Online Bipartite Matching

Calum MacRury

Department of Computer Science, University of Toronto, Toronto ON, Canada

Adversarial Arrivals

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π. Upon arrival of vertex $v \in V$, the neighbourhood N_{v} of v is revealed to \mathcal{A}.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π. Upon arrival of vertex $v \in V$, the neighbourhood N_{v} of v is revealed to \mathcal{A}.
- The algorithm makes an irrevocable decision as to whether or not to match v, based on all currently available information.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π. Upon arrival of vertex $v \in V$, the neighbourhood N_{v} of v is revealed to \mathcal{A}.
- The algorithm makes an irrevocable decision as to whether or not to match v, based on all currently available information.
- This decision can be made either deterministically, or using randomization.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π. Upon arrival of vertex $v \in V$, the neighbourhood N_{v} of v is revealed to \mathcal{A}.
- The algorithm makes an irrevocable decision as to whether or not to match v, based on all currently available information.
- This decision can be made either deterministically, or using randomization.
- Output: a matching $\mathcal{A}(G, \pi)$ of G.

Adversarial Arrivals

- Input: a bipartite graph $G=(U, V, E)$ with n online nodes V.
- Online algorithm \mathcal{A} given only U initially.
- Vertices V arrive based on adversarial ordering π. Upon arrival of vertex $v \in V$, the neighbourhood N_{v} of v is revealed to \mathcal{A}.
- The algorithm makes an irrevocable decision as to whether or not to match v, based on all currently available information.
- This decision can be made either deterministically, or using randomization.
- Output: a matching $\mathcal{A}(G, \pi)$ of G.
- Goal: maximize $|\mathcal{A}(G, \pi)|$, or $\mathbb{E}[|\mathcal{A}(G, \pi)|]$.

Benchmarking via Competitive Ratios

- If \mathcal{A} is deterministic then the competitive ratio of the algorithm is defined as

$$
\inf _{G, \pi} \frac{|\mathcal{A}(G, \pi)|}{\operatorname{OPT}(G)},
$$

where $\operatorname{OPT}(G)$ is the size of a maximum matching of G.

Benchmarking via Competitive Ratios

- If \mathcal{A} is deterministic then the competitive ratio of the algorithm is defined as

$$
\inf _{G, \pi} \frac{|\mathcal{A}(G, \pi)|}{\operatorname{OPT}(G)},
$$

where $\operatorname{OPT}(G)$ is the size of a maximum matching of G.

- If \mathcal{A} is randomized, then the competitive ratio is

$$
\inf _{G, \pi} \frac{\mathbb{E}[|\mathcal{A}(G, \pi)|]}{\operatorname{OPT}(G)}
$$

Benchmarking via Competitive Ratios

- If \mathcal{A} is deterministic then the competitive ratio of the algorithm is defined as

$$
\inf _{G, \pi} \frac{|\mathcal{A}(G, \pi)|}{\operatorname{OPT}(G)},
$$

where $\operatorname{OPT}(G)$ is the size of a maximum matching of G.

- If \mathcal{A} is randomized, then the competitive ratio is

$$
\inf _{G, \pi} \frac{\mathbb{E}[|\mathcal{A}(G, \pi)|]}{\operatorname{OPT}(G)}
$$

- The primary goal of online algorithms is to attain competitive ratios as large as possible.

Deterministic Algorithms

- Greedy initially specifies an ordering $\lambda: U \rightarrow\{1, \ldots,|U|\}$ on its offline nodes.

Deterministic Algorithms

- Greedy initially specifies an ordering $\lambda: U \rightarrow\{1, \ldots,|U|\}$ on its offline nodes.
- When an online node v arrives, Greedy then attempts to match v to the available vertex $u \in N_{v}$ for which $\lambda(u)$ is minimal.

Deterministic Algorithms

- Greedy initially specifies an ordering $\lambda: U \rightarrow\{1, \ldots,|U|\}$ on its offline nodes.
- When an online node v arrives, Greedy then attempts to match v to the available vertex $u \in N_{v}$ for which $\lambda(u)$ is minimal.
- Any choice of λ yields an algorithm with competitive ratio $1 / 2$.

