Sublinear Time Algorithms

• Sublinear time
 - Algorithm runs in $o(n)$ time, where $n =$ length of input
 - Assume direct access to i^{th} bit of the input
 - Algorithm cannot even read the entire input!
 - (With a few exceptions) the algorithm must
 - Use randomization
 - Provide an approximately accurate answer

• Also interesting: sublinear space
 - Algorithm uses $o(n)$ additional space
Motivation

• Huge datasets
 ➢ World-wide web, social networks, genome project, sales logs, census data, high-resolution images, fine-grained scientific measurements, ...

• Need fast algorithms for subroutines that will be called frequently

• Many sublinear algorithms turn out to be streaming algorithms, which only need to access incoming data once
Exact vs Inexact Algorithms

• Exact: Always provides the right answer
• Inexact: Provides an approximately optimal answer
 ➢ $ANS = \text{right answer, } ALG = \text{output of algorithm}$
 ➢ For numerical answers (e.g., counting problems)
 o $(1 - \varepsilon) ANS \leq ALG \leq (1 + \varepsilon) ANS$
 ➢ For binary answers (e.g., yes/no problems)
 o 1-sided error:
 • $ANS = YES \Rightarrow ALG = YES$ with probability 1
 • $ANS = NO \Rightarrow ALG = NO$ with probability $\geq \frac{2}{3}$
 o 2-sided error:
 • $ALG = ANS$ with probability $\geq \frac{2}{3}$
Exact vs Inexact Algorithms

- Exact: Always provides the right answer
- Inexact: Provides an approximately optimal answer
 - $ANS = \text{right answer}, ALG = \text{output of algorithm}$
 - For “property testing”
 - Property satisfied $\Rightarrow ALG = YES$ with probability 1
 - Property at least ϵ-far from being satisfied $\Rightarrow ALG = NO$ with probability $\geq \frac{2}{3}$
 - Property not satisfied, but ϵ-close to being satisfied \Rightarrow don’t care what ALG is
 - Will see this later...
Deterministic + Exact

• Always give the right answer using a deterministic algorithm that does not read the entire input!
 ➢ Seems impossible

• You already know one such algorithm
 ➢ Binary search! $O(\log n)$ time, deterministic, exact.
 ➢ Needs to assume that input is already sorted.

• In general, deterministic + exact is impossible unless input is structured.
Deterministic + Inexact

• Approximating the diameter in a metric space
 ➢ Points x_1, \ldots, x_n, distance metric d
 ➢ Input: n^2 numbers $d_{ij} = d(x_i, x_j)$
 ➢ Goal: estimate diameter $D = \max_{i,j} d(x_i, x_j)$

• Algorithm: Pick arbitrary x_i, return $D_i = \max_{j \neq i} d_{ij}$

• Analysis:
 ➢ $O(n)$ running time, “sublinear” in the input length $O(n^2)$
 ➢ $D = d_{a,b} \leq d_{a,i} + d_{i,b} \leq D_i + D_i = 2D_i$
 ➢ Also, clearly $D \geq D_i$. Thus, we have a 2-approximation!
Deterministic + Inexact

• This is also somewhat an exception

• **Note:** If you were given n explicit points in a Euclidean space instead of the $O(n^2)$ distances, then $O(n)$ would no longer be sublinear.

• For most sublinear time algorithms, randomization is a must!
Randomized + Exact

• Known as Las Vegas algorithms
 ➢ Distribution over deterministic algorithms
 ➢ Each algorithm is exact, i.e., produces the correct answer.
 ➢ The algorithms have varying costs on different instances.
 ➢ Hope is that a randomization over them will have low expected cost on every instance.

