Lecture 9 Sublinear Time Algorithms

Sublinear Time Algorithms

Sublinear time

- > Algorithm runs in o(n) time, where n =length of input
 - \circ Assume direct access to i^{th} bit of the input
- > Algorithm cannot even read the entire input!
- > (With a few exceptions) the algorithm must
 - Use randomization
 - Provide an approximately accurate answer
- Also interesting: sublinear space
 - > Algorithm uses o(n) additional space

Motivation

- Huge datasets
 - > World-wide web, social networks, genome project, sales logs, census data, high-resolution images, fine-grained scientific measurements, ...
- Need fast algorithms for subroutines that will be called frequently
- Many sublinear algorithms turn out to be streaming algorithms, which only need to access incoming data once

Exact vs Inexact Algorithms

- Exact: Always provides the right answer
- Inexact: Provides an approximately optimal answer
 - > ANS = right answer, ALG = output of algorithm
 - > For numerical answers (e.g., counting problems) \circ (1 − ϵ) ANS ≤ ALG ≤ (1 + ϵ) ANS
 - > For binary answers (e.g., yes/no problems)

 \circ 1-sided error:

- $ANS = YES \Rightarrow ALG = YES$ with probability 1
- $ANS = NO \Rightarrow ALG = NO$ with probability $\geq 2/3$

 \odot 2-sided error:

• ALG = ANS with probability $\geq 2/3$

Exact vs Inexact Algorithms

- Exact: Always provides the right answer
- Inexact: Provides an approximately optimal answer
 - > ANS = right answer, ALG = output of algorithm
 - For "property testing"
 - \circ Property satisfied \Rightarrow ALG = YES with probability 1
 - Property at least ϵ -far from being satisfied \Rightarrow ALG = NO with probability $\geq 2/3$
 - Property not satisfied, but ϵ -close to being satisfied ⇒ don't care what ALG is
 - o Will see this later...

Deterministic + Exact

- Always give the right answer using a deterministic algorithm that does not read the entire input!
 Seems impossible
- You already know one such algorithm
 Binary search! O(log n) time, deterministic, exact.
 Needs to assume that input is already sorted.
- In general, deterministic + exact is impossible unless input is structured.

Deterministic + Inexact

- Approximating the diameter in a metric space
 - > Points x_1, \ldots, x_n , distance metric d
 - > Input: n^2 numbers $d_{ij} = d(x_i, x_j)$
 - > Goal: estimate diameter $D = \max_{i,j} d(x_i, x_j)$
- Algorithm: Pick arbitrary x_i , return $D_i = \max_{\substack{j \neq i}} d_{ij}$
- Analysis:
 - > O(n) running time, "sublinear" in the input length $O(n^2)$ > $D = d_{a,b} \le d_{a,i} + d_{i,b} \le D_i + D_i = 2D_i$ > Also, clearly $D \ge D_i$. Thus, we have a 2-approximation!

Deterministic + Inexact

- This is also somewhat an exception
- Note: If you were given n explicit points in a Euclidean space instead of the $O(n^2)$ distances, then O(n) would no longer be sublinear.
- For most sublinear time algorithms, randomization is a must!

Randomized + Exact

- Known as Las Vegas algorithms
 - > Distribution over deterministic algorithms
 - Each algorithm is exact, i.e., produces the correct answer.
 - > The algorithms have varying costs on different instances.
 - Hope is that a randomization over them will have low expected cost on every instance.
- Example: two algos {Alg1,Alg2}, two instances {I1,I2}
 - > Alg1 takes 1000 steps on I1, 10 on I2.
 - > Alg2 takes 10 steps on I2, 1000 on I2.
 - > $(\frac{1}{2})$ Alg1+ $(\frac{1}{2})$ Alg2 takes 505 expected steps on any instance

- Input: A sorted doubly linked list with *n* elements.
 - > Imagine you have an array A with O(1) access to A[i]
 - > A[i] is a tuple (x_i, p_i, n_i)

 \circ Value,

 $\,\circ\,$ index of previous element in list,

 $\,\circ\,$ index of next element in list.