Deterministic Algorithms

- Greedy initially specifies an ordering $\lambda: U \rightarrow\{1, \ldots,|U|\}$ on its offline nodes.
- When an online node v arrives, Greedy then attempts to match v to the available vertex $u \in N_{v}$ for which $\lambda(u)$ is minimal.
- Any choice of λ yields an algorithm with competitive ratio $1 / 2$.
- This is provably best amongst all deterministic online algorithms.

Improvement Through Randomization

- One can improve on $1 / 2$ via randomization.

Improvement Through Randomization

- One can improve on $1 / 2$ via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ.

Improvement Through Randomization

- One can improve on $1 / 2$ via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of $1-1 / e$.

Improvement Through Randomization

- One can improve on $1 / 2$ via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of $1-1 / e$.
Karp, Vazirani, and Vazirani (1990)
$1-1 / e$ is optimal amongst all online algorithms.

Generalizing to Offline Vertex Weights

- Suppose that G has offline vertex weights $\left(w_{u}\right)_{u \in u}$.

Generalizing to Offline Vertex Weights

- Suppose that G has offline vertex weights $\left(w_{u}\right)_{u \in U}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}):=\sum_{e=(u, v) \in \mathcal{M}} w_{u}$ is maximized.

Generalizing to Offline Vertex Weights

- Suppose that G has offline vertex weights $\left(w_{u}\right)_{u \in u}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}):=\sum_{e=(u, v) \in \mathcal{M}} w_{u}$ is maximized.
- Algorithm is now benchmarked against the maximum weight of a matching of G, again denoted by OPT(G).

Generalizing to Offline Vertex Weights

- Suppose that G has offline vertex weights $\left(w_{u}\right)_{u \in u}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}):=\sum_{e=(u, v) \in \mathcal{M}} w_{u}$ is maximized.
- Algorithm is now benchmarked against the maximum weight of a matching of G, again denoted by OPT(G).
- We know $1-1$ /e is the best possible competitive ratio.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_{v}$ such that $w_{u}-p_{u}=w_{u} \cdot\left(1-g\left(X_{u}\right)\right)$ is maximized.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_{v}$ such that $w_{u}-p_{u}=w_{u} \cdot\left(1-g\left(X_{u}\right)\right)$ is maximized. Let λ be the induced ordering.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_{v}$ such that $w_{u}-p_{u}=w_{u} \cdot\left(1-g\left(X_{u}\right)\right)$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_{v}$ such that $w_{u}-p_{u}=w_{u} \cdot\left(1-g\left(X_{u}\right)\right)$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.
- Let \mathcal{M} be the matching returned. Define Revenue $=\sum_{e=(u, v) \in \mathcal{M}} p_{u}$ and Utility $=\sum_{e=(u, v) \in \mathcal{M}}\left(w_{u}-p_{u}\right)$.

A Pricing Based Interpretation of Ranking

- Consider the algorithm as a seller of the items U.
- View V as a collection of buyers, where $v \in V$ is interested in items N_{v}, and values them according to the weights $\left(w_{u}\right)_{u \in N_{v}}$.
- Fix an increasing function $g:[0,1] \rightarrow[0,1]$ with $g(1)=1$.
- For each $u \in U$, draw $\operatorname{rank} X_{u} \sim \mathcal{U}[0,1]$ independently.
- Set $p_{u}:=w_{u} \cdot g\left(X_{u}\right)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_{v}$ such that $w_{u}-p_{u}=w_{u} \cdot\left(1-g\left(X_{u}\right)\right)$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.
- Let \mathcal{M} be the matching returned. Define Revenue $=\sum_{e=(u, v) \in \mathcal{M}} p_{u}$ and Utility $=\sum_{e=(u, v) \in \mathcal{M}}\left(w_{u}-p_{u}\right)$.
- Observe that $w(\mathcal{M})$ measures the social welfare (overall good) of matching items U to V via \mathcal{M}.

