
Lecture 9
Sublinear Time Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 1

Sublinear Time Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 2

• Sublinear time
➢ Algorithm runs in 𝑜(𝑛) time, where 𝑛 = length of input
o Assume direct access to 𝑖𝑡ℎ bit of the input

➢ Algorithm cannot even read the entire input!

➢ (With a few exceptions) the algorithm must
o Use randomization

o Provide an approximately accurate answer

• Also interesting: sublinear space
➢ Algorithm uses 𝑜(𝑛) additional space

Motivation

CSC2420 – Allan Borodin & Nisarg Shah 3

• Huge datasets
➢ World-wide web, social networks, genome project, sales

logs, census data, high-resolution images, fine-grained
scientific measurements, …

• Need fast algorithms for subroutines that will be
called frequently

• Many sublinear algorithms turn out to be
streaming algorithms, which only need to access
incoming data once

Exact vs Inexact Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 4

• Exact: Always provides the right answer

• Inexact: Provides an approximately optimal answer
➢ 𝐴𝑁𝑆 = right answer, 𝐴𝐿𝐺 = output of algorithm

➢ For numerical answers (e.g., counting problems)
o 1 − 𝜖 𝐴𝑁𝑆 ≤ 𝐴𝐿𝐺 ≤ 1 + 𝜖 𝐴𝑁𝑆

➢ For binary answers (e.g., yes/no problems)
o 1-sided error:

• 𝐴𝑁𝑆 = 𝑌𝐸𝑆 ⇒ 𝐴𝐿𝐺 = 𝑌𝐸𝑆 with probability 1

• 𝐴𝑁𝑆 = 𝑁𝑂 ⇒ 𝐴𝐿𝐺 = 𝑁𝑂 with probability ≥ Τ2
3

o 2-sided error:

• 𝐴𝐿𝐺 = 𝐴𝑁𝑆 with probability ≥ Τ2
3

Exact vs Inexact Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 5

• Exact: Always provides the right answer

• Inexact: Provides an approximately optimal answer
➢ 𝐴𝑁𝑆 = right answer, 𝐴𝐿𝐺 = output of algorithm

➢ For “property testing”
o Property satisfied ⇒ 𝐴𝐿𝐺 = 𝑌𝐸𝑆 with probability 1

o Property at least 𝜖-far from being satisfied ⇒ 𝐴𝐿𝐺 = 𝑁𝑂 with
probability ≥ Τ2

3

o Property not satisfied, but 𝜖-close to being satisfied ⇒ don’t care
what 𝐴𝐿𝐺 is

o Will see this later…

Deterministic + Exact

CSC2420 – Allan Borodin & Nisarg Shah 6

• Always give the right answer using a deterministic
algorithm that does not read the entire input!
➢ Seems impossible

• You already know one such algorithm
➢ Binary search! 𝑂(log 𝑛) time, deterministic, exact.

➢ Needs to assume that input is already sorted.

• In general, deterministic + exact is impossible
unless input is structured.

Deterministic + Inexact

CSC2420 – Allan Borodin & Nisarg Shah 7

• Approximating the diameter in a metric space
➢ Points 𝑥1, … , 𝑥𝑛, distance metric 𝑑

➢ Input: 𝑛2 numbers 𝑑𝑖𝑗 = 𝑑(𝑥𝑖 , 𝑥𝑗)

➢ Goal: estimate diameter 𝐷 = max
𝑖,𝑗

𝑑(𝑥𝑖 , 𝑥𝑗)

• Algorithm: Pick arbitrary 𝑥𝑖, return 𝐷𝑖 = max
𝑗≠𝑖

𝑑𝑖𝑗

• Analysis:
➢ 𝑂(𝑛) running time, “sublinear” in the input length 𝑂 𝑛2

➢ 𝐷 = 𝑑𝑎,𝑏 ≤ 𝑑𝑎,𝑖 + 𝑑𝑖,𝑏 ≤ 𝐷𝑖 + 𝐷𝑖 = 2𝐷𝑖

➢ Also, clearly 𝐷 ≥ 𝐷𝑖. Thus, we have a 2-approximation!

