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Week 2 of Course but week 3 of term

During this course, we will be seeing a number of different problems and
different algorithms. However, what I think is important is to keep in mind
some general themes that we need to consider in a course on “Algorithm
Design, Analysis and Theory”. In particular, we will hopefully keep in mind:

Classes of algorithms (as often emphasized at least informally in
undergrad texts)

Basic problems solved in a variety of ways with different properties

Tradeoffs

Relation between problems; extensions, reductions

Methods of analysis

The power of randomization

We won’t worry about implementation but rather algorithmic approaches
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Todays agenda

My intention was to continue with introduing some basic algorithmic
paradigms along with discussing some new problems, namely the knapsack
problem and the set packing problem. But because I have to miss next
week, Calum MacRury will give the lecture on October 5. I want to start
today with just a quick introduction to online bipartite matching which
will be the topic of Calum’s class.

Then we will start considering the following topics:

Partial enummeration greedy; combining brute force search and greedy

Additional comments on the makespan problem and alternative
machine models for makespan and other scheduling problems.

The makespan problem with precedence; scheduling anomolies

The knapsack problem and dynamic programming

The priority model for greedy-like algorithms

Extensions of the online and priority model

Online and offline algorithms with advice; ML advice

The set packing problem.
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The general graph matching problem

I just want to briefly introduce the online bipartite matching problem as it
will be the topic of Calum’s class next week. (When we say “graph” we
mean an undirected graph.)

In a graph G = (V ,E ), a match is M ⊆ E such that for every vertex v the
degree of v ∈ M is at most 1. In an unweighted graph, the goal is to
maximize the number of edges in the match. In an edge weighted graph,
the objective is to maximize the sum of weights of edges in the match.

The matching problem is one of the most fundamental combinatorial
problems in terms of its importance in applications, and the theory and
algorithms that have evolved for solving matching problems. See start of
video (https://www.youtube.com/watch?v=D48ci95qHQY) by Vijay
Vazirani. In terms of offline algorithms, one of the great results of the
1960s was Jack Edmonds’ polynomial time (not online) algorithm for
optimally solving the unweighted and weighted matching problem for
general graphs.

Recent work pertains to finding the best running times. 4 / 38



Matching in bipartite graphs

In a bipartite graph G = (U,V ,E ), the vertices are partitioned into two
sets U,V and E ⊆ U × V .

While the asymptotic running times for solving the unweighted and
weighted bipartite matching is not better than for general graphs (as far as
I know), there are conceptually much simpler (in my opinion) optimal
algorithms for the bipartite case which might also be the fastest algorithm
“in practice”.

In terms of online algorithms, the most common online model is one where
one side of the vertices (say, V ) are known in advance and the other side
of vertices arrive online along with their adjacent edges.
Warning: I think most articles have V as the online vertices but I tend to
use U; also sometimes articles will talk about (say) online vertices L (left
side) and offline nodes R.
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The online bipartite matching problems

The online version of bipartite matching is especially important both in
terms of its impact on the topic of online algorithms and as the start of a
substantial line of work concerning variants that are used for online
auctions where say items (e.g. queries) arrive online and are assigned to
offline buyers (advertisers).

As you will see next week, for the basic unweighted problem, the “natural”
greedy algorithm is a 1

2 approximation and this is optimal for any online
algorithm. What is the natural greedy algorithm?

There is a randomized online algorithm that achieves competitve ratio
1− 1

e ≈ .632. This is called the Ranking algorithm due to Karp Vazirani
and Vazirani [1990]. This is the optimal competitive ratio for any online
randomized algorithm (in the vertex arrival model). Since then there have
been a number of alternative proofs for this algorithm including the primal
dual algorithm by Devanur et al (in 2013) which Calum will be using.
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The primal dual approach for bipartite matching

Almost all of the optimization problems we study can be formulated as IPs
(integer programs). These IPs can be relaxed to LPs (linear programs)
whose solutions provide optimal fractional solutions.

The fractional solution can often be converted by some kind of “rounding”
into an approximaten integral solution.

Alternatvely, in the primal dual apporach we use the dual of the LP
formualtion to provide a way in which we can sequentially set the primal
variables.