• Example: two algsos \{Alg1,Alg2\}, two instances \{I1,I2\}
 ➢ Alg1 takes 1000 steps on I1, 10 on I2.
 ➢ Alg2 takes 10 steps on I2, 1000 on I2.
 ➢ \((\frac{1}{2})\text{Alg1}+(\frac{1}{2})\text{Alg2}\) takes 505 expected steps on any instance
Searching in Sorted List

• **Input:** A sorted doubly linked list with \(n \) elements.
 ➢ Imagine you have an array \(A \) with \(O(1) \) access to \(A[i] \)
 ➢ \(A[i] \) is a tuple \((x_i, p_i, n_i)\)
 o Value,
 o index of previous element in list,
 o index of next element in list.
 ➢ Sorted: \(x_{p_i} \leq x_i \leq x_{n_i} \)

• **Task:** Given \(x \), check if there exists \(i \) s.t. \(x = x_i \)

• **Goal:** We will give a randomized + exact algorithm with expected running time \(O(\sqrt{n}) \)!
• **Motivation:**

- Often we deal with large datasets that are stored in a large file on disk, or possibly broken into multiple files.
- Creating a new, sorted version of the dataset is expensive.
- It is often preferred to “implicitly sort” the data by simply adding previous-next pointers along with each element.

- Would like algorithms that can operate on such implicitly sorted versions and yet achieve sublinear running time.
 - Just like binary search achieves for an explicitly sorted array.
Searching in Sorted List

Algorithm:

- Select \sqrt{n} random indices R
- Access x_j for each $j \in R$
- Find the nearest $x_j: j \in R$ on each side of x
 - $p \in R$ such that $x_p = \max\{x_j: x_j \leq x, j \in R\}$
 - $q \in R$ such that $x_q = \min\{x_j: x_j > x, j \in R\}$
 - One of the two must exist (WHY?).
- If p exists, start at $A[p]$, and keep going next until you discover x, or you reach $A[q]$ or end of list.
- If q exists, start at $A[q]$, and keep going back until you discover x, or you reach $A[p]$ or beginning of list.
Searching in Sorted List

• Analysis:
 ➢ Take arbitrary value x. Take the minimum value x_i in the list that is at least x. The algorithm is searching for x_i.
 ➢ The algorithm throws \sqrt{n} random “darts” on the list.
 ➢ **Chernoff bounds:** the probability that there is no dart in $c\sqrt{n}$ elements to the left (resp. right) of x_i is $2^{-\Omega(c)}$.
 ➢ So, the expected distance of x_i to the dart on its left (and its right) is $O(\sqrt{n})$.
 ➢ The algorithm finds these two darts in $O(\sqrt{n})$ time, and uses $O(\sqrt{n})$ search to locate x_i.
Searching in Sorted List

• **Theorem:** There exists an exact randomized algorithm for searching in a sorted doubly linked list in \(O(\sqrt{n}) \) expected running time.

 ➢ **Note:** We don’t *really* require the list to be doubly linked. Just “next” pointer suffices if we have a pointer to the first element of the list (a.k.a. “anchored list”).

• We can also prove optimality of this algorithm!

• **Theorem:** No exact randomized algorithm can do this in \(o(\sqrt{n}) \) expected running time.
Yao’s Principle

• Proves a lower bound on the expected running time of the best exact randomized algorithm
 ➢ “The expected time of a randomized algorithm R on the worst input I is no better than the expected time taken, under the worst probability distribution \mathbb{I} over inputs, by the best deterministic algorithm A for that distribution.”
 ➢ $\max_I E_R[C(R, I)] \geq \max_D \min_A E_{I \sim D}[C(A, I)]$

• Special case of von Neumann’s minimax theorem for two-player zero-sum games
 ➢ Can see a randomized algorithm as a distribution over all deterministic algorithms
Searching in Sorted List

• **Adversarial distribution**: uniform random ordering of n distinct values

• **Goal**: Search the max value (last element of the list)

• We want to show that any deterministic algorithm takes $\Omega(\sqrt{n})$ steps in expectation.

• Deterministic algorithms have only two operations:
 - **Op A**: Access next/previous of an already accessed element.
 - **Op B**: Compute an index k, and access the k^{th} element.
Searching in Sorted List

• **Note:** In a B op, the algorithm can compute index k using any information it has until that point.

• Let $T = \text{the set of last } \sqrt{n} \text{ elements on the list.}$

 ➢ If the algorithm doesn’t access any element of T using a B op, it must take $\Omega(\sqrt{n})$ A ops to locate the last element starting from any accessed element \Rightarrow done!