Deterministic + Inexact

CSC2420 – Allan Borodin & Nisarg Shah 8

• This is also somewhat an exception

• Note: If you were given 𝑛 explicit points in a
Euclidean space instead of the 𝑂 𝑛2 distances,
then 𝑂(𝑛) would no longer be sublinear.

• For most sublinear time algorithms, randomization
is a must!

Randomized + Exact

CSC2420 – Allan Borodin & Nisarg Shah 9

• Known as Las Vegas algorithms
➢ Distribution over deterministic algorithms

➢ Each algorithm is exact, i.e., produces the correct answer.

➢ The algorithms have varying costs on different instances.

➢ Hope is that a randomization over them will have low
expected cost on every instance.

• Example: two algos {Alg1,Alg2}, two instances {I1,I2}
➢ Alg1 takes 1000 steps on I1, 10 on I2.

➢ Alg2 takes 10 steps on I2, 1000 on I2.

➢ (½)Alg1+(½)Alg2 takes 505 expected steps on any instance

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 10

• Input: A sorted doubly linked list with 𝑛 elements.
➢ Imagine you have an array 𝐴 with 𝑂(1) access to 𝐴[𝑖]

➢ 𝐴[𝑖] is a tuple (𝑥𝑖 , 𝑝𝑖 , 𝑛𝑖)
o Value,

o index of previous element in list,

o index of next element in list.

➢ Sorted: 𝑥𝑝𝑖
≤ 𝑥𝑖 ≤ 𝑥𝑛𝑖

• Task: Given 𝑥, check if there exists 𝑖 s.t. 𝑥 = 𝑥𝑖

• Goal: We will give a randomized + exact algorithm
with expected running time 𝑂 𝑛 !

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 11

• Motivation:
➢ Often we deal with large datasets that are stored in a

large file on disk, or possibly broken into multiple files

➢ Creating a new, sorted version of the dataset is expensive

➢ It is often preferred to “implicitly sort” the data by simply
adding previous-next pointers along with each element

➢ Would like algorithms that can operate on such implicitly
sorted versions and yet achieve sublinear running time
o Just like binary search achieves for an explicitly sorted array

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 12

Algorithm:
➢ Select 𝑛 random indices 𝑅

➢ Access 𝑥𝑗 for each 𝑗 ∈ 𝑅

➢ Find the nearest 𝑥𝑗: 𝑗 ∈ 𝑅 on each side of 𝑥
o 𝑝 ∈ 𝑅 such that 𝑥𝑝 = max{𝑥𝑗 ∶ 𝑥𝑗 ≤ 𝑥, 𝑗 ∈ 𝑅}

o 𝑞 ∈ 𝑅 such that 𝑥𝑞 = min{𝑥𝑗 ∶ 𝑥𝑗 > 𝑥, 𝑗 ∈ 𝑅}

o One of the two must exist (WHY?).

➢ If 𝑝 exists, start at 𝐴 𝑝 , and keep going next until you
discover 𝑥, or you reach 𝐴[𝑞] or end of list.

➢ If 𝑞 exists, start at 𝐴[𝑞], and keep going back until you
discover 𝑥, or you reach 𝐴[𝑝] or beginning of list.

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 13

• Analysis:
➢ Take arbitrary value 𝑥. Take the minimum value 𝑥𝑖 in the

list that is at least 𝑥. The algorithm is searching for 𝑥𝑖.

➢ The algorithm throws 𝑛 random “darts” on the list.

➢ Chernoff bounds: the probability that there is no dart in
𝑐 𝑛 elements to the left (resp. right) of 𝑥𝑖 is 2−Ω 𝑐 .

➢ So, the expected distance of 𝑥𝑖 to the dart on its left (and
its right) is 𝑂 𝑛 .

➢ The algorithm finds these two darts in 𝑂 𝑛 time, and
uses 𝑂 𝑛 search to locate 𝑥𝑖.

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 14

• Theorem: There exists an exact randomized
algorithm for searching in a sorted doubly linked
list in 𝑂 𝑛 expected running time.
➢ Note: We don’t really require the list to be doubly linked.

Just “next” pointer suffices if we have a pointer to the
first element of the list (a.k.a. “anchored list”).

• We can also prove optimality of this algorithm!

• Theorem: No exact randomized algorithm can do
this in 𝑜 𝑛 expected running time.