> Sorted:
$$x_{p_i} \le x_i \le x_{n_i}$$

- Task: Given x, check if there exists i s.t. $x = x_i$
- Goal: We will give a randomized + exact algorithm with expected running time $O(\sqrt{n})!$

• Motivation:

- > Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files
- > Creating a new, sorted version of the dataset is expensive
- It is often preferred to "implicitly sort" the data by simply adding previous-next pointers along with each element
- Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time
 Just like binary search achieves for an explicitly sorted array

Algorithm:

- > Select \sqrt{n} random indices R
- ≻ Access x_j for each $j \in R$
- ≻ Find the nearest x_j : $j \in R$ on each side of x
 - $o p \in R$ such that $x_p = \max\{x_j : x_j \leq x, j \in R\}$
 - \circ *q* ∈ *R* such that $x_q = \min\{x_j : x_j > x, j \in R\}$
 - $\,\circ\,$ One of the two must exist (WHY?).
- If p exists, start at A[p], and keep going next until you discover x, or you reach A[q] or end of list.
- If q exists, start at A[q], and keep going back until you discover x, or you reach A[p] or beginning of list.

• Analysis:

- Take arbitrary value x. Take the minimum value x_i in the list that is at least x. The algorithm is searching for x_i.
- > The algorithm throws \sqrt{n} random "darts" on the list.
- > Chernoff bounds: the probability that there is no dart in $c\sqrt{n}$ elements to the left (resp. right) of x_i is $2^{-\Omega(c)}$.
- > So, the expected distance of x_i to the dart on its left (and its right) is $O(\sqrt{n})$.
- > The algorithm finds these two darts in $O(\sqrt{n})$ time, and uses $O(\sqrt{n})$ search to locate x_i .

- Theorem: There exists an exact randomized algorithm for searching in a sorted doubly linked list in $O(\sqrt{n})$ expected running time.
 - Note: We don't *really* require the list to be doubly linked. Just "next" pointer suffices if we have a pointer to the first element of the list (a.k.a. "anchored list").
- We can also prove optimality of this algorithm!
- Theorem: No exact randomized algorithm can do this in $o(\sqrt{n})$ expected running time.

Yao's Principle

- Proves a *lower bound* on the expected running time of the best exact randomized algorithm
 - > "The expected time of a randomized algorithm R on the worst input I is no better than the expected time taken, under the worst probability distribution I over inputs, by the best deterministic algorithm A for that distribution."
 > max_I E_R[C(R, I)] ≥ max_D min_A E_{I~D}[C(A, I)]
- Special case of von Neumann's minimax theorem for two-player zero-sum games
 - Can see a randomized algorithm as a distribution over all deterministic algorithms

- Adversarial distribution: uniform random ordering of *n* distinct values
- Goal: Search the max value (last element of the list)
- We want to show that any deterministic algorithm takes $\Omega(\sqrt{n})$ steps in expectation.
- Deterministic algorithms have only two operations:
 > Op A: Access next/previous of an already accessed element.
 > Op B: Compute an index k, and access the kth element.

- Note: In a B op, the algorithm can compute index k using any information it has until that point.
- Let T = the set of last \sqrt{n} elements on the list.
 - > If the algorithm doesn't access any element of *T* using a B op, it must take $\Omega(\sqrt{n})$ A ops to locate the last element starting from any accessed element ⇒ done!
- We show that the algorithm requires $\Omega(\sqrt{n})$ steps in expectation to access an element of T using B op
 - Note: Each B op returns a random element from the yet unexplored list. (WHY?)

- To show: $\Omega(\sqrt{n})$ steps required to access T
 - After a many A ops and b many B ops, probability of accessing an element of T in the next B op is at most

$$\frac{|T|}{|\text{Unexplored List}|} = \frac{\sqrt{n}}{n-a-b} \le \frac{\sqrt{n}+a+b}{n}$$

- > Probability that no element of T is accessed after a many A ops and b many B ops is at least $\left(1 - \frac{\sqrt{n} + a + b}{n}\right)^b$
- > This implies that the expected number of steps until an element of T is accessed is $\Omega(\sqrt{n})$. (WHY?) QED!

Sublinear Geometric Algorithms

- Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list
 - > Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems
 - Polygon intersection: Given two convex polyhedra, check if they intersect.
 - Point location: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.
 - > They provided optimal $O(\sqrt{n})$ algorithms for both these problems.

Randomized + Inexact

- We will now move to inexact algorithms that return approximately accurate answers.
- Let us start with a counting problem where the answer is numerical.

- Input: Graph G with n vertices, and access to an oracle that returns the degree of a queried vertex in O(1) time.
- Ouptut: *α*-approximation of the average degree *d* of the vertices of *G*.

> α -approximation \Rightarrow answer lies in $[d/\alpha, \alpha \cdot d]$

• Goal: $(2 + \epsilon)$ -approximation in expected time $O(\epsilon^{-O(1)}\sqrt{n})$

 $\succ \epsilon$ is constant \Rightarrow sublinear in input size n

• Wait!

