Online Bipartite Matching

Calum MacRury

Department of Computer Science, University of Toronto, Toronto ON, Canada

• Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- \cdot Online algorithm $\mathcal A$ given only $\mathcal U$ initially.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- \cdot Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices V arrive based on adversarial ordering π .

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices *V* arrive based on **adversarial ordering** π . Upon arrival of vertex $v \in V$, the neighbourhood N_v of v is revealed to A.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices *V* arrive based on **adversarial ordering** π . Upon arrival of vertex $v \in V$, the neighbourhood N_v of v is revealed to A.
- The algorithm makes an **irrevocable decision** as to whether or not to match *v*, based on all currently available information.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices *V* arrive based on **adversarial ordering** π . Upon arrival of vertex $v \in V$, the neighbourhood N_v of v is revealed to A.
- The algorithm makes an **irrevocable decision** as to whether or not to match *v*, based on all currently available information.
- This decision can be made either deterministically, or using randomization.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices *V* arrive based on **adversarial ordering** π . Upon arrival of vertex $v \in V$, the neighbourhood N_v of v is revealed to A.
- The algorithm makes an **irrevocable decision** as to whether or not to match *v*, based on all currently available information.
- This decision can be made either deterministically, or using randomization.
- **Output:** a matching $\mathcal{A}(G, \pi)$ of G.

- Input: a bipartite graph G = (U, V, E) with *n* online nodes *V*.
- Online algorithm $\mathcal A$ given only $\mathcal U$ initially.
- Vertices *V* arrive based on **adversarial ordering** π . Upon arrival of vertex $v \in V$, the neighbourhood N_v of v is revealed to A.
- The algorithm makes an **irrevocable decision** as to whether or not to match *v*, based on all currently available information.
- This decision can be made either deterministically, or using randomization.
- **Output:** a matching $\mathcal{A}(G, \pi)$ of G.
- Goal: maximize $|\mathcal{A}(G,\pi)|$, or $\mathbb{E}[|\mathcal{A}(G,\pi)|]$.

Benchmarking via Competitive Ratios

- If ${\mathcal A}$ is deterministic then the $competitive\ ratio$ of the algorithm is defined as

$$\inf_{G,\pi} \frac{|\mathcal{A}(G,\pi)|}{\mathsf{OPT}(G)},$$

where OPT(G) is the size of a maximum matching of G.

Benchmarking via Competitive Ratios

- If ${\mathcal A}$ is deterministic then the $competitive\ ratio$ of the algorithm is defined as

$$\inf_{G,\pi} \frac{|\mathcal{A}(G,\pi)|}{\mathsf{OPT}(G)},$$

where OPT(G) is the size of a maximum matching of G.

 $\cdot\,$ If ${\cal A}$ is randomized, then the competitive ratio is

$$\inf_{G,\pi} \frac{\mathbb{E}[|\mathcal{A}(G,\pi)|]}{\mathsf{OPT}(G)}$$

Benchmarking via Competitive Ratios

- If ${\mathcal A}$ is deterministic then the $competitive\ ratio$ of the algorithm is defined as

$$\inf_{G,\pi} \frac{|\mathcal{A}(G,\pi)|}{\mathsf{OPT}(G)},$$

where OPT(G) is the size of a maximum matching of G.

 $\cdot\,$ If ${\cal A}$ is randomized, then the competitive ratio is

$$\inf_{G,\pi} \frac{\mathbb{E}[|\mathcal{A}(G,\pi)|]}{\mathsf{OPT}(G)}.$$

• The primary goal of online algorithms is to attain competitive ratios as large as possible.

• Greedy initially specifies an ordering $\lambda : U \to \{1, \dots, |U|\}$ on its offline nodes.

- Greedy initially specifies an ordering $\lambda : U \to \{1, \dots, |U|\}$ on its offline nodes.
- When an online node v arrives, **Greedy** then attempts to match v to the available vertex $u \in N_v$ for which $\lambda(u)$ is minimal.