218 CHAPTER 8. PRIMAL-DUAL METHOD FOR ONLINE PROBLEMS

Lastly, it is left to see that at any point in time in the execution of the algorithm the dual
solution may violate makespan constraints only by a factor O(log m). Observe that each time a
job is assigned to machine i, the variable zi gets updated by a multiplicative factor (1 + cpi,j/2).
Moreover, zi starts out at 1/2m and it cannot exceed 1 without the algorithm failing. Since the
multiplicative factor is at most 3/2 and the largest zi can be after each successful iteration of the
while loop is 1 then at all times we have zi < 3/2. Let Ji be the set of jobs that the algorithm
assigned to machine i. By these observations we have:
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Applying logarithm to both sides of the above inequality and rearranging it we get
P

j2Ji
cpi,j =

O(log m).

8.6 Bipartite Maximum Matching Revisited: Primal-Dual Analysis

We have previously encountered Online Bipartite Maximum Matching in Section 5.5 of Chapter 5.
Recall that nodes V = {vj} are offline and known in advance, while nodes U = {ui} appear online
one at a time. When node ui arrives, we also learn its neighbors N(ui) ✓ V and we must declare
which node ui is matched to or that ui is not matched at all (indicated by ?). We also write
Nc(ui) for the “current neighborhood” of ui, i.e., the set of neighbors of ui that are unmatched
at the time of consideration. We proved that the Ranking algorithm achieves competitive ratio
1 � 1/e in expectation and that no other algorithm can do better. In this section, we present an
analysis of Ranking via a primal-dual approach and then we extend this analysis to work for the
vertex-weighted version of Online BMM where weights are on vertices in V only.

We introduce variables xi,j with the intended meaning “xi,j = 1” indicates that ui 2 U is
matched with vj 2 V . The fractional version of the Online BMM can be stated as a linear program.
Since it is a maximization problem, we state its formulation as a formal dual and the dual of that
formulation as a formal primal:
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Recall that Ranking picks a permutation � of V uniformly at random. When ui arrives, it is
matched to the first, according to �, available vertex from Nc(ui) provided that Nc(ui) 6= ;. It is
easy to see that the algorithm can be equivalently restated as follows. Initially, choose uniform and
independent random variables Yj 2 [0, 1] for each vertex vj 2 V . When ui arrives, it is matched to
arg min{Yj | vj 2 Nc(ui)}. Algorithm 45 presents the pseudocode. To aid the primal-dual analysis
of Ranking, we also included explicit updates to the primal as well as dual variables.

[The dual program is a formulation of bipartite matching]
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Online bipartite matching continued

Ranking can alternatively be viewed as a deterministic algorothm in the
random order arrival model. It is not known if 1− 1

e is the optimal
competitive ratio for deterministic bipartite matching in the ROM model.
There is a better randomized algorithm in the ROM model.

The Ranking algorithm can be extended to provide a 1− 1
e algorithm for

offline vertex weighted graphs.

There is no bounded competitive ratio for edge weighted bipartite
matching; the ratio must necessarily depend on the weights of the edges.

There are edge weighted variants of bipartite matching that do have
constant competitive ratios (but still not optimal).
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The AdWords and Display Ads variants.

In AdWords, edge weights represent bids bij by an offline advertsiser vj for
a query impression ui . Each offline advertiser vj has a budget Bj . The
objective is to find a matching M so as to maximize the following
objective:

∑
j min{Bj ,

∑
i :eij∈M bij}. That is each advertiser does not

generate more revenue than its budget.

In the Display Ads problem (with free disposal), each offline vj has an
integer capacity Cj and we only insist on a 1-sided matching where each
online vertex can have degree at most one and each offline vj can have any
degree. However, the vertex (advertiser) vj (or the auctioneer) only gets
credit for the most valuable Cj weighted items assigned to it. That is, the
objective is to find a 1-sided matching M with some subset Sj of edges
assigned to vertex vj such that |Sj ≤ |Cj | so as to maximize the objective:∑

j

∑
eij∈Sj bij .

For AdWords and Display Ads problems, the “natural greedy” algorithm is
1/2 competitive and this improves to 1− 1

e for “small bids” and
(respectively) large capacities. What is the natural greedy algorithm?
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Partial Enumeration Greedy: back to intended
agenda

Not sure if I mentioned that the makespan problem is an NP-hard
optimization problem but there are (offline) algorithms that provide
good worst case approximations.
Combining the LPT idea with a brute force approach improves the
approximation ratio but at a significant increase in time complexity.
I call such an algorithm a “partial enumeration greedy” algorithm.