Yao’s Principle

CSC2420 – Allan Borodin & Nisarg Shah 15

• Proves a lower bound on the expected running
time of the best exact randomized algorithm
➢ “The expected time of a randomized algorithm 𝑅 on the

worst input 𝐼 is no better than the expected time taken,
under the worst probability distribution 𝕀 over inputs, by
the best deterministic algorithm 𝐴 for that distribution.”

➢ max𝐼 𝐸𝑅 𝐶 𝑅, 𝐼 ≥ max𝐷 min𝐴 𝐸𝐼~𝐷 𝐶 𝐴, 𝐼

• Special case of von Neumann’s minimax theorem
for two-player zero-sum games
➢ Can see a randomized algorithm as a distribution over all

deterministic algorithms

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 16

• Adversarial distribution: uniform random ordering of
𝑛 distinct values

• Goal: Search the max value (last element of the list)

• We want to show that any deterministic algorithm
takes Ω 𝑛 steps in expectation.

• Deterministic algorithms have only two operations:
➢ Op A: Access next/previous of an already accessed element.

➢ Op B: Compute an index 𝑘, and access the 𝑘𝑡ℎ element.

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 17

• Note: In a B op, the algorithm can compute index 𝑘
using any information it has until that point.

• Let 𝑇 = the set of last 𝑛 elements on the list.

➢ If the algorithm doesn’t access any element of 𝑇 using a B
op, it must take Ω 𝑛 A ops to locate the last element
starting from any accessed element ⇒ done!

• We show that the algorithm requires Ω 𝑛 steps
in expectation to access an element of 𝑇 using B op

➢ Note: Each 𝐵 op returns a random element from the yet
unexplored list. (WHY?)

Searching in Sorted List

CSC2420 – Allan Borodin & Nisarg Shah 18

• To show: Ω 𝑛 steps required to access 𝑇

➢ After 𝑎 many A ops and b many B ops, probability of
accessing an element of 𝑇 in the next B op is at most

|𝑇|

|Unexplored List|
=

𝑛

𝑛 − 𝑎 − 𝑏
≤

𝑛 + 𝑎 + 𝑏

𝑛

➢ Probability that no element of 𝑇 is accessed after 𝑎 many

A ops and 𝑏 many B ops is at least 1 −
𝑛+𝑎+𝑏

𝑛

𝑏

➢ This implies that the expected number of steps until an
element of 𝑇 is accessed is Ω 𝑛 . (WHY?) QED!

Sublinear Geometric Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 19

• Chazelle, Liu, and Magen [2003] proved the Θ 𝑛
bound for searching in a sorted linked list

➢ Their main focus was to generalize these ideas to come
up with sublinear algorithms for geometric problems

➢ Polygon intersection: Given two convex polyhedra, check
if they intersect.

➢ Point location: Given a Delaunay triangulation (or Voronoi
diagram) and a point, find the cell in which the point lies.

➢ They provided optimal 𝑂 𝑛 algorithms for both these
problems.

Randomized + Inexact

CSC2420 – Allan Borodin & Nisarg Shah 20

• We will now move to inexact algorithms that return
approximately accurate answers.

• Let us start with a counting problem where the
answer is numerical.

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 21

• Input: Graph 𝐺 with 𝑛 vertices, and access to an
oracle that returns the degree of a queried vertex
in 𝑂 1 time.

• Ouptut: 𝛼-approximation of the average degree 𝑑
of the vertices of 𝐺.
➢ 𝛼-approximation ⇒ answer lies in Τ𝑑

𝛼 , 𝛼 ⋅ 𝑑

• Goal: (2 + 𝜖)-approximation in expected time
𝑂 𝜖−𝑂 1 𝑛
➢ 𝜖 is constant ⇒ sublinear in input size 𝑛

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 22

• Wait!
➢ Isn’t this equivalent to “given an array of 𝑛 numbers

between 1 and 𝑛 − 1, estimate their average”?

