Lecture 9

Sublinear Time Algorithms
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Sublinear Time Algorithms

e Sublinear time

> Algorithm runs in o(n) time, where n = length of input
o Assume direct access to it" bit of the input
> Algorithm cannot even read the entire input!

> (With a few exceptions) the algorithm must
o Use randomization
o Provide an approximately accurate answer

* Also interesting: sublinear space
> Algorithm uses o(n) additional space
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Motivation

* Huge datasets

> World-wide web, social networks, genome project, sales
logs, census data, high-resolution images, fine-grained
scientific measurements, ...

* Need fast algorithms for subroutines that will be
called frequently

* Many sublinear algorithms turn out to be
streaming algorithms, which only need to access
incoming data once
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Exact vs Inexact Algorithms

* Exact: Always provides the right answer

* Inexact: Provides an approximately optimal answer
> ANS =right answer, ALG = output of algorithm
> For numerical answers (e.g., counting problems)
o (1 —€) ANS < ALG < (1 + €) ANS
> For binary answers (e.g., yes/no problems)
o 1-sided error:
e« ANS =YES = ALG = YES with probability 1
« ANS = NO = ALG = NO with probability > 2/,
o 2-sided error:
« ALG = ANS with probability > 2/;
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Exact vs Inexact Algorithms

e Exact: Always provides the right answer

* Inexact: Provides an approximately optimal answer
> ANS = right answer, ALG = output of algorithm

> For “property testing”
o Property satisfied = ALG = YES with probability 1

o Property at least e-far from being satisfied = ALG = NO with
probability > 2/,

o Property not satisfied, but e-close to being satisfied = don’t care
what ALG is

o Will see this later...
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Deterministic + Exact

* Always give the right answer using a deterministic
algorithm that does not read the entire input!

> Seems impossible

* You already know one such algorithm
» Binary search! O(logn) time, deterministic, exact.
> Needs to assume that input is already sorted.

* In general, deterministic + exact is impossible
unless input is structured.
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Deterministic + Inexact

* Approximating the diameter in a metric space
> Points x4, ..., x,, distance metric d
> Input: n® numbers d;; = d(x;, x;)

> Goal: estimate diameter D = max d(x;, x;)
L,J

* Algorithm: Pick arbitrary x;, return D; = max d;;
j#i
* Analysis:
> 0(n) running time, “sublinear” in the input length 0(n?)
> D = da,b < da,i + di,b < Di + Di — ZDl
» Also, clearly D = D;. Thus, we have a 2-approximation!
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Deterministic + Inexact

* This is also somewhat an exception

* Note: If you were given n explicit points in a
Euclidean space instead of the O(n?) distances,
then O(n) would no longer be sublinear.

* For most sublinear time algorithms, randomization
is a must!
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Randomized + Exact

* Known as Las Vegas algorithms
> Distribution over deterministic algorithms
> Each algorithm is exact, i.e., produces the correct answer.
> The algorithms have varying costs on different instances.

» Hope is that a randomization over them will have low
expected cost on every instance.

* Example: two algos {Algl1,Alg2}, two instances {I1,12}
> Algl takes 1000 steps on 11, 10 on 12.
> Alg2 takes 10 steps on 12, 1000 on I2.
> (12)Algl+(12)Alg2 takes 505 expected steps on any instance

CSC2420 - Allan Borodin & Nisarg Shah



Searching in Sorted List

* Input: A sorted doubly linked list with n elements.
> Imagine you have an array A with O(1) access to A[i]
> Ali]is a tuple (x;, p;, ;)
o Value,

o index of previous element in list,
o index of next element in list.

> Sorted: X, < x; < Xy,
* Task: Given x, check if there exists i s.t. x = X;

* Goal: We will give a randomized + exact algorithm
with expected running time 0(+/n)!
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Searching in Sorted List

* Motivation:

> Often we deal with large datasets that are stored in a
large file on disk, or possibly broken into multiple files

> Creating a new, sorted version of the dataset is expensive

> It is often preferred to “implicitly sort” the data by simply
adding previous-next pointers along with each element

» Would like algorithms that can operate on such implicitly
sorted versions and yet achieve sublinear running time

o Just like binary search achieves for an explicitly sorted array
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Searching in Sorted List

ﬁgorithm: \

> Select 4/n random indices R
> Access x;j foreachj € R

> Find the nearest x;: j € R on each side of x
o p € R such that x, = max{x; : x; < x,j € R}
o q € R suchthat x, = min{x; : x; > x,j € R}
o One of the two must exist (WHY?).

> If p exists, start at A|p], and keep going next until you
discover x, or you reach A[q] or end of list.

> If g exists, start at A[q], and keep going back until you
kdlscover x, or you reach A|p] or beginning of list. /

CSC2420 - Allan Borodin & Nisarg Shah



Searching in Sorted List

* Analysis:

» Take arbitrary value x. Take the minimum value x; in the
list that is at least x. The algorithm is searching for x;.

> The algorithm throws \/n random “darts” on the list.

> Chernoff bounds: the probability that there is no dartin
c\/n elements to the left (resp. right) of x; is 2~a(c),

> So, the expected distance of x; to the dart on its left (and
its right) is 0 (\/n).

> The algorithm finds these two darts in 0(y/n) time, and
uses 0 (1/n) search to locate x;.
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Searching in Sorted List

* Theorem: There exists an exact randomized
algorithm for searching in a sorted doubly linked
listin O(1/n) expected running time.