- Greedy initially specifies an ordering $\lambda : U \to \{1, \dots, |U|\}$ on its offline nodes.
- When an online node v arrives, **Greedy** then attempts to match v to the available vertex $u \in N_v$ for which $\lambda(u)$ is minimal.
- Any choice of λ yields an algorithm with competitive ratio 1/2.

- Greedy initially specifies an ordering $\lambda : U \to \{1, \dots, |U|\}$ on its offline nodes.
- When an online node v arrives, **Greedy** then attempts to match v to the available vertex $u \in N_v$ for which $\lambda(u)$ is minimal.
- Any choice of λ yields an algorithm with competitive ratio 1/2.
- This is provably best amongst all *deterministic* online algorithms.

• One can improve on 1/2 via randomization.

- One can improve on 1/2 via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ .

- One can improve on 1/2 via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ .

Karp, Vazirani, and Vazirani (1990) Ranking attains a competitive ratio of 1 – 1/e.

- One can improve on 1/2 via randomization.
- Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy with the ordering λ .

Karp, Vazirani, and Vazirani (1990) Ranking attains a competitive ratio of 1 – 1/e.

Karp, Vazirani, and Vazirani (1990) 1 – 1/e is optimal amongst all online algorithms. • Suppose that G has offline vertex weights $(w_u)_{u \in U}$.

- Suppose that G has offline vertex weights $(w_u)_{u \in U}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}) := \sum_{e=(u,v)\in\mathcal{M}} w_u$ is maximized.

- Suppose that G has offline vertex weights $(w_u)_{u \in U}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}) := \sum_{e=(u,v)\in\mathcal{M}} w_u$ is maximized.
- Algorithm is now benchmarked against the maximum weight of a matching of *G*, again denoted by OPT(*G*).

- Suppose that G has offline vertex weights $(w_u)_{u \in U}$.
- Goal of the online algorithm is to build a matching \mathcal{M} whose weight $w(\mathcal{M}) := \sum_{e=(u,v)\in\mathcal{M}} w_u$ is maximized.
- Algorithm is now benchmarked against the maximum weight of a matching of *G*, again denoted by OPT(*G*).
- We know 1 1/e is the best possible competitive ratio.

• Consider the algorithm as a **seller** of the items *U*.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(W_u)_{u \in N_v}$.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0, 1] \rightarrow [0, 1]$ with g(1) = 1.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw **rank** $X_u \sim \mathcal{U}[0, 1]$ independently.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw **rank** $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.

- Consider the algorithm as a **seller** of the items U.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(W_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw rank $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_v$ such that $w_u p_u = w_u \cdot (1 g(X_u))$ is maximized.

- Consider the algorithm as a **seller** of the items U.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw rank $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_v$ such that $w_u p_u = w_u \cdot (1 g(X_u))$ is maximized. Let λ be the induced ordering.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw rank $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_v$ such that $w_u p_u = w_u \cdot (1 g(X_u))$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.

- Consider the algorithm as a **seller** of the items U.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw rank $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_v$ such that $w_u p_u = w_u \cdot (1 g(X_u))$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.
- Let \mathcal{M} be the matching returned. Define Revenue = $\sum_{e=(u,v)\in\mathcal{M}} p_u$ and Utility = $\sum_{e=(u,v)\in\mathcal{M}} (w_u p_u)$.

- Consider the algorithm as a **seller** of the items *U*.
- View V as a collection of **buyers**, where $v \in V$ is interested in items N_v , and values them according to the weights $(w_u)_{u \in N_v}$.
- Fix an increasing function $g : [0,1] \rightarrow [0,1]$ with g(1) = 1.
- For each $u \in U$, draw rank $X_u \sim \mathcal{U}[0, 1]$ independently.
- Set $p_u := w_u \cdot g(X_u)$ to be the price of item u.
- Upon arrival of $v \in V$, buyer v purchases the item $u \in N_v$ such that $w_u p_u = w_u \cdot (1 g(X_u))$ is maximized. Let λ be the induced ordering.
- Observe λ is u.a.r. if the weights are identical.
- Let \mathcal{M} be the matching returned. Define Revenue = $\sum_{e=(u,v)\in\mathcal{M}} p_u$ and Utility = $\sum_{e=(u,v)\in\mathcal{M}} (w_u p_u)$.
- Observe that $w(\mathcal{M})$ measures the **social welfare** (overall good) of matching items *U* to *V* via \mathcal{M} .