➢ No! That requires Ω(𝑛) time for constant approximation!

o Consider an instance with constantly many 𝑛 − 1’s, and all other
1’s: you may not discover any 𝑛 − 1 until you query Ω(𝑛) numbers

➢ Why are degree sequences more special?

o Erdős–Gallai theorem: 𝑑1 ≥ ⋯ ≥ 𝑑𝑛 is a degree sequence iff their
sum is even and σ𝑖=1

𝑘 𝑑𝑖 ≤ 𝑘 𝑘 − 1 + σ𝑖=𝑘+1
𝑛 𝑑𝑖.

o Intuitively, we will sample 𝑂 𝑛 vertices

• We may not discover the few high degree vertices, but we’ll
find their neighbors, and thus account for their edges anyway!

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 23

• Algorithm:
➢ Take Τ8

𝜖 random subsets 𝑆𝑖 ⊆ 𝑉 with 𝑆𝑖 = 𝑠

➢ Compute the average degree 𝑑𝑆𝑖
in each 𝑆𝑖.

➢ Return ෢𝑑 = min𝑖 𝑑𝑆𝑖

• Analysis:
➢ We will show that with 𝑠 = Θ Τ𝑛 𝜖𝑂 1 , we can ensure

෢𝑑 ∈ [Τ1
2 − 𝜖 𝑑, 1 + 𝜖 𝑑] with probability at least ¾.

o Note: #queries (and running time) = 𝑂 ൗ𝑛
𝜖𝑂 1

o Feige [2006] improved this to 𝑂 𝜖−1 Τ𝑛
𝑑0

if we know 𝑑 ≥ 𝑑0

• In particular, even with 𝑑0 = 1, we have 𝑂 ൗ𝑛
𝜖 queries.

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 24

• Claim 1: We can choose 𝑠 = Θ Τ𝑛 𝜖𝑂 1 such that
Pr 𝑑𝑆 < Τ1

2 − 𝜖 𝑑 ≤ Τ𝜖
64.

• Proof:

➢ Let 𝐻 be the set of 𝜖′𝑛 highest degree vertices in 𝐺, and
𝐿 = 𝑉\H.

➢ Sub-claim: σ𝑖∈𝐿 𝑑𝑖 ≥ Τ1
2 − 𝜖′ σ𝑖∈𝑉 𝑑𝑖

o Note that σ𝑖∈𝑉 𝑑𝑖 counts each edge in the graph twice.

o σ𝑖∈𝐿 𝑑𝑖 might omit at most 𝜖′𝑛 edges within 𝐻, and might only
count edges between 𝐻 and 𝐿 once.

• Thus, σ𝑖∈𝐿 𝑑𝑖 ≥ Τ1
2 σ𝑖∈𝑉 𝑑𝑖 − 𝜖′𝑛

o The sub-claim now follows when you substitute 𝑛 ≤ σ𝑖∈𝑉 𝑑𝑖 in the
above equation (which is true because 𝐺 is connected).

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 25

• Proof:
➢ We proved: σ𝑖∈𝐿 𝑑𝑖 ≥ Τ1

2 − 𝜖′ σ𝑖∈𝑉 𝑑𝑖

o Thus, average degree in 𝐿 ≥ Τ1
2 − 𝜖′ 𝑑.

➢ A lower bound on 𝑑𝑆: assume all its vertices come from 𝐿
o Let 𝑑𝐻 = minimum degree of any vertex in 𝐻.

o Let 𝑋𝑖 = degree of 𝑖𝑡ℎ vertex in 𝑆 ⇒ 𝑋𝑖 ∈ [1, 𝑑𝐻]

o 𝐸 𝑋𝑖 ≥ Τ1
2 − 𝜖′ 𝑑 ≥ Τ1

2 − 𝜖′ 𝑑𝐻 Τ𝐻 𝑛

o 𝑡 = 𝐸 σ𝑖=1
𝑠 𝑋𝑖 = Ω(𝑑𝐻) due to our choice of 𝑠

➢ Hoeffding’s bound:
o Pr σ𝑖=1

𝑠 𝑋_𝑖 < 1 − 𝜖′ ⋅ 𝑡 ≤ 𝑒
−

𝑡 𝜖′ 2

𝑑𝐻 ≤
𝜖

64

o Set 𝜖′ such that 1 − 𝜖′ ⋅ Τ1
2 − 𝜖′ = Τ1

2 − 𝜖

Estimating Avg Degree in Graph

CSC2420 – Allan Borodin & Nisarg Shah 26

• Claim 2: Pr 𝑑𝑆 > 1 + 𝜖 𝑑 ≤ 1 − Τ𝜖
2.