• We show that the algorithm requires $\Omega(\sqrt{n})$ steps in expectation to access an element of T using B op

 ➢ **Note:** Each B op returns a random element from the yet unexplored list. (WHY?)
Searching in Sorted List

• To show: $\Omega(\sqrt{n})$ steps required to access T

 ➢ After a many A ops and b many B ops, probability of accessing an element of T in the next B op is at most

 $$\frac{|T|}{|\text{Unexplored List}|} = \frac{\sqrt{n}}{n - a - b} \leq \frac{\sqrt{n} + a + b}{n}$$

 ➢ Probability that no element of T is accessed after a many A ops and b many B ops is at least $\left(1 - \frac{\sqrt{n} + a + b}{n}\right)^b$

 ➢ This implies that the expected number of steps until an element of T is accessed is $\Omega(\sqrt{n})$. (WHY?) QED!
Sublinear Geometric Algorithms

• Chazelle, Liu, and Magen [2003] proved the $\Theta(\sqrt{n})$ bound for searching in a sorted linked list

 ➢ Their main focus was to generalize these ideas to come up with sublinear algorithms for geometric problems

 ➢ **Polygon intersection**: Given two convex polyhedra, check if they intersect.

 ➢ **Point location**: Given a Delaunay triangulation (or Voronoi diagram) and a point, find the cell in which the point lies.

 ➢ They provided optimal $O(\sqrt{n})$ algorithms for both these problems.
Randomized + Inexact

• We will now move to inexact algorithms that return approximately accurate answers.

• Let us start with a counting problem where the answer is numerical.
Estimating Avg Degree in Graph

• **Input:** Graph G with n vertices, and access to an oracle that returns the degree of a queried vertex in $O(1)$ time.

• **Output:** α-approximation of the average degree d of the vertices of G.
 ➢ α-approximation \Rightarrow answer lies in $[d/\alpha, \alpha \cdot d]$

• **Goal:** $(2 + \epsilon)$-approximation in expected time $O\left(\epsilon^{-O(1)} \sqrt{n}\right)$
 ➢ ϵ is constant \Rightarrow sublinear in input size n
Estimating Avg Degree in Graph

• Wait!
 ➢ Isn’t this equivalent to “given an array of \(n \) numbers between 1 and \(n - 1 \), estimate their average”?
 ➢ No! That requires \(\Omega(n) \) time for constant approximation!
 o Consider an instance with constantly many \(n - 1 \)’s, and all other 1’s: you may not discover any \(n - 1 \) until you query \(\Omega(n) \) numbers

• Why are degree sequences more special?
 o Erdős–Gallai theorem: \(d_1 \geq \cdots \geq d_n \) is a degree sequence iff their sum is even and \(\sum_{i=1}^{k} d_i \leq k(k - 1) + \sum_{i=k+1}^{n} d_i \).
 o Intuitively, we will sample \(O(\sqrt{n}) \) vertices
 • We may not discover the few high degree vertices, but we’ll find their neighbors, and thus account for their edges anyway!
Estimating Avg Degree in Graph

• Algorithm:
 ➢ Take \(8/\epsilon\) random subsets \(S_i \subseteq V\) with \(|S_i| = s\)
 ➢ Compute the average degree \(d_{S_i}\) in each \(S_i\).
 ➢ Return \(\hat{d} = \min_i d_{S_i}\)

• Analysis:
 ➢ We will show that with \(s = \Theta(\sqrt{n}/\epsilon^{O(1)})\), we can ensure \(\hat{d} \in [(1/2 - \epsilon) d, (1 + \epsilon) d]\) with probability at least \(3/4\).
 o Note: #queries (and running time) = \(O(\sqrt{n}/\epsilon^{o(1)})\)
 o Feige [2006] improved this to \(O(\epsilon^{-1}\sqrt{n}/d_0)\) if we know \(d \geq d_0\)
 • In particular, even with \(d_0 = 1\), we have \(O(\sqrt{n}/\epsilon)\) queries.
Estimating Avg Degree in Graph

• **Claim 1:** We can choose \(s = \Theta(\sqrt{n}/\epsilon^{O(1)}) \) such that \(\Pr[d_S < (1/2 - \epsilon) d] \leq \epsilon/64. \)

