {x})
Subtracting (S \ {π(x)}) from both sides, we have

f (S)− f (S \ {π(x)}) ≥ f ((S \ {π(x)}) ∪ {x})− f (S \ {π(x)})
From submodularity,

f ((S \ {π(x)}) ∪ {x})− (S \ {π(x)}) ≥ f (S ∪ {x})− f (S)

Thus for all x ∈ O \ S
f ((S \ {π(x)} ≥ f (S ∪ {x})− f (S)
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Completing the local search approximation

Summing over all such x yields∑
x∈O\S [f (S)− f (S \ {π(x)})] ≥∑

x∈O\S [f (S ∪ {x})− f (S)]
Applying the first fact on slide 28 to the right hand side of this inequality
and the second fact to the left hand side, we get

f (S) ≥ f (S ∪ (O \ S))− f (S) = f (O ∪ S)− f (S) ≥ f (O)− f (S)

which gives the desired 1
2 -approximation.
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Achieving the 1− 1
e approximation for arbitrary

matroids

An open problem for 30 years was to see if the 1− 1
e approximation

for the cardinality constraint could be obtained for arbitrary matroids.

Calinsecu et al [2007, 2011] positively answer this open problem using
a very different (than anything in our course) algorithm consiting of a
continuous greedy algorithm phase followed by a pipage rounding
phase.

Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide their development) a sophisticated
non-oblivious local search algorithm that is also able to match the
1− 1

e bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.
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Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E , a weight function w : E → <≥0 and a collection of
of subsets F = {F1, . . . ,Fn} of E . The goal is to find a subset of indices S
(subject to a matroid constraint) so as to maximize f (S) = w(∪i∈SFi )
subject to some constraint (often a cardinality or matroid constraint).
Note: f is a monotone submodular function.

For ` < r = rank(M), the `-flip oblivious local search for max
coverage has locality gap r−1

2r−`−1 → 1
2 as r increases. (Recall that

greedy achieves 1
2 .)
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The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask (as we did for Max-k-Sat), when is one solution better
than the other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u, S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1− 1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .

These α factors give more weight to those elements that appear
frequently which makes it easier to swap out a set S and still keep
many elements u ∈ S in the collection.
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The very high level idea and the locality gap

The high-level idea behind the derivation is like the factor revealing
LP used by Jain et al [2003]; namely, Filmus and Ward formulate an
LP for an instance of rank r that determines the best obtainable ratio
(by this approach) and the {αi} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1− 1
e − ε) and

runs in time O(ε−1r2|F||U| log r)
The ε in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U|2 log r).
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A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each Fi . For a general monotone submodular
function we no longer have these weights.

Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.

A weight is given to the average value of all solutions obtained from a
solution S by deleting i elements and this corresponds roughly to the
extra weight given to elements covered i + 1 times in the max
coverage case.

The potential function is :

g(S) =
∑|S|

k=0

∑
T :T⊆S ,|T |=k

β
(|S|)
k

(|S|k )f (T )
=

∑|S|
k=0 β

(|S |)
k ET [f (T )]

29 / 64



The Lovász Local Lemma (LLL)

Suppose we have a set of “bad” random events E1, . . . ,Em with
Prob[Ei ] ≤ p < 1 for each i . Then if these events are independent we
can easily bound the probability that none of the events has occurred;
namely, it is (1− p)m > 0.

Suppose now that these events are not independent but rather just
have limited dependence. Namely suppose that each Ei is dependent
on at most r other events. Then the Lovász local Lemma (LLL)
states that if e · p · (r + 1) is at most 1, then there is a non zero
probability that none of the bad events Ei occurred.

As stated this is a non-constructive result in that it does not provide a
joint event in which none of the bad events occured.