Require: U with offline vertex weights $w = (w_u)_{u \in U}$.

Ensure: a matching \mathcal{M} of (unknown) vertex weighted graph G = (U, V, E).

- 1: Independently draw $X_u \sim \mathcal{U}[0, 1]$ for each $u \in U$.
- 2: Compute an ordering λ which ranks $u \in U$ in decreasing order of $w_u(1 g(X_u))$, where $g(x) := \exp(x 1)$
Require: U with offline vertex weights $w = (w_u)_{u \in U}$.

Ensure: a matching \mathcal{M} of (unknown) vertex weighted graph G = (U, V, E).

- 1: Independently draw $X_u \sim \mathcal{U}[0, 1]$ for each $u \in U$.
- 2: Compute an ordering λ which ranks $u \in U$ in decreasing order of $w_u(1 g(X_u))$, where $g(x) := \exp(x 1)$
- 3: $\mathcal{M} \leftarrow \emptyset$.
- 4: $R \leftarrow U$.

▷ remaining vertices.

Require: U with offline vertex weights $w = (w_u)_{u \in U}$.

Ensure: a matching \mathcal{M} of (unknown) vertex weighted graph G = (U, V, E).

- 1: Independently draw $X_u \sim \mathcal{U}[0, 1]$ for each $u \in U$.
- 2: Compute an ordering λ which ranks $u \in U$ in decreasing order of $w_u(1 g(X_u))$, where $g(x) := \exp(x 1)$
- 3: $\mathcal{M} \leftarrow \emptyset$.
- 4: $R \leftarrow U$.

```
▷ remaining vertices.
```

```
5: for t = 1, ..., n do
```

6: Let v_t be the current online arrival.

```
7: if N_{v_t} \cap R \neq \emptyset then
```

```
8: Set \mathcal{M}(v_t) = u, where \lambda(u) is the smallest integer amongst N_{v_t} \cap R
```

```
9: R \leftarrow R \setminus u.
```

```
10: end if
```

11: end for

12: Return \mathcal{M} .

• The choice of $g(x) := \exp(x - 1)$ is due to Aggarwal et al. 2011.

• The choice of $g(x) := \exp(x - 1)$ is due to Aggarwal et al. 2011.

Aggarwal et al. 2011 Weighted-Ranking attains a competitive ratio of 1 – 1/e. • The choice of $g(x) := \exp(x - 1)$ is due to Aggarwal et al. 2011.

Aggarwal et al. 2011

Weighted-Ranking attains a competitive ratio of 1 - 1/e.

• Devanur et al. (2013) provide an (alternative) primal-dual analysis which leverages the pricing based interpretation to greatly simplify the analysis of Aggarwal et al.

• Since 1 - 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.

- Since 1 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to A uniformly at random, opposed to in an adversarial order, and so the matching A(G) returned by A is random.

- Since 1 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to A uniformly at random, opposed to in an adversarial order, and so the matching A(G) returned by A is random.
- Performance of \mathcal{A} , namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π .

- Since 1 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to A uniformly at random, opposed to in an adversarial order, and so the matching A(G) returned by A is random.
- Performance of \mathcal{A} , namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π .
- \cdot The competitive ratio of ${\cal A}$ in the random order model is then

$$\inf_{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\mathsf{OPT}(G)}.$$

- Since 1 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to A uniformly at random, opposed to in an adversarial order, and so the matching A(G) returned by A is random.
- Performance of \mathcal{A} , namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π .
- \cdot The competitive ratio of ${\cal A}$ in the random order model is then

$$\inf_{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\mathsf{OPT}(G)}.$$

• Observe its competitive ratio is no smaller than in the adversarial order model.