Optimally schedule the largest k jobs (for 0 ≤ k ≤ n) and then greedily
schedule the remaining jobs (in any order).

The algorithm has approximation ratio no worse than

(
1 +

1− 1
m

1+bk/mc

)
.

Graham also shows that this bound is tight for k ≡ 0 mod m.
The running time is O(mk + n log n).
Setting k = 1−ε

ε m gives a ratio of at most (1 + ε) so that for any
fixed m, this is a PTAS (polynomial time approximation scheme).
with time O(mm/ε + n log n).
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Makespan: Some additional comments

There are many refinements and variants of the makespan problem.

There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the identical machines
makespan problem.

The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m ≥ 4. For arbitrary m, as far as I know,
following a series of previous results, the best known approximation
ratio is 1.9201 (Fleischer and Wahl) and there is 1.88 inapproximation
bound (Rudin). Basic idea: leave some room for a possible large job;
this forces the online algorithm to be non-greedy in some sense but
still within the online model.

Randomization (and random order arrivals) can provide somewhat
better competitive ratios. We will see many examples where
randomization is very useful.

Makespan has been actively studied with respect to three other
machine models.
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The uniformly related machine model

Each machine i has a speed si

As in the identical machines model, job Jj is described by a
processing time or load pj .

The processing time to schedule job Jj on machine i is pj/si .

There is an online algorithm that achieves a constant competitive
ratio.

I think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al.

Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.438 inapproximation of Berman et al.
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The restricted machines model

Every job Jj is described by a pair (pj , Sj) where Sj ⊆ {1, . . . ,m} is
the set of machines on which Jj can be scheduled.
This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some relatively recent
progress in the offline restricted machines case.
Even for the case of two allowable machines per job (i.e. the graph
orientation problem), this is an interesting problem and we will look
at some recent work later.
Azar et al show that log2(m) (resp. ln(m)) is (up to ±1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the “natural greedy
algorithm”.
It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows an Ω( logm

log logm ) inapproximation for “fixed order priority
algorithms” for the restricted case when every job has 2 allowable
machines.
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The unrelated machines model

This is the most general of the makespan machine models.

Now a job Jj is represented by a vector (pj ,1, . . . , pj ,m) where pj ,i is
the time to process job Jj on machine i .

A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

There is an online algorithm with approximation O(logm). Currently,
this is the best approximation known for greedy-like (e.g. priority)
algorithms even for the restricted machines model although there has
been some progress made in this regard (which we will discuss later).

NOTE: All statements about what we will do later should be
understood as intentions and not promises.
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Makespan with precedence constraints; how much
should we trust our intuition
Graham also considered the makespan problem on identical machines for
jobs satisfying a precedence constraint. Suppose ≺ is a partial ordering on
jobs meaning that if Ji ≺ Jk then Ji must complete before Jk can be
started. Assuming jobs are ordered so as to respect the partial order (i.e.,
can be reordered within the priority model) Graham showed that the ratio
2− 1

m is achieved by “the natural greedy algorithm”, call it G≺.

Graham’s 1969 paper is entitled “Bounds on Multiprocessing Timing
Anomalies” pointing out some very non-intuitive anomalies that can occur.

Consider G≺ and suppose we have a given an input instance of the
makespan with precedence problem. Which of the following should never
lead to an increase in the makepan objective for the instance?

Relaxing the precedence ≺
Decreasing the processing time of some jobs
Adding more machines

In fact, all of these changes could increase the makespan value.
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The knapsack problem

The {0,1} knapsack problem

Input: Knapsack size capacity C and n items I = {I1, . . . , In} where
Ij = (vj , sj) with vj (resp. sj) the profit value (resp. size) of item Ij .

Output: A feasible subset S ⊆ {1, . . . , n} satisfying
∑

j∈S sj ≤ C so
as to maximize V (S) =

∑
j∈S vj .

Note: I would prefer to use approximation ratios r ≥ 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios ρ ≤ 1 for maximization problems; i.e.
ALG ≥ ρOPT . For certain topics, this is the convention.

One can show that the most natural greedy methods (sort by
non-increasing profit densities

vj
sj

, sort by non-increasing profits vj ,

sort by non-decreasing size sj) will not yield any constant ratio.

Can you think of nemesis sequences for these three greedy methods?

What other orderings could you imagine?