There are a number of applications of LLL including (Leighton,
Maggs, Rao) routing, the restricted machines version of the Maxmin
“Santa Claus” problem and as we shall now see, solving exact k-SAT
under suitable conditions on the clauses.
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A somewhat canonical application of the LLL

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be a an exact k CNF formula. From our
previous discussion of the exact Max-k-Sat problem and the naive
randomized algorithm, it is easy to see that if m < 2k , then F must
be satisfiable. (E [clauases satisfied] = 2k−1

2k
m > m− 1 when m < 2k .)

Suppose instead that we have an arbitrary number of clauses but now
for each clause C , at most r other clauses share a variable with C .

If we let Ei denote the event that Ci is not satisfied for a random
uniform assignment and hence having probability 1/(2k), then we are
interested in having a non zero probability that none of the Ei

occurred (i.e. that F is satisfiable).

The LLL tells us that if r + 1 ≤ 2k

e , then F is satisfiable.

An informal, but nicely stated comment in Gebauer et al [2009]
states: “In an unsatisfiable CNF formula, clauses have to interleave;
the larger the clauses, the more interleaving is required.”
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A constructive algorithm for the previous proof of
satisfiability

Here we will follow a somewhat weaker version (for r ≤ 2k/8) proven
by Moser [2009] and then improved by Moser and G. Tardos [2010] to
give the tight LLL bound. This proof was succinctly explained in a
blog by Lance Fortnow

This is a constructive proof in that there is a randomized algorithm
(which can be de-randomized) that with high probability (given the
limited dependence) will terminate and produce a satisfying
assignment in O(mlogm) evaluations of the formula.

Both the algorithm and the analysis are very elegant. In essence, the
algorithm can be thought of as a local search search algorithm and it
seems that this kind of analysis (an information theoretic argument
using Kolmogorov complexity to bound convergence) should be more
widely applicable.
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The Moser algorithm

We are given an exact k-CNF formula F with m variables such that for
every clause C , at most r ≤ 2k/8 other clauses share a variable with C .

Algorithm for finding a satisfying truth assignment

Let τ be a random assignment
Procedure SOLVE

While there is a clause C not satisfied
Call FIX(C)

End While

Procedure FIX(C)
Randomly set all the variables occuring in C
While there is a neighbouring unsatisfied clause D

Call FIX(D)
End While
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Sketch of Moser algorithm

Suppose the algorithm makes at least s recursive calls to FIX. Then
n + s ∗ k random bits describes the algorithm computation up to the
sth call at which time we have some true assignment τ ′.

That is, the computation (if it halts in s calls is described by the n bits
to describe the initial τ and the k bits for each of the s calls to FIX.

Using Kolmogorov complexity, we state the fact that most random
strings cannot be compressed.

Now we say that r is sufficiently small if k − log r − c > 0 for some
constant c , Then the main idea is to describe these n + s ∗ k bits in a
compressed way if s is large enough and r is small enough.
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Moser proof continued

Claim: Any C ′ that is satisfied before Fix(C) is called in SOLVE
remains satisfied.

Claim: Working backwards from τ ′ we can recover the original
n + s ∗ k bits using n + m logm + s(log r + c) bits; that is n for τ ′,
m logm for calls to FIX in SOLVE and log r + c for each recursive call.

Note: Here it is not stated, but the algorithm does not always
terminate
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An old but new topic: randomized algorithms

Our next theme will be randomized algorithms. Of course we have already
seen randomization in a few online algorithms. However, for the main part,
our previous themes have been on algorithmic paradigms, so far online
algorithms, variants of greedy and local-search and primal dual algorithms.
Randomization is not per se an algorithmic paradigm (in the same sense as
greedy algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as an additional algorithmic idea
that can be used in conjuction with any algorithmic paradigm. However,
its use is so prominent and varied in algorithm design and analysis, that it
takes on the sense of an algorithmic way of thinking.
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The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be efficiently derandomized, there is
often conceptual insights to be gained from the initial randomized
algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms (in an offline setting)
is that the probability of success can be amplified by repeated
independent trials of the algorithm.
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Some applications of randomized algorthms to the
online setting

In addition to the important role of randomization in the more standard
offline algorithm setting, as we have already seen, randomization plays a
very central role in online algorithms as the online setting is particularly
vulnerable to worst case adversarial examples. Here are some results we
will consider in the online setting:

1 Naive exact max-k-sat algorithm

2 De-randomization by the method of conditional expectation

3 The Buchbinder et al two sided online greedy algorithm for the
unconstrined maximization of a non-monotone submodular function.
and application to max-sat.

