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Brief Announcements and todays agenda

Assignment 3 due Wednesday, December 7 1PM. So far I have posted
three questions.

In last weeks slides, I added a slide regarding a variant of the
“7-way-branching” algorithm for 3SAT. Namely I have skectched a
“3-way-brancing” algorithm with a better exponential time bound.

I also added a slide giving the analysis for the claim about the random
walk algorithm for 3SAT.

Todays agenda

Continue sublinear time algorithms

The streaming model
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Estimating average degree in a graph

Given a large graph G = (V ,E ) (that can only be accessed by some
kind “local queries”) with |V | = n, we want to estimate the average
degree d of the vertices.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/ε random subsets Si of V each of size (say)
√
n

ε2.5

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.
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What is the difference between the average degree
problem and estimating the average of n numbers?

To estimate the average of a set of numbers {xi} (with 1 ≤ xi ≤ n − 1)
requires Ω(n) time. This is a needle in a haystack problem problem if all
but one of the xi = 1 and the other one is (say) n2.

The average degree in a graph seems pretty much like the average of a set
of numbers. What is different?

For a connencted graph, the difference is intuitively that while we may not
sample a high degree vertex, we are likely to find their neighbours and this
will wind up accounting for the high degree edges.

A more precise argument would use the following theorem:

Erdos-Gallai

The sequence d1 ≥ d2 . . . ≥ dn ≥ 1 is a graph degree sequence if and only
if
∑n

i=1 di is even and
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 di .

4 / 36



What is the difference between the average degree
problem and estimating the average of n numbers?

To estimate the average of a set of numbers {xi} (with 1 ≤ xi ≤ n − 1)
requires Ω(n) time. This is a needle in a haystack problem problem if all
but one of the xi = 1 and the other one is (say) n2.

The average degree in a graph seems pretty much like the average of a set
of numbers. What is different?

For a connencted graph, the difference is intuitively that while we may not
sample a high degree vertex, we are likely to find their neighbours and this
will wind up accounting for the high degree edges.

A more precise argument would use the following theorem:

Erdos-Gallai

The sequence d1 ≥ d2 . . . ≥ dn ≥ 1 is a graph degree sequence if and only
if
∑n

i=1 di is even and
∑k

i=1 di ≤ k(k − 1) +
∑n

i=k+1 di .

4 / 36



The precise statement of Feige’s approximation

We will just sketch a slightly weaker result but here is precisely the
statement in the Feige 2006 SICOMP paper.
For any d0 (the minimum degree in the graph) and for ρ = 2 + ε, the
Feige algorithm computes an estimation within a factor of ρ with high
probability (e.g., any constant) and uses O(1ε

√
n/d0) degree queries.
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The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low or too high. But we will show that with
high probability these estimates will not be too bad.

The proof will follow from the following two lemmas concerning the
average degree ai of a subset Si .

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄ ] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄ ] ≤ 1− ε
2
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How the proof follows from the lemmas

The probability bound in Lemma 2 is amplified to any constant (say 1/8)
by repeated trials; i.e., the 8/ε independent trials of random Si . That is,
Prob[Alg > (1 + ε)d̄ ] = Prob[ai > (1 + ε)d̄ ] ∀i

<
(
1− ε

2

)8/ε ≤ e−4 ≤ 1/8.

For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

That is, Prob[ALG < 1
2(1− ε)d̄ ] ≤

∑ε/8
i=1(ε/64) = 1/8.
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Sketch of the lemmas in Feige’s average degree
algorithm
Lemma 2 is relatively easy. Consider any Si . Letting Xj be the degree of
vertex vj we have E[Xj ] = d̄ , and

E[ai ] = E
[

1
|Si |
(∑

j :j∈Si Xj

)]
= 1
|Si |
∑

j :j∈Si E[xj ] = d̄

We can then use Markov’s inequality to obtain Lemma 2.