- Since 1 1/e is the optimal competitive ratio, many works have studied more optimistic online matching models in order to surpass this barrier.
- In the Random Order Model (ROM), the nodes V of G are presented to A uniformly at random, opposed to in an adversarial order, and so the matching A(G) returned by A is random.
- Performance of \mathcal{A} , namely $\mathbb{E}[w(\mathcal{A}(G))]$, is averaged over π .
- \cdot The competitive ratio of ${\cal A}$ in the random order model is then

$$\inf_{G} \frac{\mathbb{E}[w(\mathcal{A}(G))]}{\mathsf{OPT}(G)}.$$

- Observe its competitive ratio is no smaller than in the adversarial order model.
- A common technique in the literature is to view the vertices of V as arriving in increasing order of $(Y_v)_{v \in V}$, where $Y_v \sim \mathcal{U}[0, 1]$ is the **arrival time** of v.

Mahdian et al. 2011

Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

Mahdian et al. 2011

Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

• Proof utilizes strongly factor revealing linear programs (LP)s.

Mahdian et al. 2011

Ranking achieves a competitive ratio of 0.696 in the unweighted ROM setting.

- Proof utilizes strongly factor revealing linear programs (LP)s.
- · Techniques don't seem to extend to the vertex-weighted setting.

• Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.
- The price of $u \in U$ is then $w_u \cdot g(X_u, Y_v)$ where $X_u \in \mathcal{U}[0, 1]$ is the rank of $u \in U$, and $Y_v \in \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.
- The price of $u \in U$ is then $w_u \cdot g(X_u, Y_v)$ where $X_u \in \mathcal{U}[0, 1]$ is the rank of $u \in U$, and $Y_v \in \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in [0, 1]$, if $y_1 < y_2$, then $g(x, y_2) < g(x, y_1)$.

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.
- The price of $u \in U$ is then $w_u \cdot g(X_u, Y_v)$ where $X_u \in \mathcal{U}[0, 1]$ is the rank of $u \in U$, and $Y_v \in \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in [0, 1]$, if $y_1 < y_2$, then $g(x, y_2) < g(x, y_1)$. Thus, the later a vertex v arrives (larger Y_v is), the lower the prices for v.

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.
- The price of $u \in U$ is then $w_u \cdot g(X_u, Y_v)$ where $X_u \in \mathcal{U}[0, 1]$ is the rank of $u \in U$, and $Y_v \in \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in [0, 1]$, if $y_1 < y_2$, then $g(x, y_2) < g(x, y_1)$. Thus, the later a vertex v arrives (larger Y_v is), the lower the prices for v.
- This property balances the fact that later buyers naturally have fewer options available.

- Huang et al. 2018 introduce a generalization of Weighted-Ranking, defined using a function g(x, y), where $g : [0, 1]^2 \rightarrow [0, 1]$.
- The price of $u \in U$ is then $w_u \cdot g(X_u, Y_v)$ where $X_u \in \mathcal{U}[0, 1]$ is the rank of $u \in U$, and $Y_v \in \mathcal{U}[0, 1]$ is the arrival time of vertex $v \in V$.
- For fixed $x \in [0, 1]$, if $y_1 < y_2$, then $g(x, y_2) < g(x, y_1)$. Thus, the later a vertex v arrives (larger Y_v is), the lower the prices for v.
- This property balances the fact that later buyers naturally have fewer options available.

Huang et al. 2018

Generalized-Ranking achieves a competitive ratio of 0.6534 in the vertex-weighted ROM setting.

• What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, **0.654** was recently improved upon by Jin and Williamson (2020) to **0.6629** via a different pricing function g(x, y).