> Note: We don’t really require the list to be doubly linked.
Just “next” pointer suffices if we have a pointer to the
first element of the list (a.k.a. “anchored list”).

* We can also prove optimality of this algorithm!

* Theorem: No exact randomized algorithm can do
this in o(1/n) expected running time.
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Yao's Principle

* Proves a lower bound on the expected running
time of the best exact randomized algorithm

> “The expected time of a randomized algorithm R on the
worst input I is no better than the expected time taken,
under the worst probability distribution I over inputs, by
the best deterministic algorithm A for that distribution.”

> mMax; ER [C(R, I)] = maxp minA EI~D [C(A, I)]

 Special case of von Neumann’s minimax theorem
for two-player zero-sum games

> Can see a randomized algorithm as a distribution over all
deterministic algorithms
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Searching in Sorted List

e Adversarial distribution: uniform random ordering of
n distinct values

* Goal: Search the max value (last element of the list)

* We want to show that any deterministic algorithm
takes L(+1/n) steps in expectation.

e Deterministic algorithms have only two operations:
> Op A: Access next/previous of an already accessed element.
> Op B: Compute an index k, and access the k" element.
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Searching in Sorted List

* Note: In a B op, the algorithm can compute index k
using any information it has until that point.

 Let T = the set of last 4/n elements on the list.

> If the algorithm doesn’t access any element of T using a B
op, it must take Q(1/n) A ops to locate the last element
starting from any accessed element = done!

* We show that the algorithm requires Q(y/n) steps
in expectation to access an element of T using B op

> Note: Each B op returns a random element from the yet
unexplored list. (WHY?)
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Searching in Sorted List

* To show: Q(+/n) steps required to access T

> After a many A ops and b many B ops, probability of
accessing an element of T in the next B op is at most

IT| _4n <\/ﬁ+a+b
|Unexplored Listf n—a—b "~ n

> Probability that no element of T is accessed after a many
Jﬁ+a+b)b

n

A ops and b many B ops is at least (1 —

> This implies that the expected number of steps until an
element of T is accessed is Q(y/n). (WHY?) QED!
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Sublinear Geometric Algorithms

* Chazelle, Liu, and Magen [2003] proved the O(1/n)
bound for searching in a sorted linked list

> Their main focus was to generalize these ideas to come
up with sublinear algorithms for geometric problems

» Polygon intersection: Given two convex polyhedra, check
if they intersect.

> Point location: Given a Delaunay triangulation (or Voronoi
diagram) and a point, find the cell in which the point lies.

> They provided optimal 0(y/n) algorithms for both these
problems.
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Randomized + Inexact

* We will now move to inexact algorithms that return
approximately accurate answers.

* Let us start with a counting problem where the
answer is numerical.
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Estimating Avg Degree in Graph

* Input: Graph G with n vertices, and access to an
oracle that returns the degree of a queried vertex
in 0(1) time.

* Quptut: a-approximation of the average degree d
of the vertices of G.

> a-approximation = answer liesin [#/4, a - d]

* Goal: (2 + €)-approximation in expected time

0(e~9Wyn)

> € is constant = sublinear in input size n
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Estimating Avg Degree in Graph

e Wait!

> Isn’t this equivalent to “given an array of n numbers
between 1 and n — 1, estimate their average”?

> No! That requires (0(n) time for constant approximation!

o Consider an instance with constantly many n — 1’s, and all other
1’s: you may not discover any n — 1 until you query Q(n) numbers

> Why are degree sequences more special?

o Erd6s—Gallai theorem:d; = -+ > d,, isa degree sequence iff their
sumis evenand ¥, d; < k(k — 1) + >3t d

o Intuitively, we will sample 0(y/n) vertices

* We may not discover the few high degree vertices, but we’ll
find their neighbors, and thus account for their edges anyway!
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Estimating Avg Degree in Graph

(. Algorithm: A
> Take 8/¢ random subsets S; € V with |S;| = s
> Compute the average degree dg, in each S;.

\ > Return d = min; ds, y

* Analysis:
> We will show that with s = ©(yn/e°"), we can ensure
d € [(Y/,—€)d, (1+¢)d] with probability at least %4.
o Note: #queries (and running time) = 0 (‘/ﬁ/eom)
o Feige [2006] improved this to 0(e™*,/%/, ) if we know d > d,,

* In particular, even with dy = 1, we have 0 (‘/ﬁ/e) queries.
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Estimating Avg Degree in Graph

e Claim 1: We can choose s = 0(yn/€°®) such that
Prlds < (*/2 —€) d] < ¢/ea.

* Proof:

> Let H be the set of Ve'n highest degree vertices in G, and
L = V\H.

> Sub-claim: Y, di = (Y2 —€') iy d;
o Note that ), d; counts each edge in the graph twice.

o e d; might omit at most €'n edges within H, and might only
count edges between H and L once.

* Thus, X d;i = 1, Qievdi — €n)

o The sub-claim now follows when you substitute n < ;. d; in the
above equation (which is true because G is connected).
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Estimating Avg Degree in Graph

* Proof:

> We proved: Y..c; d; = (1/, — €') Yiev d;
o Thus, average degreein L > (1/, — €') d.

> A lower bound on ds: assume all its vertices come from L
o Let dy = minimum degree of any vertex in H.
o Let X; = degree of i*" vertexin S = X; € [1,dy]
o E[X;]1 = (*/;—€)d =/ —€)dy|H|/n
ot =E[Xi—1X;] = Q(dy) due to our choice of s

> