
Online Bipartite Matching

Calum MacRury

Department of Computer Science, University of Toronto, Toronto ON, Canada

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.

• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.

• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π.

Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.

• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Adversarial Arrivals

• Input: a bipartite graph G = (U, V, E) with n online nodes V.
• Online algorithm A given only U initially.
• Vertices V arrive based on adversarial ordering π. Upon arrival of vertex
v ∈ V, the neighbourhood Nv of v is revealed to A.

• The algorithm makes an irrevocable decision as to whether or not to
match v, based on all currently available information.

• This decision can be made either deterministically, or using
randomization.

• Output: a matching A(G, π) of G.
• Goal: maximize |A(G, π)|, or E[|A(G, π)|].

2

Benchmarking via Competitive Ratios

• If A is deterministic then the competitive ratio of the algorithm is
defined as

inf
G,π

|A(G, π)|
OPT(G) ,

where OPT(G) is the size of a maximum matching of G.

• If A is randomized, then the competitive ratio is

inf
G,π

E[|A(G, π)|]
OPT(G) .

• The primary goal of online algorithms is to attain competitive ratios as
large as possible.

3

Benchmarking via Competitive Ratios

• If A is deterministic then the competitive ratio of the algorithm is
defined as

inf
G,π

|A(G, π)|
OPT(G) ,

where OPT(G) is the size of a maximum matching of G.
• If A is randomized, then the competitive ratio is

inf
G,π

E[|A(G, π)|]
OPT(G) .

• The primary goal of online algorithms is to attain competitive ratios as
large as possible.

3

Benchmarking via Competitive Ratios

• If A is deterministic then the competitive ratio of the algorithm is
defined as

inf
G,π

|A(G, π)|
OPT(G) ,

where OPT(G) is the size of a maximum matching of G.
• If A is randomized, then the competitive ratio is

inf
G,π

E[|A(G, π)|]
OPT(G) .

• The primary goal of online algorithms is to attain competitive ratios as
large as possible.

3

Deterministic Algorithms

• Greedy initially specifies an ordering λ : U→ {1, . . . , |U|} on its offline
nodes.

• When an online node v arrives, Greedy then attempts to match v to the
available vertex u ∈ Nv for which λ(u) is minimal.

• Any choice of λ yields an algorithm with competitive ratio 1/2.
• This is provably best amongst all deterministic online algorithms.

4

Deterministic Algorithms

• Greedy initially specifies an ordering λ : U→ {1, . . . , |U|} on its offline
nodes.

• When an online node v arrives, Greedy then attempts to match v to the
available vertex u ∈ Nv for which λ(u) is minimal.

• Any choice of λ yields an algorithm with competitive ratio 1/2.
• This is provably best amongst all deterministic online algorithms.

4

Deterministic Algorithms

• Greedy initially specifies an ordering λ : U→ {1, . . . , |U|} on its offline
nodes.

• When an online node v arrives, Greedy then attempts to match v to the
available vertex u ∈ Nv for which λ(u) is minimal.

• Any choice of λ yields an algorithm with competitive ratio 1/2.

• This is provably best amongst all deterministic online algorithms.

4

Deterministic Algorithms

• Greedy initially specifies an ordering λ : U→ {1, . . . , |U|} on its offline
nodes.

• When an online node v arrives, Greedy then attempts to match v to the
available vertex u ∈ Nv for which λ(u) is minimal.

• Any choice of λ yields an algorithm with competitive ratio 1/2.
• This is provably best amongst all deterministic online algorithms.

4

Improvement Through Randomization

• One can improve on 1/2 via randomization.

• Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy
with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of 1− 1/e.

Karp, Vazirani, and Vazirani (1990)
1− 1/e is optimal amongst all online algorithms.

5

Improvement Through Randomization

• One can improve on 1/2 via randomization.
• Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy
with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of 1− 1/e.

Karp, Vazirani, and Vazirani (1990)
1− 1/e is optimal amongst all online algorithms.

5

Improvement Through Randomization

• One can improve on 1/2 via randomization.
• Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy
with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of 1− 1/e.

Karp, Vazirani, and Vazirani (1990)
1− 1/e is optimal amongst all online algorithms.

5

Improvement Through Randomization

• One can improve on 1/2 via randomization.
• Ranking draws λ uniformly at random (u.a.r.), and then executes Greedy
with the ordering λ.

Karp, Vazirani, and Vazirani (1990)
Ranking attains a competitive ratio of 1− 1/e.