4 Online with advice and relation to randomized online algorithms

5 De-randomization using two and multi pass algorithms

But first a few more comments on randomization and complexity theory.

38 / 64



Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x ] for a large prime p.

We will see that often a naive randomization provides the best current
results. One can think of naive randomization as a paradigm. That is,
instead of looking for a particular solution, try a random solution.
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Polynomial identity testing

The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.

Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.
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Schwartz-Zipple Lemma

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1, . . . .rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact that a
univariate polynomial of degree d can have at most d zeros.
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Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm, the
determinant can be computed in O(n2.373) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.
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The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Note: For the following maximization problems, we will follow the
prevailing convention by stating competitive ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
As already noted, since exact Max-k-Sat generalizes the exact k- SAT
decision problem, it is clearly an NP hard problem for k ≥ 3. It is
interesting to note that while 2-SAT is polynomial time computable,
Max-2-Sat is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.
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Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.
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Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F )|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F )|xi∈u{0,1}] as
E[w(F )|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F )|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?
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(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8 ).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved by the use of

semi-definite programming (SDP) and randomized rounding.

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?
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Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
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Johnson’s algorithm is the derandomized algorithm

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented
the naive algorithm and showed that Johnson’s algorithm is the
derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true. Otherwise use F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ y .

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .7968 (resp. .9401) using semi-definite
programming and randomized rounding.
Note: While existing combinatorial algorithms do not come close to
these best known ratios, it is still interesting to understand simple and
even online algorithms for Max-Sat.
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Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is an example of the random order model
(ROM), a randomized variant of online algorithms.
To precisely model the Max-Sat problem within an online or priority
framework, we need to specify the input model.
In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

Model 0 Each propositional variable x is represented by the names of the
positive and negative clauses in which it appears.

Model 1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively.

Model 2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

Model 3 The variable x is represented by a complete specification of each clause
it which it appears.

The naive randomized algorithm can be implemented in a “model 0”
where we don’t even specify the lenths of the clauses and Johnson’s
algorithm can be implemented using input model 1.
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Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnson’s algorithm in the ROM model is at
most 2

√
15–7 ≈ .746 < 3/4 , noting that 3

4 is the ratio first obtained
by Yannakakis’ IP/LP approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.
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A few comments on the Poloczek and Schnitger
algorithm

The Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.

The Slack algorithm is a randomized online algorithm (i.e. adversary
chooses the ordering) where the variables are represented within input
Model 1.

This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is input model 0.

Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within input
model 2. This provides a sense in which to claim the that Poloczek
and Schnitger Slack algorithm “cannot be derandomized”.

The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.
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Revisiting the “cannot be derandomized comment”

Spoiler alert: we will be discussing how algorithms that cannot be
derandomized in one sense can be deramdomized in another sense.

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic algorithm by a result
of Huang and Borodin [2014].

However, Buchbinder and Feldman [2016] show how to derandomize
the Buchbinder et al algorithm into an algorithm that generates 2n
parallel streams where each stream is an online algorithn.

The Buchbinder et al USM algorithm is the basis for a randomized
3/4 approximation online MaxSat (even Submodular Max Sat)
algorithm.

Pena and Borodin show how to derandomize this 3/4 approximation
algorithm following the approach of Buchbinder and Feldman.

Poloczek et al [2017] de-randomize an equivalent Max-Sat algorithm
using a 2-pass online algorithm.

52 / 64



Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi ) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.
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Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k )k . Then

Prob[Cj is satisifed ] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e ) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.
(The derandomized algorithm will still be solving LPs.)

