
CSC2420: Algorithm Design, Analysis and
Theory

Fall 2022
An introductory (i.e. foundational) level

graduate course.

Allan Borodin

September 14, 2022

1 / 45

Week 1

Course Organization:

1 Sources: No one text; lots of sources including specialized graduate
textbooks, our current or past posted lecture notes (beware typos),
lecture notes from other Universities, and papers. This is a very
active field. Foundational course but we will discuss some recent work
and research problems.

2 Lectures and Tutorials: One two hour lecture per week with
tutorials as needed and requested. The TA is Calum MacRury.

3 Grading: Will depend on how many students are taking this course
for credit. I think we will have three assignments (tentative dates are
October 12, November 4 and December 1) with an occasional
opportunity for some research questions.

4 Office hours: TBA but we welcome questions. So feel free to drop
by and/or email to schedule a time. Borodin contact: SF 2303B;
bor@cs.toronto.edu. The course web page is
www.cs.toronto.edu/˜bor/2420f22

2 / 45

What is an appropriate background?

In short, a course like our undergraduate CSC 373 is essentially the
prerequisite.

Any of the popular undergraduate texts. For example, Kleinberg and
Tardos; Cormen, Leiserson, Rivest and Stein; DasGupta,
Papadimitriou and Vazirani.

It certainly helps to have a good math background and in particular
understand basic probability concepts, and some graph theory.

BUT any CS/ECE/Math graduate student (or mathematically oriented
undergrad) should find the course accessible and useful.

3 / 45

Comments and disclaimers on the course perspective

This is a graduate level “foundational course”. We will focus
somewhat on our research perspectives. In particular, our focus is on
combinatorial problems using mainly combinatorial algorithmic
paradigms. And even more specifically, there is an emphasis on
“conceptually simple algorithms”.

Perhaps most graduate algorithms courses are biased towards some
research perspective.

Given that CS might be considered (to some extent) The Science and
Engineering of Algorithms, one cannot expect any comprehensive
introduction to algorithm design and analysis. Even within theoretical
CS, there are many focused courses and texts for particular subfields.

The word theory in the course title reflects the desire to make some
generally informal concepts a little more precise.

4 / 45

Reviewing some basic algorithmic paradigms

We begin with some “conceptually simple” search/optimization algorithms.

The conceptually simplest “combinatorial” algorithms

Given an optimization problem, it seems to me that the conceptually
simplest approaches are:

brute force search

divide and conquer

greedy

local search

dynamic programming

Comment

We usually dismiss brute force as it really isn’t much of an algorithm
approach but might work for small enough problems.

Moreover, sometimes we can combine some aspect of brute force
search with another approach as we will soon see.

5 / 45

Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.

The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.

The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

Huffman’s algorithm for optimal prefix codes.

Graham’s online and LPT approximation algorithms for makespan
minimization on identical machines.

The 2-approximation for unweighted vertex cover via maximal
matching.

The “natural greedy” ln(m) approximation algorithm for set cover.

6 / 45

Greedy and online algorithms:
Graham’s online and LPT makespan algorithms

We start with two greedy algorithms dating back to 1966 and 1969.

These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn’t use that terminology).

This might then be called the start of worst case approximation
algorithms. One could also even consider this to be the start of online
algorithms and competitive analysis (although one usually refers to a
1985 paper by Sleator and Tarjan as the seminal paper in this regard).

NOTE: Giving credit for any idea or result is problematic. The
secretary problem and its approximation ratio precede Graham.
Graham’s work and the Sleator and Tarjan paper are surely seminal.

There are some general concepts to be observed and even after 55
years still many open questions concerning the many variants of
makespan problems.

7 / 45

The makespan problem for identical machines

The input consists of n jobs J = J1 . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
8 / 45

Aside: The Many Variants of Online Algorithms

As I indicated, Graham’s algorithm could be viewed as the first example of
what has become known as competitive analysis (as named in a paper by
Manasse, McGeoch and Sleator) following the paper by Sleator and Tarjan
which explicitly advocated for this type of analysis. Another early (pre
Sleator and Tarjan) example of such analysis was Yao’s analysis of online
bin packing algorithms.