Karp, Vazirani, and Vazirani (1990)
1− 1/e is optimal amongst all online algorithms.

5

Generalizing to Offline Vertex Weights

• Suppose that G has offline vertex weights (wu)u∈U.

• Goal of the online algorithm is to build a matchingM whose weight
w(M) :=

∑
e=(u,v)∈M wu is maximized.

• Algorithm is now benchmarked against the maximum weight of a
matching of G, again denoted by OPT(G).

• We know 1− 1/e is the best possible competitive ratio.

6

Generalizing to Offline Vertex Weights

• Suppose that G has offline vertex weights (wu)u∈U.
• Goal of the online algorithm is to build a matchingM whose weight
w(M) :=

∑
e=(u,v)∈M wu is maximized.

• Algorithm is now benchmarked against the maximum weight of a
matching of G, again denoted by OPT(G).

• We know 1− 1/e is the best possible competitive ratio.

6

Generalizing to Offline Vertex Weights

• Suppose that G has offline vertex weights (wu)u∈U.
• Goal of the online algorithm is to build a matchingM whose weight
w(M) :=

∑
e=(u,v)∈M wu is maximized.

• Algorithm is now benchmarked against the maximum weight of a
matching of G, again denoted by OPT(G).

• We know 1− 1/e is the best possible competitive ratio.

6

Generalizing to Offline Vertex Weights

• Suppose that G has offline vertex weights (wu)u∈U.
• Goal of the online algorithm is to build a matchingM whose weight
w(M) :=

∑
e=(u,v)∈M wu is maximized.

• Algorithm is now benchmarked against the maximum weight of a
matching of G, again denoted by OPT(G).

• We know 1− 1/e is the best possible competitive ratio.

6

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.

• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.

• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.

• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.

• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized.

Let λ be the induced ordering.
• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.

• LetM be the matching returned. Define Revenue =
∑

e=(u,v)∈M pu and
Utility =

∑
e=(u,v)∈M(wu − pu).

• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).

• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

A Pricing Based Interpretation of Ranking

• Consider the algorithm as a seller of the items U.
• View V as a collection of buyers, where v ∈ V is interested in items Nv,
and values them according to the weights (wu)u∈Nv .

• Fix an increasing function g : [0, 1]→ [0, 1] with g(1) = 1.
• For each u ∈ U, draw rank Xu ∼ U [0, 1] independently.
• Set pu := wu · g(Xu) to be the price of item u.
• Upon arrival of v ∈ V, buyer v purchases the item u ∈ Nv such that
wu − pu = wu · (1− g(Xu)) is maximized. Let λ be the induced ordering.

• Observe λ is u.a.r. if the weights are identical.
• LetM be the matching returned. Define Revenue =

∑
e=(u,v)∈M pu and

Utility =
∑

e=(u,v)∈M(wu − pu).
• Observe that w(M) measures the social welfare (overall good) of
matching items U to V viaM.

7

The Weighted-Ranking Algorithm

Require: U with offline vertex weights w = (wu)u∈U.
Ensure: a matchingM of (unknown) vertex weighted graph G = (U, V, E).
1: Independently draw Xu ∼ U [0, 1] for each u ∈ U.
2: Compute an ordering λ which ranks u ∈ U in decreasing order of wu(1 −
g(Xu)), where g(x) := exp(x− 1)

3: M← ∅.
4: R← U. ▷ remaining vertices.
5: for t = 1, . . . ,n do
6: Let vt be the current online arrival.
7: if Nvt ∩ R ̸= ∅ then
8: SetM(vt) = u, where λ(u) is the smallest integer amongst Nvt ∩ R
9: R← R \ u.
10: end if
11: end for
12: ReturnM.

8

The Weighted-Ranking Algorithm

Require: U with offline vertex weights w = (wu)u∈U.
Ensure: a matchingM of (unknown) vertex weighted graph G = (U, V, E).
1: Independently draw Xu ∼ U [0, 1] for each u ∈ U.
2: Compute an ordering λ which ranks u ∈ U in decreasing order of wu(1 −
g(Xu)), where g(x) := exp(x− 1)

3: M← ∅.
4: R← U. ▷ remaining vertices.

5: for t = 1, . . . ,n do
6: Let vt be the current online arrival.
7: if Nvt ∩ R ̸= ∅ then
8: SetM(vt) = u, where λ(u) is the smallest integer amongst Nvt ∩ R
9: R← R \ u.
10: end if
11: end for
12: ReturnM.