16 / 38



The knapsack problem

The {0,1} knapsack problem

Input: Knapsack size capacity C and n items I = {I1, . . . , In} where
Ij = (vj , sj) with vj (resp. sj) the profit value (resp. size) of item Ij .

Output: A feasible subset S ⊆ {1, . . . , n} satisfying
∑

j∈S sj ≤ C so
as to maximize V (S) =

∑
j∈S vj .

Note: I would prefer to use approximation ratios r ≥ 1 (so that we can
talk unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios ρ ≤ 1 for maximization problems; i.e.
ALG ≥ ρOPT . For certain topics, this is the convention.

One can show that the most natural greedy methods (sort by
non-increasing profit densities

vj
sj

, sort by non-increasing profits vj ,

sort by non-decreasing size sj) will not yield any constant ratio.

Can you think of nemesis sequences for these three greedy methods?

What other orderings could you imagine?
16 / 38



Can there be any online algorithm for the knapsack
problem?

Note that the knapsack problem can be called the budget problem; that is,
the size can be viewed as a budget.
Given the importance of the knapsack problem , it has been studied with
respect to many different online and offline models. We briefly mention a
few known results:

The problem is weakly NP complete even if all values are
proportional; that is vi = si for all i .
There is a randomized 2-competitive ratio for the knapsack problem
with proportional weights.
There is no randomized online algorithm with a constant ratio for the
(general values) knapsack problem.
There is no deterministic online algorithm even if the algorithm can
remove previously accepted items (but still remain within the
knapsack size constraint).
There is a 2-approximation online algorithm that is randomized and
allows removing of items.
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The partial enumeration greedy PTAS for knapsack

The PGreedyk Algorithm

Sort I so that v1
s1
≥ v2

s2
. . . ≥ vn

sn
For every feasible subset H ⊆ I with |H| ≤ k

Let R = I − H and let OPTH be the optimal solution for H
Consider items in R (in the order of profit densities)
and greedily add items to OPTH not exceeding knapsack capacity C .

% It is sufficient for bounding the approximation ratio to stop
as soon as an item is too large to fit

End For
Output: the OPTH having maximum profit.
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Sahni’s PTAS result

Theorem (Sahni 1975): V (OPT ) ≤ (1 + 1
k )V (PGreedyk).

This algorithm takes time knk and setting k = 1
ε yields a (1 + ε)

approximation running in time 1
εn

1
ε .

An FPTAS is an algorithm achieving a (1 + ε) approximation with
running time poly(n, 1ε ). There is an FPTAS for the knapsack problem
(using dynamic programming and scaling the input values) so that
the PTAS algorithm for knapsack was quickly subsumed. But still the
partial enumeration technique is a general approach that is often
useful in trying to obtain a PTAS (e.g. as mentioned for makespan).

This technique (for k = 3) was also used by Sviridenko to achieve an
e

e−1 ≈ 1.58 approximation for monotone submodular maximization
subject to a knapsack constraint. It is NP-hard to do better than a
e

e−1 approximation for submodular maximization subject to a
cardinality constraint (i.e. when all knapsack sizes are 1).

Usually such inapproximations are more precisely stated as ”NP-hard
to achieve e

e−1 + ε for any ε > 0”.
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The priority algorithm model and variants

As part of our discussion of greedy (and greedy-like) algorithms, I want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms we mentioned? With the exception of
Huffman coding (which we can also deal with), like online algorithms,
all these algorithms consider one input item in each iteration and
make an irrevocable “greedy” decision about that item..

We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dk

about each input item Ik (e.g. on what machine to schedule job Ik in
the makespan case) such that {(I1,D1), . . . , (In,Dn)} constitutes a
feasible solution.
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Priority model continued

Note: that a problem is only fully specified when we say how input
items are represented. (This is usually implicit in an online algorithm.)

We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn’t always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation.
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Greedy decisions and priority algorithms continued

For example, in the knapsack problem, a greedy decision always takes
an input if it fits within the knapsack constraint and in the makespan
problem, a greedy decision always schedules a job on some machine
so as to minimize the increase in the makespan. (This is somewhat
more general than saying it must place the item on the least loaded
machine.)
If we do not insist on greediness, then priority algorithms would best
have been called myopic algorithms.
We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).
The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.
We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.
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The priority model definition

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider deterministic fixed order priority algorithms. Since I
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

Initially there is some (possibly infinite) set J of potential inputs.
The algorithm chooses a total ordering π on J . Then the adversary
selects a subset I ⊂ J of actual inputs so that I becomes the input
to the priority algorithm. The input items I1, . . . , In are ordered
according to π.