• **Proof:**
 - Let \(H \) be the set of \(\sqrt{\epsilon'n} \) highest degree vertices in \(G \), and \(L = V \setminus H \).
 - Sub-claim: \(\sum_{i \in L} d_i \geq (1/2 - \epsilon') \sum_{i \in V} d_i \)
 - Note that \(\sum_{i \in V} d_i \) counts each edge in the graph twice.
 - \(\sum_{i \in L} d_i \) might omit at most \(\epsilon' n \) edges within \(H \), and might only count edges between \(H \) and \(L \) once.
 - Thus, \(\sum_{i \in L} d_i \geq 1/2 \left(\sum_{i \in V} d_i - \epsilon' n \right) \)
 - The sub-claim now follows when you substitute \(n \leq \sum_{i \in V} d_i \) in the above equation (which is true because \(G \) is connected).
Estimating Avg Degree in Graph

• Proof:
 - We proved: $\sum_{i \in L} d_i \geq \left(\frac{1}{2} - \epsilon'\right) \sum_{i \in V} d_i$
 - Thus, average degree in $L \geq \left(\frac{1}{2} - \epsilon'\right) d$.
 - A lower bound on d_S: assume all its vertices come from L
 - Let $d_H = \text{minimum degree of any vertex in } H$.
 - Let $X_i = \text{degree of } i^{th} \text{ vertex in } S \Rightarrow X_i \in [1, d_H]$.
 - $E[X_i] \geq \left(\frac{1}{2} - \epsilon'\right) d \geq \left(\frac{1}{2} - \epsilon'\right)d_H |H|/n$
 - $t = E[\sum_{i=1}^{s} X_i] = \Omega(d_H)$ due to our choice of s
 - Hoeffding’s bound:
 - $\Pr[\sum_{i=1}^{s} X_i < (1 - \epsilon') \cdot t] \leq e^{-\frac{t(\epsilon')^2}{d_H}} \leq \frac{\epsilon}{64}$
 - Set ϵ' such that $(1 - \epsilon') \cdot \left(\frac{1}{2} - \epsilon'\right) = \frac{1}{2} - \epsilon$
Estimating Avg Degree in Graph

• **Claim 2:** \(\Pr[d_S > (1 + \epsilon)d] \leq 1 - \epsilon/2. \)

• **Proof:**
 - Markov’s inequality
 - \(\Pr[d_S > \ell] \leq \frac{E[d_S]}{\ell} = \frac{d}{(1+\epsilon)d} = \frac{1}{1+\epsilon} \leq 1 - \frac{\epsilon}{2} \)

• **Finishing the proof:**
 - \(\Pr[d_S < (1/2 - \epsilon) d] \leq \epsilon/64 \) -- low probability!
 - \(\Pr[d_S > (1 + \epsilon)d] \leq 1 - \epsilon/2 \) --- high probability!
 - Thus, we repeat \(8/\epsilon \) times, and take the minimum.
 - With \(3/4 \) probability, no trial goes below \((1/2 - \epsilon) d \), but at least one comes below \((1 + \epsilon)d \).

QED!
Effect of Input Query Model

• “Degree Queries”
 ➢ Here, we assumed that we have $O(1)$ time access to degree of a node.
 ➢ Feige’s algorithm achieves $(2 + \epsilon)$-approximation using $O(\sqrt{n}/\epsilon)$ queries.
 ➢ Feige also proved optimality of this algorithm: any algorithm that gives $(2 - \epsilon)$-approximation must use $\Omega(n)$ queries.

• What if the query model was different?
Effect of Input Query Model

• “Neighbor Queries”
 ➢ Query: \((v, j)\)
 ➢ Obtain: \(j^{th}\) neighbor of \(v\) (in some order), or “FALSE” (if \(v\) has degree less than \(j\))
 ➢ We can mimic degree query using \(O(\log n)\) queries
 o Feige’s algorithm can run using \(O(\sqrt{n} \log n \ \epsilon^{-1})\) queries
 ➢ Goldreich and Ron show that this model is actually very powerful
 o We can do \((1 + \epsilon)\)-approximation with \(O\left(\sqrt{n} \ poly(\log n, \epsilon^{-1})\right)\) queries
 o They also show a \(\Omega(\sqrt{n}/\epsilon)\) lower bound.
Estimating Maximal Matching

• Problem
 ➢ **Input:** Graph $G = (V, E)$
 ➢ **Output:** \tilde{m} such that $m \leq \tilde{m} \leq m + \epsilon n$ with prob at least $2/3$, where m is the size of some maximal matching
 ➢ **Goal:** $2^{O(D)}/\epsilon^2$ running time, where D is max degree
 o Sublinear time when $D = o(\log n)$

• Motivation
 ➢ Size of maximum matching and maximum vertex cover both lie in $[m, 2m]$
 ➢ Gives a sublinear 2-approximation algorithms for these problems
Estimating Maximal Matching

• We will estimate the size of maximal matching (MM) produced by the greedy algorithm parametrized by an ordering σ of the edges

Greedy MM(σ):

- Start with empty matching.
- For $e \in E$ (in the order of σ)
 - If e does not “conflict” with already created matching, add it.