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function g(x, y).
 What is the optimal competitive ratio attainable via algorithms of this form?

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function g(x, y). What is the optimal competitive ratio attainable via algorithms of this form?
- 0.823 is the best known upper bound (negative result) even in the unweighted setting.

- What is the best competitive ratio attainable in the unweighted ROM setting? Is the Ranking algorithm optimal?
- In the vertex weighted setting, 0.654 was recently improved upon by Jin and Williamson (2020) to 0.6629 via a different pricing function g(x, y). What is the optimal competitive ratio attainable via algorithms of this form?
- **0.823** is the best known upper bound (negative result) even in the unweighted setting. Can this be improved substantially?

• We have so far only considered the case when G = (U, V, E) is vertex weighted.

- We have so far only considered the case when G = (U, V, E) is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $(w_e)_{e \in E}$.

- We have so far only considered the case when G = (U, V, E) is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $(w_e)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.

- We have so far only considered the case when G = (U, V, E) is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $(w_e)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when |U| = 1 and |V| = 2.

- We have so far only considered the case when G = (U, V, E) is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $(w_e)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when |U| = 1 and |V| = 2. Consider when $w_{e_1} \ll w_{e_2}$.

- We have so far only considered the case when G = (U, V, E) is vertex weighted.
- All the arrival models and corresponding competitive ratios generalize to the edge weighted setting. I.e., G has edge weights $(w_e)_{e \in E}$.
- However, in the adversarial arrival model, no algorithm attains a constant competitive ratio.
- This is true even when |U| = 1 and |V| = 2. Consider when $w_{e_1} \ll w_{e_2}$.
- In the ROM setting, constant competitive ratios *can* be attained.

• When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} w_e$.

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} w_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} w_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The **Secretary** algorithm is simple:

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} w_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The **Secretary** algorithm is simple:
- Pass on the first n/e arriving edges (where n = |V|).

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} W_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The **Secretary** algorithm is simple:
- Pass on the first n/e arriving edges (where n = |V|).
- Afterwards, accept the first edge whose weight is at least as large as the first *n/e* edges.
The Secretary Problem

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} W_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The **Secretary** algorithm is simple:
- Pass on the first n/e arriving edges (where n = |V|).
- Afterwards, accept the first edge whose weight is at least as large as the first *n/e* edges.

Gardner (1960), Dynkin (1963)

Secretary attains an asymptotic (as $n \to \infty$) competitive ratio of 1/e for random order arrivals, and this is best possible.

The Secretary Problem

- When |U| = 1, and $E = \{u\} \times V$, observe that $OPT(G) = \max_{e \in E} W_e$.
- Moreover, the algorithm can select at most one edge, and the edges arrive uniformly at random.
- The **Secretary** algorithm is simple:
- Pass on the first n/e arriving edges (where n = |V|).
- Afterwards, accept the first edge whose weight is at least as large as the first *n/e* edges.

Gardner (1960), Dynkin (1963)

Secretary attains an asymptotic (as $n \to \infty$) competitive ratio of 1/e for random order arrivals, and this is best possible.

• Analysis of **Secretary** is fairly immediate. Hardness result is more involved.

• Since 1/*e* is best possible, various works have focused on generalizing the problem to more sophisticated online settings.

- Since 1/*e* is best possible, various works have focused on generalizing the problem to more sophisticated online settings.
- There is a natural modification of the secretary algorithm to the matching setting called the **Secretary-Matching** algorithm.

- Since 1/*e* is best possible, various works have focused on generalizing the problem to more sophisticated online settings.
- There is a natural modification of the secretary algorithm to the matching setting called the **Secretary-Matching** algorithm.

Kesselheim et al. (2013)

Secretary-Matching attains an asymptotic (as $|V| \rightarrow \infty$) competitive ratio of 1/e.

Require: U and n := |V|.

Ensure: a matching \mathcal{M} from (unknown) edge weighted graph G = (U, V, E).