The Weighted-Ranking Algorithm

Require: U with offline vertex weights $w=\left(w_{u}\right)_{u \in U}$.
Ensure: a matching \mathcal{M} of (unknown) vertex weighted graph $G=(U, V, E)$.
1: Independently draw $X_{u} \sim \mathcal{U}[0,1]$ for each $u \in U$.
2: Compute an ordering λ which ranks $u \in U$ in decreasing order of $w_{u}(1-$ $\left.g\left(X_{u}\right)\right)$, where $g(x):=\exp (x-1)$

The Weighted-Ranking Algorithm

Require: U with offline vertex weights $w=\left(w_{u}\right)_{u \in U}$.
Ensure: a matching \mathcal{M} of (unknown) vertex weighted graph $G=(U, V, E)$.
1: Independently draw $X_{u} \sim \mathcal{U}[0,1]$ for each $u \in U$.
2: Compute an ordering λ which ranks $u \in U$ in decreasing order of $w_{u}(1-$ $\left.g\left(X_{u}\right)\right)$, where $g(x):=\exp (x-1)$
3: $\mathcal{M} \leftarrow \emptyset$.
4: $R \leftarrow U$.
\triangleright remaining vertices.

The Weighted-Ranking Algorithm

```
Require: \(U\) with offline vertex weights \(w=\left(w_{u}\right)_{u \in U}\).
Ensure: a matching \(\mathcal{M}\) of (unknown) vertex weighted graph \(G=(U, V, E)\).
    1: Independently draw \(X_{u} \sim \mathcal{U}[0,1]\) for each \(u \in U\).
    2: Compute an ordering \(\lambda\) which ranks \(u \in U\) in decreasing order of \(w_{u}(1-\)
    \(\left.g\left(X_{u}\right)\right)\), where \(g(x):=\exp (x-1)\)
    3: \(\mathcal{M} \leftarrow \emptyset\).
    4: \(R \leftarrow U\). \(\quad\) remaining vertices.
    5: for \(t=1, \ldots, n\) do
    6: Let \(v_{t}\) be the current online arrival.
    7: if \(N_{v_{t}} \cap R \neq \emptyset\) then
                Set \(\mathcal{M}\left(v_{t}\right)=u\), where \(\lambda(u)\) is the smallest integer amongst \(N_{v_{t}} \cap R\)
                \(R \leftarrow R \backslash u\).
        end if
    11: end for
    12: Return \(\mathcal{M}\).
```


The Weighted-Ranking Algorithm

- The choice of $g(x):=\exp (x-1)$ is due to Aggarwal et al. 2011.

The Weighted-Ranking Algorithm

- The choice of $g(x):=\exp (x-1)$ is due to Aggarwal et al. 2011.

Aggarwal et al. 2011

Weighted-Ranking attains a competitive ratio of $1-1 / e$.

The Weighted-Ranking Algorithm

- The choice of $g(x):=\exp (x-1)$ is due to Aggarwal et al. 2011.

Aggarwal et al. 2011

Weighted-Ranking attains a competitive ratio of $1-1 / e$.

- Devanur et al. (2013) provide an (alternative) primal-dual analysis which leverages the pricing based interpretation to greatly simplify the analysis of Aggarwal et al.

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to \mathcal{A} uniformly at random, opposed to in an adversarial order, and so the matching $\mathcal{A}(G)$ returned by \mathcal{A} is random.

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to \mathcal{A} uniformly at random, opposed to in an adversarial order, and so the matching $\mathcal{A}(G)$ returned by \mathcal{A} is random.
- Performance of \mathcal{A}, namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π.

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to \mathcal{A} uniformly at random, opposed to in an adversarial order, and so the matching $\mathcal{A}(G)$ returned by \mathcal{A} is random.
- Performance of \mathcal{A}, namely $\mathbb{E}[\omega(\mathcal{A}(G))]$, is averaged over π.
- The competitive ratio of \mathcal{A} in the random order model is then

$$
\inf _{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\operatorname{OPT}(G)} .
$$

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to \mathcal{A} uniformly at random, opposed to in an adversarial order, and so the matching $\mathcal{A}(G)$ returned by \mathcal{A} is random.
- Performance of \mathcal{A}, namely $\mathbb{E}[\omega(\mathcal{A}(G))]$, is averaged over π.
- The competitive ratio of \mathcal{A} in the random order model is then

$$
\inf _{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\operatorname{OPT}(G)} .
$$

- Observe its competitive ratio is no smaller than in the adversarial order model.