• Fix an arbitrary σ

 - We can’t explicitly do this in sublinear time.
 - We’ll handle this later.
Estimating Maximal Matching

• Suppose we have access to an oracle that tests whether an edge e belongs to greedy matching M.

• Algorithm:
 - $S \leftarrow \frac{8}{\epsilon^2}$ vertices of V sampled i.i.d.
 - $X_v = 1$ if there exists an edge e incident on $v \in S$ that is in M, and 0 otherwise
 - Return $\tilde{m} = \frac{1}{2} \cdot \left(n \cdot \frac{\sum_{v \in S} X_v}{|S|} \right) + \frac{1}{2} \cdot (n \cdot \epsilon)$
Estimating Maximal Matching

• Recall: \(\tilde{m} = \frac{1}{2} \cdot \left(n \cdot \frac{\sum_{v \in S} X_v}{|S|} \right) + \frac{1}{2} \cdot (n \cdot \epsilon) \)

• Claim: \(E[\tilde{m}] = |M| + \frac{\epsilon n}{2} \)

• Proof:
 - \(E \left[\frac{\sum_{v \in S} X_v}{|S|} \right] = \text{prob of a random vertex being matched in } M \)
 - \(E \left[n \cdot \frac{\sum_{v \in S} X_v}{|S|} \right] = 2 \cdot |M| \quad \text{(\#matched vertices = 2 \cdot |M|)} \)

• To prove \(|M| \leq \tilde{m} \leq |M| + \epsilon n \) with prob \(\geq \frac{2}{3} \)
 - Apply Hoeffding’s inequality
Estimating Maximal Matching

• What’s left:
 1. Design an oracle for whether e is included in M
 2. Handle the issue of not being able to fix σ beforehand
 3. Analyze running time

• Oracle: Does e belong to greedy matching M?
 ➢ Observation: e belongs to M iff no edge e' adjacent to e with $\sigma(e') < \sigma(e)$ belongs to M.
 ➢ Recursive call on all adjacent edges with lower priority. If all return NO, return YES, else return NO.
Estimating Maximal Matching

• What’s left:
 1. Design an oracle for whether e is included in M
 2. Handle the issue of not being able to fix σ beforehand
 3. Analyze running time

• Generating permutation σ
 ➢ We will store a random number $r_e \sim U[0,1]$ for each e.
 ➢ We will store them in a binary search tree.
 ➢ Start with an empty tree.
 ➢ When we need to check the priority of e, see if it’s already generated. If not, generate it.
Estimating Maximal Matching

• Running time : Oracle
 ➢ Consider the adjacency tree for edge e.
 o Root = e
 o For every node, its children are all its adjacent edges.
 ➢ Consider a node t at depth k
 o For the oracle to be called on t, the $k + 1$ priorities from root to t
 must be monotonically decreasing
 o This happens with probability $1/(k + 1)!$
 ➢ #nodes at depth $k = (2D)^k$
 o Max degree $D \Rightarrow$ fanout is at most $2D$
 ➢ Expected recursive calls $\leq \sum_{k=0}^{\infty} \frac{(2D)^k}{(k+1)!} \leq \frac{e^{2D}}{2D}$
Estimating Maximal Matching

- Running time: Algorithm
 - For $8/\epsilon^2$ nodes, call the oracle on all their incident edges (at most D per node)
 - Total queries to the graph = $(8/\epsilon^2) \cdot D \cdot \frac{e^{2D}}{2D} = \frac{2^{O(D)}}{\epsilon^2}$
 - QED!
Estimating Maximal Matching