In competitive analysis we compare the performance of an online algorithm
against that of an optimal solution. The meaning of online algorithm here
is that input items arrive sequentially and the algorithm must make an
irrevocable decision concerning each item. (For makespan, an item is a job
and the decision is to choose a machine on which the item is scheduled.)

But what determines the order of input item arrivals?

9 / 45

The Many Variants of Online Algorithms continued

In the “standard” meaning of online algorithms (for CS theory), we
think of an adversary as creating a nemesis input set and the ordering
of the input items in that set. So this is traditional worst case analysis
as in approximation algorithms applied to online algorithms. If not
otherwise stated, we will assume this as the meaning of an online
algorithm and if we need to be more precise we can say online
adversarial input model.
We will also sometimes consider an online stochastic model where an
adversary defines an input distribution and then input items are
sequentially generated. There can be more general stochastic models
(e.g., a Markov process) but the i.d. and especially the i.i.d model is
common in analysis. Stochastic analysis is often seen in OR.
In the i.i.d model, we can assume that the distribution is known by
the algorithm or unknown.
In the random order model (ROM), an adversary creates a size n
nemesis input set and then the items from that set are given in a
uniform random order (i.e. uniform over the n! permutations)

10 / 45

Second aside: more general online frameworks

In the standard online model (and the variants we just mentioned), we are
considering a one pass algorithm that makes one irrevocable decision for
each input item.

There are many extensions of this one pass paradigm. For example:

An algorithm is allowed some limited ability to revoke previous
decisions.
There may be some forms of lookahead (e.g. buffering of inputs).
The algorithm may maintain a “small’ number of solutions and then
(say) take the best of the final solutions.
The algorithm may do several passes over the input items.
The algorithm may be given (in advance) some advice bits based on
the entire input. Recently, lots of interest in online algorithms with
ML advice.

Throughout our discussion of algorithms, we can consider deterministic or
randomized algorithms. In the online models, the randomization is in
terms of the decisions being made. (Of course, the ROM model is an
example of where the ordering of the inputs is randomized.) 11 / 45

A third aside: other measures of performance

The above variants address the issues of alternative input models, and
relaxed versions of the online paradigm.

Competitive analysis is really just asymptotic approximation ratio analysis
applied to online algorithms. Given the number of papers devoted to
online competitive analysis, it is the standard measure of performance.

However, it has long been recognized that as a measure of performance,
competitive analysis is often at odds with what seems to be observable in
practice. Therefore, many alternative measures have been proposed. An
overview of a more systematic study of alternative measures (as well as
relaxed versions of the online paradigm) for online algorithms is provided in
Kim Larsen’s lecture slides that I have placed on the course web site.

In the makespan problem, the objective is a min-max objective. One also
studies the max-min objective which can be viewed as a fairness measure.

12 / 45

Returning to Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m ;

that is, for any set of jobs J , CGreedy (J) ≤ (2− 1
m)COPT (J).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea: OPT ≥ (
∑

j pj)/m;OPT ≥ maxjpj
What is CGreedy in terms of these requirements for any schedule?

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
13 / 45

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is the analogy of asymptotic
approximation ratios.

NOTE: Often, we will not provide proofs in the lecture notes but rather
will do or sketch proofs in class (or leave a proof as an exercise).

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.

14 / 45

Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
is a greedy algorithm.

We will present the priority model for greedy (and greedy-like)
algorithms. I claim that all the algorithms mentioned on slide 6 can
be formulated within the priority model.

Assuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n logm)

which is (n log n) since we can assume n ≥ m. In fact, one can assume
n >> m and hence the online greedy is faster than the following offline
greedy LPT algorithm.

I the LPT algorithm would have time complexity O(n log n).

15 / 45

End of Week 1

We ended the first week motivating the course and discussing the
Graham’s online and offline greedy algorithms for the makespan problem
on m identical machines.

I am reorganizing the material that follows but and the reader can now
move on to the second week of our course

16 / 45

	Lecture 1