8

The Weighted-Ranking Algorithm

Require: U with offline vertex weights w = (wu)u∈U.
Ensure: a matchingM of (unknown) vertex weighted graph G = (U, V, E).
1: Independently draw Xu ∼ U [0, 1] for each u ∈ U.
2: Compute an ordering λ which ranks u ∈ U in decreasing order of wu(1 −
g(Xu)), where g(x) := exp(x− 1)

3: M← ∅.
4: R← U. ▷ remaining vertices.
5: for t = 1, . . . ,n do
6: Let vt be the current online arrival.
7: if Nvt ∩ R ̸= ∅ then
8: SetM(vt) = u, where λ(u) is the smallest integer amongst Nvt ∩ R
9: R← R \ u.
10: end if
11: end for
12: ReturnM.

8

The Weighted-Ranking Algorithm

• The choice of g(x) := exp(x− 1) is due to Aggarwal et al. 2011.

Aggarwal et al. 2011
Weighted-Ranking attains a competitive ratio of 1− 1/e.

• Devanur et al. (2013) provide an (alternative) primal-dual analysis which
leverages the pricing based interpretation to greatly simplify the
analysis of Aggarwal et al.

9

The Weighted-Ranking Algorithm

• The choice of g(x) := exp(x− 1) is due to Aggarwal et al. 2011.

Aggarwal et al. 2011
Weighted-Ranking attains a competitive ratio of 1− 1/e.

• Devanur et al. (2013) provide an (alternative) primal-dual analysis which
leverages the pricing based interpretation to greatly simplify the
analysis of Aggarwal et al.

9

The Weighted-Ranking Algorithm

• The choice of g(x) := exp(x− 1) is due to Aggarwal et al. 2011.

Aggarwal et al. 2011
Weighted-Ranking attains a competitive ratio of 1− 1/e.

• Devanur et al. (2013) provide an (alternative) primal-dual analysis which
leverages the pricing based interpretation to greatly simplify the
analysis of Aggarwal et al.

9

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.
• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.
• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.

• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.
• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.
• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

The Random Order Model

• Since 1− 1/e is the optimal competitive ratio, many works have studied
more optimistic online matching models in order to surpass this barrier.

• In the Random Order Model (ROM), the nodes V of G are presented to A
uniformly at random, opposed to in an adversarial order, and so the
matching A(G) returned by A is random.

• Performance of A, namely E[w(A(G))], is averaged over π.
• The competitive ratio of A in the random order model is then

inf
G

E[w(A(G))]
OPT(G) .

• Observe its competitive ratio is no smaller than in the adversarial order
model.

• A common technique in the literature is to view the vertices of V as
arriving in increasing order of (Yv)v∈V, where Yv ∼ U [0, 1] is the arrival
time of v.

10

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM
setting.

• Proof utilizes strongly factor revealing linear programs (LP)s.
• Techniques don’t seem to extend to the vertex-weighted setting.

11

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM
setting.

• Proof utilizes strongly factor revealing linear programs (LP)s.

• Techniques don’t seem to extend to the vertex-weighted setting.

11

Randomized Algorithms in ROM: Unweighted

Mahdian et al. 2011
Ranking achieves a competitive ratio of 0.696 in the unweighted ROM
setting.

• Proof utilizes strongly factor revealing linear programs (LP)s.
• Techniques don’t seem to extend to the vertex-weighted setting.

11

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1). Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1). Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1).

Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1). Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1). Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Randomized Algorithms in ROM: Vertex Weighted

• Huang et al. 2018 introduce a generalization of Weighted-Ranking,
defined using a function g(x, y), where g : [0, 1]2 → [0, 1].

• The price of u ∈ U is then wu · g(Xu, Yv) where Xu ∈ U [0, 1] is the rank of
u ∈ U, and Yv ∈ U [0, 1] is the arrival time of vertex v ∈ V.

• For fixed x ∈ [0, 1], if y1 < y2, then g(x, y2) < g(x, y1). Thus, the later a
vertex v arrives (larger Yv is), the lower the prices for v.

• This property balances the fact that later buyers naturally have fewer
options available.

Huang et al. 2018
Generalized-Ranking achieves a competitive ratio of 0.6534 in the
vertex-weighted ROM setting.

12

Open Problems

• What is the best competitive ratio attainable in the unweighted ROM
setting? Is the Ranking algorithm optimal?

• In the vertex weighted setting, 0.654 was recently improved upon by Jin
and Williamson (2020) to 0.6629 via a different pricing function g(x, y).
What is the optimal competitive ratio attainable via algorithms of this
form?