- 1: Set $\mathcal{M} \leftarrow \emptyset$.
- 2: Set $G_0 = (U, \emptyset, \emptyset)$

Require: U and n := |V|.

Ensure: a matching \mathcal{M} from (unknown) edge weighted graph G = (U, V, E).

- 1: Set $\mathcal{M} \leftarrow \emptyset$.
- 2: Set $G_0 = (U, \emptyset, \emptyset)$
- 3: for t = 1, ..., n do
- 4: Input v_t , and compute G_t by updating G_{t-1} to contain v_t .
- 5: **if** $t < \lfloor n/e \rfloor$ then
- 6: Pass on v_t .

```
Require: U and n := |V|.
Ensure: a matching \mathcal{M} from (unknown) edge weighted graph G = (U, V, E).
 1: Set \mathcal{M} \leftarrow \emptyset.
 2: Set G_0 = (U, \emptyset, \emptyset)
 3: for t = 1, ..., n do
        Input v_t, and compute G_t by updating G_{t-1} to contain v_t.
 4:
        if t < |n/e| then
 5.
             Pass on v_t.
 6:
 7:
        else
             Compute an optimal matching \mathcal{M}_t of G_t
 8.
             Set e_t to be the edge matched to v_t via \mathcal{M}_t.
 9.
             if e_t = (u_t, v_t) exists and u_t is unmatched then
10:
                 Add e_t to \mathcal{M}.
11:
             end if
12.
        end if
13.
14: end for
15: return M.
```

• Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.

- Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the **prophet matching problem with known i.i.d. arrivals** which considers when G = (U, V, E) is drawn from a distribution.

- Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the **prophet matching problem with known i.i.d. arrivals** which considers when G = (U, V, E) is drawn from a distribution.
- The adversary now only gets to select a **type graph** $H_{typ} = (U, B, F)$, a **known** distribution \mathcal{D} supported on B, and the number of arrivals $n \ge 1$.

- Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the **prophet matching problem with known i.i.d. arrivals** which considers when G = (U, V, E) is drawn from a distribution.
- The adversary now only gets to select a **type graph** $H_{typ} = (U, B, F)$, a **known** distribution \mathcal{D} supported on B, and the number of arrivals $n \ge 1$.
- Online vertices v_1, \ldots, v_n are drawn independently from \mathcal{D} , and presented to the algorithm one by one.

- Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the **prophet matching problem with known i.i.d. arrivals** which considers when G = (U, V, E) is drawn from a distribution.
- The adversary now only gets to select a **type graph** $H_{typ} = (U, B, F)$, a **known** distribution \mathcal{D} supported on B, and the number of arrivals $n \ge 1$.
- Online vertices v_1, \ldots, v_n are drawn independently from \mathcal{D} , and presented to the algorithm one by one.
- Both the algorithm and the benchmark average their performance over ${\it G}$ drawn from ${\cal D}.$

- Since **1/e** is best possible, various works have focused on understanding even more optimistic online models than ROM.
- A popular setting is the **prophet matching problem with known i.i.d. arrivals** which considers when G = (U, V, E) is drawn from a distribution.
- The adversary now only gets to select a **type graph** $H_{typ} = (U, B, F)$, a **known** distribution \mathcal{D} supported on B, and the number of arrivals $n \ge 1$.
- Online vertices v_1, \ldots, v_n are drawn independently from \mathcal{D} , and presented to the algorithm one by one.
- \cdot Both the algorithm and the benchmark average their performance over ${\it G}$ drawn from ${\cal D}.$
- A competitive ratio of **1-1/e** is attainable due to Manshadi et al. (2012), and this is the best known result for edge weights.

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this known to be tight.

 For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.

- For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals?

- For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous prophet inequality problem for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single item setting?

- For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this known to be tight. This special case is the famous **prophet inequality problem** for i.i.d. random variables.
- What is the best possible competitive ratio for the prophet matching problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single item setting?
- There are numerous works answering this in the affirmative for special distributions, and/or simpler type graphs.