• Proof:
➢ Markov’s inequality

➢ Pr 𝑑𝑆 > ℓ ≤
𝐸 𝑑𝑆

ℓ
=

𝑑

1+𝜖 𝑑
=

1

1+𝜖
≤ 1 −

𝜖

2

• Finishing the proof:
➢ Pr 𝑑𝑆 < Τ1

2 − 𝜖 𝑑 ≤ Τ𝜖
64 -- low probability!

➢ Pr 𝑑𝑆 > 1 + 𝜖 𝑑 ≤ 1 − Τ𝜖
2 --- high probability!

➢ Thus, we repeat Τ8
𝜖 times, and take the minimum.

o With ¾ probability, no trial goes below Τ1
2 − 𝜖 𝑑, but at least

one comes below 1 + 𝜖 𝑑. QED!

Effect of Input Query Model

CSC2420 – Allan Borodin & Nisarg Shah 27

• “Degree Queries”
➢ Here, we assumed that we have 𝑂(1) time access to

degree of a node.

➢ Feige’s algorithm achieves 2 + 𝜖 -approximation using
𝑂 𝑛/𝜖 queries

➢ Feige also proved optimality of this algorithm: any
algorithm that gives 2 − 𝜖 -approximation must use
Ω(𝑛) queries.

• What if the query model was different?

Effect of Input Query Model

CSC2420 – Allan Borodin & Nisarg Shah 28

• “Neighbor Queries”
➢ Query: (𝑣, 𝑗)

➢ Obtain: 𝑗𝑡ℎ neighbor of 𝑣 (in some order),
or “FALSE” (if 𝑣 has degree less than 𝑗)

➢ We can mimic degree query using 𝑂 log 𝑛 queries
o Feige’s algorithm can run using 𝑂(𝑛 log 𝑛 𝜖−1) queries

➢ Goldreich and Ron show that this model is actually very
powerful

o We can do (1 + 𝜖)-approximation with 𝑂 𝑛 𝑝𝑜𝑙𝑦 log 𝑛 , 𝜖−1

queries

o They also show a Ω 𝑛/𝜖 lower bound.

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 29

• Problem
➢ Input: Graph 𝐺 = (𝑉, 𝐸)

➢ Output: ෥𝑚 such that 𝑚 ≤ ෥𝑚 ≤ 𝑚 + 𝜖𝑛 with prob at least
Τ2

3, where 𝑚 is the size of some maximal matching

➢ Goal: 2𝑂 𝐷 /𝜖2 running time, where 𝐷 is max degree
o Sublinear time when 𝐷 = 𝑜(log 𝑛)

• Motivation
➢ Size of maximum matching and maximum vertex cover

both lie in [𝑚, 2𝑚]

➢ Gives a sublinear 2-approximation algorithms for these
problems

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 30

• We will estimate the size of maximal matching
(MM) produced by the greedy algorithm
parametrized by an ordering 𝜎 of the edges

• Greedy MM(𝜎):
➢ Start with empty matching.

➢ For 𝑒 ∈ 𝐸 (in the order of 𝜎)
o If 𝑒 does not “conflict” with already created matching, add it.

• Fix an arbitrary 𝜎
➢ We can’t explicitly do this in sublinear time.

➢ We’ll handle this later.

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 31

• Suppose we have access to an oracle that tests
whether an edge 𝑒 belongs to greedy matching 𝑀.

• Algorithm:
➢ 𝑆 ← Τ8

𝜖2 vertices of 𝑉 sampled i.i.d.