• 0.823 is the best known upper bound (negative result) even in the
unweighted setting. Can this be improved substantially?

13

Open Problems

• What is the best competitive ratio attainable in the unweighted ROM
setting? Is the Ranking algorithm optimal?

• In the vertex weighted setting, 0.654 was recently improved upon by Jin
and Williamson (2020) to 0.6629 via a different pricing function g(x, y).

What is the optimal competitive ratio attainable via algorithms of this
form?

• 0.823 is the best known upper bound (negative result) even in the
unweighted setting. Can this be improved substantially?

13

Open Problems

• What is the best competitive ratio attainable in the unweighted ROM
setting? Is the Ranking algorithm optimal?

• In the vertex weighted setting, 0.654 was recently improved upon by Jin
and Williamson (2020) to 0.6629 via a different pricing function g(x, y).
What is the optimal competitive ratio attainable via algorithms of this
form?

• 0.823 is the best known upper bound (negative result) even in the
unweighted setting. Can this be improved substantially?

13

Open Problems

• What is the best competitive ratio attainable in the unweighted ROM
setting? Is the Ranking algorithm optimal?

• In the vertex weighted setting, 0.654 was recently improved upon by Jin
and Williamson (2020) to 0.6629 via a different pricing function g(x, y).
What is the optimal competitive ratio attainable via algorithms of this
form?

• 0.823 is the best known upper bound (negative result) even in the
unweighted setting.

Can this be improved substantially?

13

Open Problems

• What is the best competitive ratio attainable in the unweighted ROM
setting? Is the Ranking algorithm optimal?

• In the vertex weighted setting, 0.654 was recently improved upon by Jin
and Williamson (2020) to 0.6629 via a different pricing function g(x, y).
What is the optimal competitive ratio attainable via algorithms of this
form?

• 0.823 is the best known upper bound (negative result) even in the
unweighted setting. Can this be improved substantially?

13

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2. Consider when we1 ≪ we2 .
• In the ROM setting, constant competitive ratios can be attained.

14

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2. Consider when we1 ≪ we2 .
• In the ROM setting, constant competitive ratios can be attained.

14

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2. Consider when we1 ≪ we2 .
• In the ROM setting, constant competitive ratios can be attained.

14

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2.

Consider when we1 ≪ we2 .
• In the ROM setting, constant competitive ratios can be attained.

14

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2. Consider when we1 ≪ we2 .

• In the ROM setting, constant competitive ratios can be attained.

14

Online Matching with Edge Weights

• We have so far only considered the case when G = (U, V, E) is vertex
weighted.

• All the arrival models and corresponding competitive ratios generalize
to the edge weighted setting. I.e., G has edge weights (we)e∈E.

• However, in the adversarial arrival model, no algorithm attains a
constant competitive ratio.

• This is true even when |U| = 1 and |V| = 2. Consider when we1 ≪ we2 .
• In the ROM setting, constant competitive ratios can be attained.

14

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.

• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:

• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).

• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Problem

• When |U| = 1, and E = {u} × V, observe that OPT(G) = maxe∈E we.
• Moreover, the algorithm can select at most one edge, and the edges
arrive uniformly at random.

• The Secretary algorithm is simple:
• Pass on the first n/e arriving edges (where n = |V|).
• Afterwards, accept the first edge whose weight is at least as large as the
first n/e edges.

Gardner (1960), Dynkin (1963)
Secretary attains an asymptotic (as n→∞) competitive ratio of 1/e for
random order arrivals, and this is best possible.

• Analysis of Secretary is fairly immediate. Hardness result is more
involved.

15

The Secretary Matching Problem

• Since 1/e is best possible, various works have focused on generalizing
the problem to more sophisticated online settings.

• There is a natural modification of the secretary algorithm to the
matching setting called the Secretary-Matching algorithm.

Kesselheim et al. (2013)
Secretary-Matching attains an asymptotic (as |V| → ∞) competitive ratio of
1/e.

16

The Secretary Matching Problem

• Since 1/e is best possible, various works have focused on generalizing
the problem to more sophisticated online settings.

• There is a natural modification of the secretary algorithm to the
matching setting called the Secretary-Matching algorithm.

Kesselheim et al. (2013)
Secretary-Matching attains an asymptotic (as |V| → ∞) competitive ratio of
1/e.

16

The Secretary Matching Problem

• Since 1/e is best possible, various works have focused on generalizing
the problem to more sophisticated online settings.