The proof of Lemma 1 is more involved. We cannot simply amplify an
error bound for a random subset since each Si trial gives another chance of
finding a low estimate. Instead we will have to use a Chernoff bound for
the probability that a sum of independent random variables deviates from
its mean. The following is sufficient:

A Chernoff bound

Let Z1, . . . ,Zs be a sequence of iindependent r.v.s with Zj ∈ [0, 1] and let

µ = E[
∑

j Zj ]. Then Prob[
∑

j Zj ≤ (1− ε)sµ] ≤ e−ε
2s µ

4
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Continuing the proof sketch for Lemma 1

Let H be the
√
ε′n vertces of the the highest degree. Here ε′ will be

chosen to satisfy (1− ε′) · (1/2− ε′) ≤ (1/2− ε)

Assune that the random selection of nodes in the algorithm was restricted
to just L = V \ H.

Of course, by removing high degree vertices from the random sampling,
the probability of concluding that d̄ ≤ 1

2(1− ε)d increases.

Claim
∑

i∈L dj ≥ (12 − ε
′)
∑

i∈V di − ε′n
The Claim is a couting algorithm noting that the

∑
i∈V counts every edge

twice while
∑

i∈L might omit ε′n edges within H and only count edges
between H and L once.
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Continuation of proof of Lemma 1

Thus the average degree in L is at least 1
2(d̄ − ε′) . So it remain to obtain

a lower bound on the average degree of vertices in L. We use the following
observations:

Let dH = minimum degree of any vertex in H

Let Xj = degree of a vertex vj ∈ Si which implies Xj ∈ [1, dH ]

Let Zj = Xj/dH

The Chernoff bound and the bound we have for the average degree of

vertices in L, then gives us : Prob[ai < (1/2)(1− ε)d̄ ] ≤ e
−
ε2sE[Xj ]

4dH

using the Chernoff bound.

If s = |Si | were sufficiently large (i.e. s ≥ ε2 dH
E[Xj ]

), we are done. But we

would like the bound to not depend on dH and E[Xj ].

This is handled by considering two cases; namely for when dH < |H| and
when dH ≥ |H|.
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Understanding the input query model
As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.

Feige’s algorithm for estimating the average degree uses only “degree
queries”; that is, “what is the degree of a vertex v”.

Feige shows that in this degree query model, that any algorithm that
acheives a (2− ε) approximation (for any ε > 0) requires time Ω(n).

In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.

Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
(n/d̄)poly(log n, 1ε )

They also show that this
√

(n) time bound is essentially optimal.
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Approximating the size of a maximum matching in a
bounded degree graph

We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching.

Our goal is to compute with high probability a maximal matching in
time depending only on the maximium degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {ej}
% Note: this will be done “on the fly” as needed
The permutation determines a maximal matching M as given by the

greedy algorithm that adds an edge whenever possible.
Choose r = O(d/ε2) nodes {vi} at random
Using an “oracle” let Xi be the indicator random variable for whether

or not vertex vi is in the maximal matching.
Output m̃ =

∑
i=1...r Xi
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Performance and time for maximal matching

Claims

1 m ≤ m̃ ≤ m + ε n where m = |M|.
2 The algorithm runs in time 2O(D)/ε2

This immediately gives an approximation of the maximum matching
m∗ such that m∗ ≤ m̃ ≤ 2m∗ + εn

A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result

Let δ, ε > 0 and let k = d1/δe. There is a randomized one sided algorithm

(with probability 2/3) running in time 2O(Dk )

ε2k+1 that outputs a maximium

matching estimate m̃ such that m∗ ≤ m̃ ≤ (1 + δ)m∗ + εn.
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Property Testing

Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite).

The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “ε-far” from having the property. The tester
can answer either way if G does not have the property but is
“ε-close” to having the property.

We will usually have a 1-sided error in that we will always answer YES
if G has the property.

We will see what it means to be “ε-far” (or close) from a property by
some examples.
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Tester for linearity of a function
Let f : Zn− > Zn; f is linear if ∀x , y f (x + y) = f (x) + f (y) .

Note: this will really be a test for group homomorphism

f is said to be ε-close to linear if its values can be changed in at most
a fraction ε of the function domain arguments (i.e. at most εn
elements of Zn) so as to make it a linear function. Otherwise f is said
to be ε-far from linear.