• Note
 ➢ Let m^* be the size of a maximum matching
 ➢ This only ensures $\frac{m^*}{2} \leq \tilde{m} \leq 2m^* + \epsilon n$ (w.p. 2/3)
 ➢ Suppose we want to achieve $m^* \leq \tilde{m} \leq (1 + \delta)m^* + \epsilon n$ (w.p 2/3)
 ➢ Let $k = 1/\delta$
 o Nguyen and Onak show $\frac{2^{O(D^k)}}{\epsilon^2 2^{k+1}}$ query complexity
 o Yoshida, Yamamoto, and Ito improve it to $D^{O(k^2)} k^{O(k)} \epsilon^{-2}$
 • For a constant δ (thus a constant k), this is polynomial in D
Estimating Maximal Matching

• Note

➢ In all the previous algorithms...
 o We ensured sublinear running time.
 o Randomization was only used to ensure that the output is approximately accurate with high probability.

➢ In this algorithm...
 o We make sublinear calls to the oracle only in expectation. In some realizations, we might make $\Omega(n)$ oracle calls.
 o We can avoid this by “cutting off” each call to the oracle after more than $c2^{O(D)}$ recursive calls are made, for a large constant c.
 o Using Markov’s inequality, this has a low chance of happening.
Property Testing

• The *inexact* algorithms we saw until now were about estimating numerical values.
 ➢ I say inexact because we saw two exact algorithms for yes/no problems: binary search (deterministic) and searching in sorted list (randomized).

• We will now see inexact algorithms for yes/no problems.
 ➢ One such area is “property testing”.
 ➢ It’s one of the most prevalent applications of sublinear time algorithms, and a research area of its own.
Property Testing

• Problem:
 ➢ Given input I, test if it satisfies property P.

• Inexact goal:
 ➢ If I satisfies P, must return “yes”.
 ➢ If I is at least ϵ-far from satisfying P, must return “no” with probability at least $2/3$.
 ➢ If I violates P, but is ϵ-close to satisfying P, free to return anything (we don’t care!).

• Notes
 ➢ For 2-sided error, we also require “yes” w.p. at least $2/3$.
 ➢ What’s “ϵ-far”? We’ll see.
Testing Linearity of Function

• Consider a Boolean function $f : \{0,1\}^n \rightarrow \{0,1\}$

• We want to test if f is linear:
 - $\exists a_1, \ldots, a_n \in \{0,1\}$ s.t. $f(x_1, \ldots, x_n) = a_1 x_1 + \cdots + a_n x_n$?
 - All computations are in \mathbb{F}_2 (modulo 2).
 - Equivalently: $f(x + y) = f(x) + f(y)$, $\forall x, y \in \{0,1\}^n$?

• We say that f is ϵ-close to being linear if $\exists g$ such that
 - $|\{x : f(x) \neq g(x)\}| \leq \epsilon 2^n$.
 - Only need to change ϵ fraction of values to make it linear.
Testing Linearity of Function

• **Input:** Oracle for accessing \(f \)

• **Goal:** 1-sided algorithm for testing linearity of \(f \) that makes \(O\left(\frac{1}{\epsilon}\right) \) queries.
 - Note: This is independent of \(n \). This is actually achievable for testing many properties.

• **Motivation**
 - Subroutine for many other property testing algorithms
 - Applications in cryptography, coding theory, program checking, PCPs (inapproximability), and Fourier analysis
Testing Linearity of Function

• Algorithm:
 - Sample $\frac{2}{\varepsilon}$ random pairs (x, y)
 - If $f(x + y) \neq f(x) + f(y)$ for any pair, output “no”.
 - Else, output “yes”.

• Note
 - Algorithm always outputs “yes” if f is linear.
 - We want to prove that if f is ε-far from being linear, then it outputs “no”, i.e., finds a “violating pair” with probability at least $\frac{2}{3}$.
Testing Linearity of Function

• [Bellare, Coppersmith, Hastad, Kiwi, Sudan ‘95] If f is ϵ-far from linear, then the test fails on a random (x, y) pair with probability at least ϵ.
 ➢ Deep result that uses results from Fourier analysis.

• Assuming this result...
 ➢ Probability that algorithm fails on 1 sample $\leq 1 - \epsilon$
 ➢ Probability that algorithm fails on $2/\epsilon$ samples $\leq (1 - \epsilon)^{2/\epsilon} \leq \left(\frac{1}{e}\right)^2 < \frac{1}{3}$