The Random Order Model

- Since $1-1$ /e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to \mathcal{A} uniformly at random, opposed to in an adversarial order, and so the matching $\mathcal{A}(G)$ returned by \mathcal{A} is random.
- Performance of \mathcal{A}, namely $\mathbb{E}[\omega(\mathcal{A}(G))]$, is averaged over π.
- The competitive ratio of \mathcal{A} in the random order model is then

$$
\inf _{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\operatorname{OPT}(G)} .
$$

- Observe its competitive ratio is no smaller than in the adversarial order model.
- A common technique in the literature is to view the vertices of V as arriving in increasing order of $\left(Y_{v}\right)_{v \in v}$, where $Y_{v} \sim \mathcal{U}[0,1]$ is the arrival time of v.

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

- Proof utilizes strongly factor revealing linear programs (LP)s.

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

- Proof utilizes strongly factor revealing linear programs (LP)s.
- Techniques don't seem to extend to the vertex-weighted setting.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.
- The price of $u \in U$ is then $w_{u} \cdot g\left(X_{u}, Y_{v}\right)$ where $X_{u} \in \mathcal{U}[0,1]$ is the rank of $u \in U$, and $Y_{v} \in \mathcal{U}[0,1]$ is the arrival time of vertex $v \in V$.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.
- The price of $u \in U$ is then $w_{u} \cdot g\left(X_{u}, Y_{v}\right)$ where $X_{u} \in \mathcal{U}[0,1]$ is the rank of $u \in U$, and $Y_{v} \in \mathcal{U}[0,1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in[0,1]$, if $y_{1}<y_{2}$, then $g\left(x, y_{2}\right)<g\left(x, y_{1}\right)$.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.
- The price of $u \in U$ is then $w_{u} \cdot g\left(X_{u}, Y_{v}\right)$ where $X_{u} \in \mathcal{U}[0,1]$ is the rank of $u \in U$, and $Y_{v} \in \mathcal{U}[0,1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in[0,1]$, if $y_{1}<y_{2}$, then $g\left(x, y_{2}\right)<g\left(x, y_{1}\right)$. Thus, the later a vertex v arrives (larger Y_{v} is), the lower the prices for v.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.
- The price of $u \in U$ is then $w_{u} \cdot g\left(X_{u}, Y_{v}\right)$ where $X_{u} \in \mathcal{U}[0,1]$ is the rank of $u \in U$, and $Y_{v} \in \mathcal{U}[0,1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in[0,1]$, if $y_{1}<y_{2}$, then $g\left(x, y_{2}\right)<g\left(x, y_{1}\right)$. Thus, the later a vertex v arrives (larger Y_{v} is), the lower the prices for v.
- This property balances the fact that later buyers naturally have fewer options available.

Randomized Algorithms in ROM: Vertex Weighted

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function $g(x, y)$, where $g:[0,1]^{2} \rightarrow[0,1]$.
- The price of $u \in U$ is then $w_{u} \cdot g\left(X_{u}, Y_{v}\right)$ where $X_{u} \in \mathcal{U}[0,1]$ is the rank of $u \in U$, and $Y_{v} \in \mathcal{U}[0,1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in[0,1]$, if $y_{1}<y_{2}$, then $g\left(x, y_{2}\right)<g\left(x, y_{1}\right)$. Thus, the later a vertex v arrives (larger Y_{v} is), the lower the prices for v.
- This property balances the fact that later buyers naturally have fewer options available.

Huang et al. 2018

Generalized-Ranking achieves a competitive ratio of 0.6534 in the vertex-weighted ROM setting.

Open Problems

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?

Open Problems

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function $g(x, y)$.