The tester

Repeat 4/ε times
Choose x , y ∈ Zn at random

If f (x) + f (y) 6= f (x + y)
then Output f is not linear

End Repeat If all these 4/ε tests succeed then Output linear

Clearly if f is linear, the tester says linear.

If f is ε-far from being linear then the probability of detecting this is
at least 2/3.
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Testing a list for monotonicity

Given a list A[i ] = xi , i = 1 . . . n of distinct elements, determine if A is
a monotone list (i.e. i < j ⇒ A[i ] < A[j ]) or is ε-far from being
monotone in the sense that more than ε ∗ n list values need to be
changed in order for A to be monotone.

The algorithm randomly chooses 2/ε random indices i and performs
binary search on xi to determine if xi in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

Clearly the time bound is O(log n/ε) and clearly if A is monotone
then the tester reports monotone.

If A is ε-far from monotone, then the probability that a random binary
search will succeed is at most (1− ε) and hence the probability of the

algorithm failing to detect non-monotonicity is at most (1− ε)
2
ε ≤ 1

e2

16 / 36



Graph Property testing

Graph property testing is also an area by itself. There are several
models for testing graph properties.

Let G = (V ,E ) with n = |V | and m = |E |.
Dense model: Graphs represented by adjacency matrix. Say that
graph is ε-far from having a property P if more than εn2 matrix
entries have to be changed so that graph has property P.

Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is ε-far from property P is at least εm edges
have to be changed.

In general there are substantially different results for these two graph
models.
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The property of being bipartite

In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

Pick a random subset S of vertices of size r = Θ(
log( 1

ε
)

ε2
)

Output bipartite iff the induced subgraph is bipartite

Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

The claim is that if G is ε-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

The algorithm runs in time quadratic in the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).
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Testing bipartiteness in the bounded degree model

Even for degree 3 graphs, Ω(
√
n) queries are required to test for being

bipartite or ε-far from being being bipartite. Goldreich and Ron [1997]

There is a nearly matching algorithm that uses O(
√
npoly(log n/ε))

queries. The algorithm is based on random walks in a graph and
utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/ε) times
Randomly select a vertex s ∈ V
If algorithm OddCycle(s) returns cylce found then REJECT

End Repeat
If case the algorithm did not already reject, then ACCEPT

OddCycle performs poly(log n/ε) random walks from s each of length
poly(log n/ε). If some vertex v is reached by both an even length and
an odd length prefix of a walk then report cycle found; else report odd
cycle not found
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Sublinear space: A slight detour into complexity
theory

Sublinear space has been an important topic in complexity theory
since the start of complexity theory. While not as important as the
P = NP or NP = co −NP question, there are two fundamental space
questions that remain unresolved:

1 Is NSPACE (S) = DSPACE (S) for S ≥ log n ?
2 Is P contained in DSPACE (log n) or ∪kSPACE (logk n)? Equivalently,

is P contained in polylogarthmic parallel time.

Savitch [1969] showed a non deterministic S space bounded TM can
be simulated by a deterministic S2 space bounded machine (for space
constructible bounds S).

Further in what was (and perhaps still is) considered a very surprising
result, Immerman [1987] and independently Szelepcsényi [1987]
NSPACE (S) = co − NSPACE (S). (Savitch’s result was also
considered suprising by some researchers when it was announced.)
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USTCON vs STCON

We let USTCON (resp. STCON) denote the problem of deciding if there
is a path from some specified source node s to some specified target node
t in an unidrected (resp. directed) graph G .

As I may have previously mentioned, the Aleliunas’ et al [1979]
random walk result showed that USTCON is in RSPACE (log n) and
after a sequence of partial results about USTCON, Reingold [2008]
was eventually able to show that USTCON is in DSPACE (log n)

It remains open if
1 STCON (and hence NSPACE (log n)) is in RSPACE (log n) or even

DSPACE (log n).
2 STCON ∈ RSPACE (S) or even DSAPCE (S) for any S = o(log2 n)
3 RSPACE (S) = DSPACE (S).
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The streaming model

In the data stream model, the input is a sequence A of input items
(or input elements) a1, . . . , an which is assumed to be too large to
store in memory. Let ai ∈ [1,D]
Small notational dilemma: The seminal paper in the streaming area
is the Alon, Matias and Szegedy (AMS) paper for computing the
frequency moment problem. Their notation is that a stream is a
sequence a1, . . . am} with ai ∈ {1, 2, . . . n}. To be more consistent
with the online literature, I will use n for the length of the sequence
and D for the domain of the ai with the exception of the discussion of
the AMS paper where I will use their notation.