54 / 64



Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation (assuming an exponental number of
value oracle calls), was augmented by Dobzinski and Vondrak showing
the same bound for an explicitly given instance under the assumption
that RP 6= NP.
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The Buchbinder et al (1/3) and (1/2)
approximations for USM

In the FOCS [2012] conference, Buchbinder et al gave an elegant linear
time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi

then Xi := Xi−1 ∪ {ui};Yi := Yi−1

else Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For
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The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.

That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.

Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.

This fact leads to the main lemma for the deterministic case:

f (OPTi−1 − f (OPTi ) ≤ [f (Xi − f (Xi−1] + [f (Yi )− f (Yi−1]

Here OPTi = (OPT ∪ {Xi}) ∩ Yi so that OPTi coincides with Xi and
Yi for elements 1, . . . i and coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and OPTn = Xn = Yn. That
is, the loss in OPT s value is bounded by the total value increase in
the algorithm’s solutions.
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Applying the algorithmic idea to Max-Sat

Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘
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Buchbinder et al Submodular Max-Sat

Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P ) + f2(C ∩ (C \ P )).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P ).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P ) and f2(C ∩ (C \ P )).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N ) ≥ f1(N ) + f2(N ) ≥ g(OPT ), the claimed
(3/4)-approximation is obtained.
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Further discussion of the Unconstrained Submodular
Maximization and Submodular Max-Sat algorithms

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic online or priority style
algorithm by a result of Huang and Borodin [2014]. Like the Poloczek
result, we claimed that this was “in some sense” evidence that this
algorithm cannot be derandomized.

Their algorithm is shown to have a 3
4 approximation ratio for

Monotone Submodular Max-Sat.

Poloczek et al [2017] show that the Buchbinder et al algorithm turns
out to be equivalent to a previous Max-Sat algorithm by van Zuylen.
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The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
that are no longer satisfiable.

Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi ) be the weight of satisfied clauses (resp., clauses no longer
satisfiable) with respect to Si . Let Bi = 1

2 (SATi + W − UNSATi ) where
W is the total weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi ) be the value of w(Bi )− w(Bi−1) when xi is
set to true (resp. false).
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The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remiaing n− i
variables are set as in x∗. (Note: x∗ is not calculated.)

The analysis follows as in Poloczek and Schnitger, Poloczek, and explicitly
in Buchbinder et al. One shows the following:

ti + fi ≥ 0

E[w(OPTi−1)− w(OPTi )] ≤ E[w(Bi )− w(Bi−1)]
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The Buchbinder and Feldman derandomization of
the USM algorithm

Contrary to the Poloczek, (resp. Huang and B.) priority
inapproximations for Max-Sat (resp. USM), there is another sense in
which these algorithms can be derandomized.

In fact the derandomization becomes an “online algorithm” in the
sense that an adversary is choosing the order of the input variables.
However rather than creating a single solution, the algorithm is
creating a tree of solutions and then takng the best of these.

The idea is as follows. The analysis of the randomized USM
approximation bound shows that a certain linear inequality holds at
each iteration of the algorithm. Namely,

E [f (OPTi−1 − f (OPTi )] ≤ 1

2
E [f (Xi )− f (Xi−1) + f (Yi )− f (Yi−1]

That is, the expected change in restricting OPT in an iteration (by
setting the i th variable) is bounded by the average change in the two
values being maintained by the algorithm.
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Continuing the Buchbinder and Feldman
derandomization idea

These inequalities induce two additional inequalties per iteration on
the distributions of solutions that can exist at each iteration.

This then gets used to describe an LP corresponding to these 2i
constraints we have for the distributions that hold at each iteration of
the algorithm.

But then using LP theory again (i.e. the number of non-zero variables
in a basic solution). It follows that we only need distributions with
support 2i at each iteration rather than the naive 2i that would follow
from just considering the randomized tree.

Finally, since there must be at least one distribution (amongst the
final 2n distributions) for which the corresponding solution is at least
as good as the expected value. Thus if suffices to take the max over a
“small” number of solutions.
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