➢ 𝑋𝑣 = 1 if there exists an edge 𝑒 incident on 𝑣 ∈ 𝑆 that is in
𝑀, and 0 otherwise

➢ Return ෥𝑚 =
1

2
⋅ 𝑛 ⋅

σ𝑣∈𝑆 𝑋𝑣

𝑆
+

1

2
⋅ (𝑛 ⋅ 𝜖)

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 32

• Recall: ෥𝑚 =
1

2
⋅ 𝑛 ⋅

σ𝑣∈𝑆 𝑋𝑣

𝑆
+

1

2
⋅ (𝑛 ⋅ 𝜖)

• Claim: 𝐸 ෥𝑚 = 𝑀 +
𝜖𝑛

2

• Proof:

➢ 𝐸
σ𝑣∈𝑆 𝑋𝑣

𝑆
= prob of a random vertex being matched in 𝑀

➢ 𝐸 𝑛 ⋅
σ𝑣∈𝑆 𝑋𝑣

𝑆
= 2 |M| (#matched vertices = 2 |𝑀|)

• To prove 𝑀 ≤ ෥𝑚 ≤ 𝑀 + 𝜖𝑛 with prob ≥ Τ2
3

➢ Apply Hoeffding’s inequality

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 33

• What’s left:
1. Design an oracle for whether 𝑒 is included in 𝑀

2. Handle the issue of not being able to fix 𝜎 beforehand

3. Analyze running time

• Oracle: Does 𝑒 belong to greedy matching 𝑀?
➢ Observation: 𝑒 belongs to 𝑀 iff no edge 𝑒′ adjacent to 𝑒

with 𝜎 𝑒′ < 𝜎(𝑒) belongs to 𝑀.

➢ Recursive call on all adjacent edges with lower priority. If
all return NO, return YES, else return NO.

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 34

• What’s left:
1. Design an oracle for whether 𝑒 is included in 𝑀

2. Handle the issue of not being able to fix 𝜎 beforehand

3. Analyze running time

• Generating permutation 𝜎
➢ We will store a random number 𝑟𝑒 ~ 𝑈[0,1] for each 𝑒.

➢ We will store them in a binary search tree.

➢ Start with an empty tree.

➢ When we need to check the priority of 𝑒, see if it’s
already generated. If not, generate it.

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 35

• Running time : Oracle
➢ Consider the adjacency tree for edge 𝑒.
o Root = 𝑒

o For every node, its children are all its adjacent edges.

➢ Consider a node 𝑡 at depth 𝑘
o For the oracle to be called on 𝑡, the 𝑘 + 1 priorities from root to 𝑡

must be monotonically decreasing

o This happens with probability 1/(𝑘 + 1)!

➢ #nodes at depth 𝑘 = 2𝐷 𝑘

o Max degree 𝐷 ⇒ fanout is at most 2𝐷

➢ Expected recursive calls ≤ σ𝑘=0
∞ 2𝐷 𝑘

𝑘+1 !
≤

𝑒2𝐷

2𝐷

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 36

• Running time : Algorithm
➢ For Τ8

𝜖2 nodes, call the oracle on all their incident edges
(at most 𝐷 per node)

➢ Total queries to the graph = Τ8
𝜖2 ⋅ 𝐷 ⋅

𝑒2𝐷

2𝐷
=

2𝑂 𝐷

𝜖2

➢ QED!

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 37

• Note
➢ Let 𝑚∗ be the size of a maximum matching

➢ This only ensures
𝑚∗

2
≤ ෥𝑚 ≤ 2𝑚∗ + 𝜖𝑛 (w.p. 2/3)

➢ Suppose we want to achieve 𝑚∗ ≤ ෥𝑚 ≤ 1 + 𝛿 𝑚∗ + 𝜖𝑛
(w.p 2/3)

➢ Let 𝑘 = 1/𝛿

o Nguyen and Onak show
2

𝑂 𝐷𝑘

𝜖2𝑘+1 query complexity

o Yoshida, Yamamoto, and Ito improve it to 𝐷𝑂 𝑘2
𝑘𝑂 𝑘 𝜖−2

• For a constant 𝛿 (thus a constant 𝑘), this is polynomial in 𝐷

Estimating Maximal Matching

CSC2420 – Allan Borodin & Nisarg Shah 38

• Note

➢ In all the previous algorithms…
o We ensured sublinear running time.

o Randomization was only used to ensure that the output is
approximately accurate with high probability.

➢ In this algorithm…
o We make sublinear calls to the oracle only in expectation. In some

realizations, we might make Ω(𝑛) oracle calls.

o We can avoid this by “cutting off” each call to the oracle after
more than 𝑐2𝑂 𝐷 recursive calls are made, for a large constant 𝑐.

o Using Markov’s inequality, this has a low chance of happening.