We usually assume that n is not known and one can think of this
model as a type of online or dynamic algorithm.

The space available S(n,D) is some sublinear function. The input
items stream by and one can only store information in space S .
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The streaming model continued

In some papers, space is measured in bits (which is what we will do)
and sometimes in words, each word being O(log n) bits.

It is also desirable that that each input item is processed efficiently,
say log(n) + log(m) time, and perhaps even in time O(1) (assuming
we are counting operations on words as O(1)).

The initial (and primary) work in streaming algorithms is to
approximately compute some function (say a statistic) of the data or
identify some particular item(s) in the data stream.

Lately, the model has been extended to consider “semi-streaming”
algorithms for optimization problems. For example, for a graph
problem such as matching for a graph G = (V ,E ), the goal is to
obtain a good approximation using space Õ(|V |) rather than O(|E |).

Most results concern the space required for a one pass algorithm. But
there are results concerning multi-pass algorithms and also results
concerning the tradeoff between the space and number of passes.
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An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing item problem

Suppose we are given a stream A = a1, . . . , an−1 and we are promised that
the stream A is a permutation of {1, . . . ,m} − {x} for some integer x in
[1, n]. (Here D = n.) The goal is to compute the missing x .

Space n is obvious using a bit vector cj = 1 iff j has occured.

Instead we know that
∑

j∈A = n(n + 1)/2− x .
So if s =

∑
i∈A ai , then x = n(n + 1)/2− s.

This uses only 2 logm space and constant time/item.
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Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose input
elements consist of a permutation of n − k distinct elements in {1, . . . , n}.
We want to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai )
j = cj(n)−

∑
i /∈A x ji . Here cj(m) is

the closed form expression for
∑n

i=1 i
j . This results in k equations in

k unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space
deterministic streaming algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.
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Some well-studied streaming problems

Computing frequency moments. Let A = a1 . . . am be a data stream
with ai ∈ [n] = {1, 2, . . . n}. Let mi denote the number of occurences
of the value i in the stream A. For k ≥ 0, the kth frequency moment
is Fk =

∑
i∈[n](mi )

k . The frequency moments are most often studied
for integral k .

1 F1 = m, the length of the sequence which can be simply computed.
2 F0 is the number of distinct elements in the stream
3 F2 is a special case of interest called the repeat index (also known as

Gini’s homogeneity index).

Finding k-heavy hitters; i.e. those elements appearing more than m/k
times in stream A.

Finding rare or unique elements in A.
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The majority element problem

While most streaming algorithms concern one pass over the input stream,
there are results that use two or more passes.

One relatively easy (but still very interesting) result is the Misra-Gries
algorithm for computing k heavy hitters. As a special case, we have the
majority problem (i.e. the k-hitter problem for k = 2).

There is a temptation to solve this problem by divide and conquer; divide
the sequence in half, find the heavy hitters in each half and then check.

The streaming model fascilitates thinking about a much better solution. In
the case of majority, lets just try to maintain one possible candidate in the
first pass and then check to see if the candidate is a true more than
majority item in the second pass. See the Chakrabarti Lecture notes.
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The Misra-Gries algorithm

Maintain a candidate for the majority element and a counter for that
candidate.

When the counter is empty, the next element in the stream becomes the
candidate.

Every time the next elmennt in the stream is the candidate increase the
counter by 1. If the next element is not the candidate decrease the
counter by 1.

Claim: If there is a majority element then it has to be the current
candidate.

We can use a second pass over the elements to check if the candidate
occurs more than n/2 times.

The space used is O(log n + logD) and the time is (log n) (or O(1) if
counting element comparisons) per input element.
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