- > Isn't this equivalent to "given an array of n numbers between 1 and n 1, estimate their average"?
- > No! That requires $\Omega(n)$ time for constant approximation!
 - \circ Consider an instance with constantly many n 1's, and all other 1's: you may not discover any n 1 until you query $\Omega(n)$ numbers
- > Why are degree sequences more special?
 - Erdős–Gallai theorem: $d_1 \ge \cdots \ge d_n$ is a degree sequence iff their sum is even and $\sum_{i=1}^k d_i \le k(k-1) + \sum_{i=k+1}^n d_i$.

 \circ Intuitively, we will sample $O(\sqrt{n})$ vertices

• We may not discover the few high degree vertices, but we'll find their neighbors, and thus account for their edges anyway!

• Algorithm:

- > Take $^{8}/_{\epsilon}$ random subsets $S_{i} \subseteq V$ with $|S_{i}| = s$
- > Compute the average degree d_{S_i} in each S_i .
- > Return $\widehat{d} = \min_i d_{S_i}$

• Analysis:

> We will show that with $s = \Theta(\sqrt{n}/\epsilon^{O(1)})$, we can ensure $\widehat{d} \in [(1/2 - \epsilon) d, (1 + \epsilon) d]$ with probability at least $\frac{3}{4}$.

• Note: #queries (and running time) = $O\left(\frac{\sqrt{n}}{\epsilon^{O(1)}}\right)$

 \circ Feige [2006] improved this to $O(\epsilon^{-1}\sqrt{n/d_0})$ if we know $d \geq d_0$

• In particular, even with $d_0 = 1$, we have $O\left(\frac{\sqrt{n}}{\epsilon}\right)$ queries.

- Claim 1: We can choose $s = \Theta(\sqrt{n}/\epsilon^{O(1)})$ such that $\Pr[d_S < (1/2 \epsilon) d] \le \frac{\epsilon}{64}$.
- Proof:
 - > Let *H* be the set of $\sqrt{\epsilon' n}$ highest degree vertices in *G*, and $L = V \setminus H$.
 - > Sub-claim: $\sum_{i \in L} d_i \ge (1/2 \epsilon') \sum_{i \in V} d_i$
 - \circ Note that $\sum_{i \in V} d_i$ counts each edge in the graph twice.
 - $\sum_{i \in L} d_i$ might omit at most $\epsilon' n$ edges within H, and might only count edges between H and L once.
 - Thus, $\sum_{i \in L} d_i \geq 1/2 \ (\sum_{i \in V} d_i \epsilon' n)$
 - The sub-claim now follows when you substitute $n \le \sum_{i \in V} d_i$ in the above equation (which is true because *G* is connected).

• Proof:

- > We proved: ∑_{i∈L} d_i ≥ (¹/₂ − ε') ∑_{i∈V} d_i
 Thus, average degree in L ≥ (¹/₂ − ε') d.
- > A *lower bound* on d_S : assume all its vertices come from *L* ○ Let d_H = *minimum* degree of any vertex in *H*. ○ Let X_i = degree of i^{th} vertex in $S \Rightarrow X_i \in [1, d_H]$ ○ $E[X_i] \ge (1/2 - \epsilon') d \ge (1/2 - \epsilon') d_H |H|/n$ ○ $t = E[\sum_{i=1}^{s} X_i] = \Omega(d_H)$ due to our choice of *s*
- ➤ Hoeffding's bound:
 Pr[∑^s_{i=1} X_i < (1 ε') t] ≤ e<sup>-\frac{t(ε')^2}{d_H} ≤ \frac{ε}{64}
 Set ε' such that (1 ε') (1/2 ε') = 1/2 ε</sup>

- Claim 2: $\Pr[d_S > (1 + \epsilon)d] \le 1 \epsilon/2$.
- Proof:
 - > Markov's inequality

$$\Pr[d_S > \ell] \leq \frac{E[d_S]}{\ell} = \frac{d}{(1+\epsilon) d} = \frac{1}{1+\epsilon} \leq 1 - \frac{\epsilon}{2}$$

- Finishing the proof:
 - > $\Pr[d_S < (1/2 \epsilon) d] \le \epsilon/64$ -- low probability!
 - > $\Pr[d_S > (1 + \epsilon)d] \le 1 \frac{\epsilon}{2}$ --- high probability!
 - > Thus, we repeat $^{8}/_{\epsilon}$ times, and take the *minimum*.
 - With $\frac{3}{4}$ probability, no trial goes below $(\frac{1}{2} \epsilon) d$, but at least one comes below $(1 + \epsilon)d$. QED!