Open Problems

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function $g(x, y)$. What is the optimal competitive ratio attainable via algorithms of this form?

Open Problems

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function $g(x, y)$. What is the optimal competitive ratio attainable via algorithms of this form?
- 0.823 is the best known upper bound (negative result) even in the unweighted setting.

Open Problems

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function $g(x, y)$. What is the optimal competitive ratio attainable via algorithms of this form?
- 0.823 is the best known upper bound (negative result) even in the unweighted setting. Can this be improved substantially?

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $\left(w_{e}\right)_{e \in E}$.

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $\left(w_{e}\right)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $\left(w_{e}\right)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when $|U|=1$ and $|V|=2$.

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $\left(w_{e}\right)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when $|U|=1$ and $|V|=2$. Consider when $W_{e_{1}} \ll W_{e_{2}}$.

Online Matching with Edge Weights

- We have so far only considered the case when $G=(U, V, E)$ is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $\left(w_{e}\right)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when $|U|=1$ and $|V|=2$. Consider when $W_{e_{1}} \ll W_{e_{2}}$.
- In the ROM setting, constant competitive ratios can be attained.

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The Secretary algorithm is simple:

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The Secretary algorithm is simple:
- Pass on the first n / e arriving edges (where $n=|V|$).

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The Secretary algorithm is simple:
- Pass on the first n / e arriving edges (where $n=|V|$).
- Afterwards, accept the first edge whose weight is at least as large as the first n / e edges.

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The Secretary algorithm is simple:
- Pass on the first n / e arriving edges (where $n=|V|$).
- Afterwards, accept the first edge whose weight is at least as large as the first n / e edges.

Gardner (1960), Dynkin (1963)

Secretary attains an asymptotic (as $n \rightarrow \infty$) competitive ratio of $1 / e$ for random order arrivals, and this is best possible.

The Secretary Problem

- When $|U|=1$, and $E=\{u\} \times V$, observe that $\operatorname{OPT}(G)=\max _{e \in E} W_{e}$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The Secretary algorithm is simple:
- Pass on the first n / e arriving edges (where $n=|V|$).
- Afterwards, accept the first edge whose weight is at least as large as the first n / e edges.

Gardner (1960), Dynkin (1963)

Secretary attains an asymptotic (as $n \rightarrow \infty$) competitive ratio of $1 / e$ for random order arrivals, and this is best possible.

- Analysis of Secretary is fairly immediate. Hardness result is more involved.

The Secretary Matching Problem

- Since $1 / e$ is best possible, various works have focused on generalizing the problem to more sophisticated online settings.

The Secretary Matching Problem

- Since $1 / e$ is best possible, various works have focused on generalizing the problem to more sophisticated online settings.
- There is a natural modification of the secretary algorithm to the matching setting called the Secretary-Matching algorithm.

The Secretary Matching Problem

- Since $1 / e$ is best possible, various works have focused on generalizing the problem to more sophisticated online settings.
- There is a natural modification of the secretary algorithm to the matching setting called the Secretary-Matching algorithm.

Kesselheim et al. (2013)
Secretary-Matching attains an asymptotic (as $|V| \rightarrow \infty$) competitive ratio of 1/e.

Secretary Matching Algorithm

Require: U and $n:=|V|$.
Ensure: a matching \mathcal{M} from (unknown) edge weighted graph $G=(U, V, E)$.
1: Set $\mathcal{M} \leftarrow \emptyset$.
2: $\operatorname{Set} G_{0}=(U, \emptyset, \emptyset)$

Secretary Matching Algorithm

Require: U and $n:=|V|$.
Ensure: a matching \mathcal{M} from (unknown) edge weighted graph $G=(U, V, E)$.
1: Set $\mathcal{M} \leftarrow \emptyset$.
2: Set $G_{0}=(U, \emptyset, \emptyset)$
3: for $t=1, \ldots, n$ do
4: Input v_{t}, and compute G_{t} by updating G_{t-1} to contain v_{t}.
5: if $t<\lfloor n / e\rfloor$ then
6: \quad Pass on v_{t}.