• There is a natural modification of the secretary algorithm to the
matching setting called the Secretary-Matching algorithm.

Kesselheim et al. (2013)
Secretary-Matching attains an asymptotic (as |V| → ∞) competitive ratio of
1/e.

16

Secretary Matching Algorithm

Require: U and n := |V|.
Ensure: a matchingM from (unknown) edge weighted graph G = (U, V, E).
1: SetM← ∅.
2: Set G0 = (U, ∅, ∅)

3: for t = 1, . . . ,n do
4: Input vt, and compute Gt by updating Gt−1 to contain vt.
5: if t < ⌊n/e⌋ then
6: Pass on vt.
7: else
8: Compute an optimal matchingMt of Gt
9: Set et to be the edge matched to vt viaMt.
10: if et = (ut, vt) exists and ut is unmatched then
11: Add et toM.
12: end if
13: end if
14: end for
15: returnM.

17

Secretary Matching Algorithm

Require: U and n := |V|.
Ensure: a matchingM from (unknown) edge weighted graph G = (U, V, E).
1: SetM← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . ,n do
4: Input vt, and compute Gt by updating Gt−1 to contain vt.
5: if t < ⌊n/e⌋ then
6: Pass on vt.

7: else
8: Compute an optimal matchingMt of Gt
9: Set et to be the edge matched to vt viaMt.
10: if et = (ut, vt) exists and ut is unmatched then
11: Add et toM.
12: end if
13: end if
14: end for
15: returnM.

17

Secretary Matching Algorithm

Require: U and n := |V|.
Ensure: a matchingM from (unknown) edge weighted graph G = (U, V, E).
1: SetM← ∅.
2: Set G0 = (U, ∅, ∅)
3: for t = 1, . . . ,n do
4: Input vt, and compute Gt by updating Gt−1 to contain vt.
5: if t < ⌊n/e⌋ then
6: Pass on vt.
7: else
8: Compute an optimal matchingMt of Gt
9: Set et to be the edge matched to vt viaMt.
10: if et = (ut, vt) exists and ut is unmatched then
11: Add et toM.
12: end if
13: end if
14: end for
15: returnM.

17

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Online Stochastic Matching

• Since 1/e is best possible, various works have focused on understanding
even more optimistic online models than ROM.

• A popular setting is the prophet matching problem with known i.i.d.
arrivals which considers when G = (U, V, E) is drawn from a distribution.

• The adversary now only gets to select a type graph Htyp = (U,B, F), a
known distribution D supported on B, and the number of arrivals n ≥ 1.

• Online vertices v1, . . . , vn are drawn independently from D, and
presented to the algorithm one by one.

• Both the algorithm and the benchmark average their performance over
G drawn from D.

• A competitive ratio of 1-1/e is attainable due to Manshadi et al. (2012),
and this is the best known result for edge weights.

18

Open Problems

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this
known to be tight.

This special case is the famous prophet inequality
problem for i.i.d. random variables.

• What is the best possible competitive ratio for the prophet matching
problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single
item setting?

• There are numerous works answering this in the affirmative for special
distributions, and/or simpler type graphs.

19

Open Problems

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this
known to be tight. This special case is the famous prophet inequality
problem for i.i.d. random variables.

• What is the best possible competitive ratio for the prophet matching
problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single
item setting?

• There are numerous works answering this in the affirmative for special
distributions, and/or simpler type graphs.

19

Open Problems

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this
known to be tight. This special case is the famous prophet inequality
problem for i.i.d. random variables.

• What is the best possible competitive ratio for the prophet matching
problem with known i.i.d. arrivals?

Can 1-1/e be beaten as in the single
item setting?

• There are numerous works answering this in the affirmative for special
distributions, and/or simpler type graphs.

19

Open Problems

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this
known to be tight. This special case is the famous prophet inequality
problem for i.i.d. random variables.

• What is the best possible competitive ratio for the prophet matching
problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single
item setting?

• There are numerous works answering this in the affirmative for special
distributions, and/or simpler type graphs.

19

Open Problems

• For a single offline item (i.e., |U| = 1), ≈ 0.745 is attainable, and this
known to be tight. This special case is the famous prophet inequality
problem for i.i.d. random variables.

• What is the best possible competitive ratio for the prophet matching
problem with known i.i.d. arrivals? Can 1-1/e be beaten as in the single
item setting?

• There are numerous works answering this in the affirmative for special
distributions, and/or simpler type graphs.

19

20