Effect of Input Query Model

- "Degree Queries"
 - Here, we assumed that we have O(1) time access to degree of a node.
 - > Feige's algorithm achieves $(2 + \epsilon)$ -approximation using $O(\sqrt{n}/\epsilon)$ queries
 - > Feige also proved optimality of this algorithm: any algorithm that gives (2ϵ) -approximation must use $\Omega(n)$ queries.
- What if the query model was different?

Effect of Input Query Model

- "Neighbor Queries"
 - > Query: (v, j)
 - > Obtain: jth neighbor of v (in some order), or "FALSE" (if v has degree less than j)
 - > We can mimic degree query using $O(\log n)$ queries \circ Feige's algorithm can run using $O(\sqrt{n}\log n \ \epsilon^{-1})$ queries
 - Goldreich and Ron show that this model is actually very powerful
 - We can do $(1 + \epsilon)$ -approximation with $O\left(\sqrt{n} \operatorname{poly}(\log n, \epsilon^{-1})\right)$ queries
 - \circ They also show a $\Omega(\sqrt{n/\epsilon})$ lower bound.

Problem

- > Input: Graph G = (V, E)
- > Output: \widetilde{m} such that $m \leq \widetilde{m} \leq m + \epsilon n$ with prob at least $^{2}/_{3}$, where m is the size of some maximal matching
- > Goal: $2^{O(D)}/\epsilon^2$ running time, where D is max degree

• Sublinear time when $D = o(\log n)$

- Motivation
 - Size of maximum matching and maximum vertex cover both lie in [m, 2m]
 - Gives a sublinear 2-approximation algorithms for these problems

- We will estimate the size of maximal matching (MM) produced by the greedy algorithm parametrized by an ordering σ of the edges
- Greedy $MM(\sigma)$:
 - Start with empty matching.
 - > For $e \in E$ (in the order of σ)
 - \circ If *e* does not "conflict" with already created matching, add it.
- Fix an arbitrary σ
 - > We can't explicitly do this in sublinear time.
 - > We'll handle this later.

- Suppose we have access to an oracle that tests whether an edge *e* belongs to greedy matching *M*.
- Algorithm:
 S ← ⁸/_{ε²} vertices of V sampled i.i.d.
 X_v = 1 if there exists an edge e incident on v ∈ S that is in M, and 0 otherwise
 Return m̃ = ¹/₂ ⋅ (n ⋅ ^{Σ_{v∈S} X_v}/_{|S|}) + ¹/₂ ⋅ (n ⋅ ε)

- Recall: $\widetilde{m} = \frac{1}{2} \cdot \left(n \cdot \frac{\sum_{v \in S} X_v}{|S|} \right) + \frac{1}{2} \cdot (n \cdot \epsilon)$
- Claim: $E[\widetilde{m}] = |M| + \frac{\epsilon n}{2}$
- Proof:

 $> E\left[\frac{\sum_{v \in S} X_v}{|S|}\right] = \text{prob of a random vertex being matched in } M$ $> E\left[n \cdot \frac{\sum_{v \in S} X_v}{|S|}\right] = 2 |\mathsf{M}| \qquad (\text{#matched vertices} = 2 |M|)$

• To prove $|M| \le \widetilde{m} \le |M| + \epsilon n$ with prob $\ge 2/3$ > Apply Hoeffding's inequality

- What's left:
 - 1. Design an oracle for whether e is included in M
 - 2. Handle the issue of not being able to fix σ beforehand
 - 3. Analyze running time

Oracle: Does *e* belong to greedy matching *M*?
> Observation: *e* belongs to *M* iff no edge *e'* adjacent to *e*

- with σ(e') < σ(e) belongs to M.
 > Recursive call on all adjacent edges with lower priority. If
 - all return NO, return YES, else return NO.

- What's left:
 - 1. Design an oracle for whether e is included in M
 - 2. Handle the issue of not being able to fix σ beforehand
 - 3. Analyze running time
- Generating permutation σ
 - > We will store a random number $r_e \sim U[0,1]$ for each e.
 - > We will store them in a binary search tree.
 - Start with an empty tree.
 - When we need to check the priority of e, see if it's already generated. If not, generate it.

- Running time : Oracle
 - > Consider the adjacency tree for edge *e*.

 \circ Root = e

 \circ For every node, its children are all its adjacent edges.

- Consider a node t at depth k
 - $\circ\,$ For the oracle to be called on t, the k+1 priorities from root to t must be monotonically decreasing

• This happens with probability 1/(k + 1)!