Secretary Matching Algorithm

```
Require: U and n:= |V|.
Ensure: a matching \mathcal{M from (unknown) edge weighted graph G = (U,V,E).}
    1: Set }\mathcal{M}\leftarrow\emptyset\mathrm{ .
    2: Set Go}=(U,\emptyset,\emptyset
    3: for t=1,\ldots,n do
    4: Input }\mp@subsup{v}{t}{}\mathrm{ , and compute }\mp@subsup{G}{t}{}\mathrm{ by updating }\mp@subsup{G}{t-1}{}\mathrm{ to contain }\mp@subsup{v}{t}{}\mathrm{ .
    5: if t<\lfloorn/e\rfloor then
        Pass on vt.
        else
        Compute an optimal matching }\mp@subsup{\mathcal{M}}{t}{}\mathrm{ of }\mp@subsup{G}{t}{
        Set }\mp@subsup{e}{t}{}\mathrm{ to be the edge matched to vt via }\mp@subsup{\mathcal{M}}{t}{}\mathrm{ .
        if e}\mp@subsup{e}{t}{}=(\mp@subsup{u}{t}{},\mp@subsup{v}{t}{})\mathrm{ exists and }\mp@subsup{u}{t}{}\mathrm{ is unmatched then
        Add et to }\mathcal{M}\mathrm{ .
            end if
        end if
    14: end for
    15: return }\mathcal{M}\mathrm{ .
```


Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.

Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the prophet matching problem with known i.i.d. arrivals which considers when $G=(U, V, E)$ is drawn from a distribution.

Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the prophet matching problem with known i.i.d. arrivals which considers when $G=(U, V, E)$ is drawn from a distribution.
- The adversary now only gets to select a type graph $H_{\text {typ }}=(U, B, F)$, a known distribution \mathcal{D} supported on B, and the number of arrivals $n \geq 1$.

Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the prophet matching problem with known i.i.d. arrivals which considers when $G=(U, V, E)$ is drawn from a distribution.
- The adversary now only gets to select a type graph $H_{\text {typ }}=(U, B, F)$, a known distribution \mathcal{D} supported on B, and the number of arrivals $n \geq 1$.
- Online vertices v_{1}, \ldots, v_{n} are drawn independently from \mathcal{D}, and presented to the algorithm one by one.

Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the prophet matching problem with known i.i.d. arrivals which considers when $G=(U, V, E)$ is drawn from a distribution.
- The adversary now only gets to select a type graph $H_{\text {typ }}=(U, B, F)$, a known distribution \mathcal{D} supported on B, and the number of arrivals $n \geq 1$.
- Online vertices v_{1}, \ldots, v_{n} are drawn independently from \mathcal{D}, and presented to the algorithm one by one.
- Both the algorithm and the benchmark average their performance over G drawn from \mathcal{D}.

Online Stochastic Matching

- Since $1 / \mathrm{e}$ is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the prophet matching problem with known i.i.d. arrivals which considers when $G=(U, V, E)$ is drawn from a distribution.
- The adversary now only gets to select a type graph $H_{\text {typ }}=(U, B, F)$, a known distribution \mathcal{D} supported on B, and the number of arrivals $n \geq 1$.
- Online vertices v_{1}, \ldots, v_{n} are drawn independently from \mathcal{D}, and presented to the algorithm one by one.
- Both the algorithm and the benchmark average their performance over G drawn from \mathcal{D}.
- A competitive ratio of $1-1 / \mathrm{e}$ is attainable due to Manshadi et al. (2012), and this is the best known result for edge weights.

Open Problems

- For a single offline item (i.e., $|U|=1$), ≈ 0.745 is attainable, and this known to be tight.

Open Problems

- For a single offline item (i.e., $|U|=1$), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.

Open Problems

- For a single offline item (i.e., $|U|=1$), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals?

Open Problems

- For a single offline item (i.e., $|U|=1$), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single item setting?

Open Problems

- For a single offline item (i.e., $|U|=1$), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single item setting?
- There are numerous works answering this in the affirmative for special distributions, and/or simpler type graphs.