Property Testing

CSC2420 – Allan Borodin & Nisarg Shah 39

• The inexact algorithms we saw until now were
about estimating numerical values.
➢ I say inexact because we saw two exact algorithms for

yes/no problems: binary search (deterministic) and
searching in sorted list (randomized).

• We will now see inexact algorithms for yes/no
problems.
➢ One such area is “property testing”.

➢ It’s one of the most prevalent applications of sublinear
time algorithms, and a research area of its own.

Property Testing

CSC2420 – Allan Borodin & Nisarg Shah 40

• Problem:
➢ Given input 𝐼, test if it satisfies property 𝑃.

• Inexact goal:
➢ If 𝐼 satisfies 𝑃, must return “yes”.

➢ If 𝐼 is at least “𝜖-far” from satisfying 𝑃,
must return “no” with probability at least Τ2

3.

➢ If 𝐼 violates 𝑃, but is “𝜖-close” to satisfying 𝑃,
free to return anything (we don’t care!).

• Notes
➢ For 2-sided error, we also require “yes” w.p. at least Τ2

3.

➢ What’s “𝜖-far”? We’ll see.

satisfied
⇒ yes

≥ 𝜖 violation
⇒ no with
constant
probability

Only 𝜖
violation

⇒ don’t care

Testing Linearity of Function

CSC2420 – Allan Borodin & Nisarg Shah 41

• Consider a Boolean function 𝑓: 0,1 𝑛 → {0,1}

• We want to test if 𝑓 is linear:
➢ ∃𝑎1, … , 𝑎𝑛 ∈ {0,1} s.t. 𝑓 𝑥1, … , 𝑥𝑛 = 𝑎1𝑥1 + ⋯ + 𝑎𝑛𝑥𝑛?

➢ All computations are in 𝔽2 (modulo 2).

➢ Equivalently: 𝑓 𝑥 + 𝑦 = 𝑓 𝑥 + 𝑓 𝑦 , ∀𝑥, 𝑦 ∈ 0,1 𝑛?

• We say that 𝑓 is 𝜖-close to being linear if ∃𝑔 such
that {𝑥: 𝑓 𝑥 ≠ 𝑔 𝑥 | ≤ 𝜖2𝑛.
➢ Only need to change 𝜖 fraction of values to make it linear.

Testing Linearity of Function

CSC2420 – Allan Borodin & Nisarg Shah 42

• Input: Oracle for accessing 𝑓

• Goal: 1-sided algorithm for testing linearity of 𝑓
that makes 𝑂(Τ1

𝜖) queries.
➢ Note: This is independent of 𝑛. This is actually achievable

for testing many properties.

• Motivation
➢ Subroutine for many other property testing algorithms

➢ Applications in cryptography, coding theory, program
checking, PCPs (inapproximability), and Fourier analysis

Testing Linearity of Function

CSC2420 – Allan Borodin & Nisarg Shah 43

• Algorithm:
➢ Sample Τ2

𝜖 random pairs (𝑥, 𝑦)

➢ If 𝑓 𝑥 + 𝑦 ≠ 𝑓 𝑥 + 𝑓(𝑦) for any pair, output “no”.

➢ Else, output “yes”.

• Note
➢ Algorithm always outputs “yes” if 𝑓 is linear.

➢ We want to prove that if 𝑓 is 𝜖-far from being linear, then
it outputs “no”, i.e., finds a “violating pair” with
probability at least Τ2

3.

Testing Linearity of Function

CSC2420 – Allan Borodin & Nisarg Shah 44

• [Bellare, Coppersmith, Hastad, Kiwi, Sudan ‘95]
If 𝑓 is 𝜖-far from linear, then the test fails on a
random (𝑥, 𝑦) pair with probability at least 𝜖.
➢ Deep result that uses results from Fourier analysis.

• Assuming this result…
➢ Probability that algorithm fails on 1 sample ≤ 1 − 𝜖

➢ Probability that algorithm fails on 2/𝜖 samples ≤

1 − 𝜖
2

𝜖 ≤
1

𝑒

2
<

1

3