> #nodes at depth $k = (2D)^k$

○ Max degree $D \Rightarrow$ fanout is at most 2D

> Expected recursive calls
$$\leq \sum_{k=0}^{\infty} \frac{(2D)^k}{(k+1)!} \leq \frac{e^{2D}}{2D}$$

- Running time : Algorithm
 - > For $^{8}/_{\epsilon^{2}}$ nodes, call the oracle on all their incident edges (at most *D* per node)
 - > Total queries to the graph = $\binom{8}{\epsilon^2} \cdot D \cdot \frac{e^{2D}}{2D} = \frac{2^{O(D)}}{\epsilon^2}$ > QED!

- Note
 - > Let m^* be the size of a maximum matching
 - > This only ensures $\frac{m^*}{2} \le \widetilde{m} \le 2m^* + \epsilon n$ (w.p. 2/3)
 - > Suppose we want to achieve $m^* \leq \widetilde{m} \leq (1 + \delta)m^* + \epsilon n$ (w.p 2/3)
 - > Let $k = 1/\delta$

• Nguyen and Onak show $\frac{2^{o(D^k)}}{\epsilon^{2^{k+1}}}$ query complexity

 \circ Yoshida, Yamamoto, and Ito improve it to $D^{O(k^2)}k^{O(k)}\epsilon^{-2}$

• For a constant δ (thus a constant k), this is polynomial in D

• Note

> In all the previous algorithms...

- $\,\circ\,$ We ensured sublinear running time.
- Randomization was only used to ensure that the output is approximately accurate with high probability.

In this algorithm...

- We make sublinear calls to the oracle only in expectation. In some realizations, we might make $\Omega(n)$ oracle calls.
- We can avoid this by "cutting off" each call to the oracle after more than $c2^{O(D)}$ recursive calls are made, for a large constant c.
- $\,\circ\,$ Using Markov's inequality, this has a low chance of happening.

Property Testing

- The *inexact* algorithms we saw until now were about estimating numerical values.
 - I say inexact because we saw two exact algorithms for yes/no problems: binary search (deterministic) and searching in sorted list (randomized).
- We will now see inexact algorithms for yes/no problems.
 - > One such area is "property testing".
 - It's one of the most prevalent applications of sublinear time algorithms, and a research area of its own.

Property Testing

- Problem:
 - ➢ Given input I, test if it satisfies property P.
- Inexact goal:
 - If I satisfies P, must return "yes".
 - ➢ If I is at least "e-far" from satisfying P, must return "no" with probability at least ²/₃.
 - > If I violates P, but is "e-close" to satisfying P, free to return anything (we don't care!).

- Notes
 - > For 2-sided error, we also require "yes" w.p. at least $^{2}/_{3}$.
 - > What's " ϵ -far"? We'll see.

- Consider a Boolean function $f: \{0,1\}^n \rightarrow \{0,1\}$
- We want to test if *f* is *linear*:

> $\exists a_1, \dots, a_n \in \{0,1\}$ s.t. $f(x_1, \dots, x_n) = a_1x_1 + \dots + a_nx_n$? > All computations are in \mathbb{F}_2 (modulo 2).

> Equivalently: $f(x + y) = f(x) + f(y), \forall x, y \in \{0,1\}^n$?

• We say that f is ϵ -close to being linear if $\exists g$ such that $|\{x: f(x) \neq g(x)\}| \leq \epsilon 2^n$.

> Only need to change ϵ fraction of values to make it linear.

- Input: Oracle for accessing *f*
- Goal: 1-sided algorithm for testing linearity of f that makes $O(1/\epsilon)$ queries.
 - Note: This is independent of n. This is actually achievable for testing many properties.
- Motivation
 - > Subroutine for many other property testing algorithms
 - > Applications in cryptography, coding theory, program checking, PCPs (inapproximability), and Fourier analysis

• Algorithm:

Sample ²/_ε random pairs (x, y)
If f(x + y) ≠ f(x) + f(y) for any pair, output "no".
Else, output "yes".

• Note

- > Algorithm always outputs "yes" if f is linear.
- > We want to prove that if f is ϵ -far from being linear, then it outputs "no", i.e., finds a "violating pair" with probability at least 2/3.

- [Bellare, Coppersmith, Hastad, Kiwi, Sudan '95] If f is ε-far from linear, then the test fails on a random (x, y) pair with probability at least ε.
 > Deep result that uses results from Fourier analysis.
- Assuming this result...
 - \succ Probability that algorithm fails on 1 sample $\leq 1-\epsilon$
 - > Probability that algorithm fails on $2/\epsilon$ samples \leq

$$(1-\epsilon)^{\frac{2}{\epsilon}} \le \left(\frac{1}{e}\right)^2 < \frac{1}{3}$$