In iteration k for 1 ≤ k ≤ n, the algorithm considers input item Ik
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dk about this input item.
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The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering π of J
Let I ⊂ J be the input instance
S := ∅ % S is the set of items already seen
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
I := I \ S
Ii := minπ{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}

end

Figure: The template for a fixed priority algorithm
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End of Wednesday, September 28 class

We ended the class with a brief introdution to the priority model for
myopic algorithms.
I am keeping the remaining slides in case anyone ants to see the end of the
discussion on priority algorithms.
Next week Calum will be discussing online bipartite matching. ‘
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Some comments on the priority model

A special (but usual) case is that π is determined by a function
f : J → < and and then ordering the set of actual input items by
increasing (or decreasing) values f (). (We can break ties by say using
the input identifier of the item to provide a total ordering of the input
set.) N.B. We make no assumption on the complexity or even the
computability of the ordering π or function f .
NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
input identifier of the item.
As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global
information.)
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The adaptive priority model template

J is the set of all possible input items
I is the input instance
S := ∅ % S is the set of items already considered
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
decide on a total ordering πi of J
I := I \ S
Ii := min≤πi

{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}
J := J \ {I : I ≤πi Ii}
% some items cannot be in input set

end

Figure: The template for an adaptive priority algorithm
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Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

1 For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights vj = |fj − sj |), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

2 For the knapsack problem, no priority algorithm can achieve a
constant approximation. We note that the maximum of two greedy
algorithms (sort by value, sort by value/size) is a 2-approximation.

3 For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

4 As previously mentioned, for deterministic fixed order priority
algorithms, there is an Ω(logm/ log logm) inapproximation bound for
the makespan problem in the restricted machines model.
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More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be naturally viewed an
alternating sequence of actions;

The adversary eliminates some possible input items
The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset I of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm. Why?

Unless stated otherwise we usually analyze randomized algorithms (for any
type of algorithm) with respect to an oblivious adversary.
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Extensions of the priority order model

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and one irrevocable decision). The
following online or priority algorithm extensions can be made precise:

Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to permanently discard previously accepted
intervals (while always maintaining a feasible solution), then we can
achieve a 4-approximation. (but provably not optimality).
While the knapsack problem cannot be approximated to within any
constant, we can achieve a 2-approximation by taking the maximum
of 2 greedy algorithms. More generally we can consider some “small”
number k of priority (or online) algorithms and take the best result
amongst these k algorithms. The partial enumeration greedy
algorithm for the makespan and knapsack problems are an example of
this type of extension.
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Extensions of the priority order model continued

Closely related to the “best of k online (priority)” algorithms is the
concept of online (priority) algoirthms with “advice”. There are two
advice models, a model where one measures the maximum number of
advice bits per input item, and a model where we are given some
number ` of advice bits at the start of the computation. The latter
model is what I will mean by “online (priority) with advice.” Online
with ` advice bits is equivalent to the max of k = 2` online (priority)
model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.
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Online algorithms with ML advice

Relatively recently, the advice model has gained new attention in the form
of “online algorithms with ML advice”.

The perspective now is not the tradeoff betwewen the amount of advice vs
performance but rather to consider advice that may not be completely
reliable. In particular, the advice might come from experience of an ML
algorithm that has been learning from thousands of trials.

The goal is to exploit such advice to obtain an algorithm that iinformally is
“robust” (in the sense of the algorithm not performing too badly if the
advice is wrong and is “consistent” in the sense that the algorithm’s
performance is much better than what can be done without advice if the
advice is accurate or near accurate. There are different ways to formulate
tnd quantify hese requirements and (not surprisingly) there can be a
tradeoff between robustness and consistency.
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There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT model to be discussed later).
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Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.

2 There is a 3
5 approximation for biparitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why?

What information should we be allowed to convey between
passes?
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Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant s ≥ 3, there is an
Ω(s/ log s) hardness of approximation assuming P 6= NP.
We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority.
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The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.
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The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.
For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do
better than min{m, n}.
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Improving the approximation for set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for set packing.

On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is asymptotically the best possible approximation assuming NP 6= ZPP.
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Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedywt
applied to sets of cardinality at most

√
m/k . Set PGreedyk to be the best

of Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .
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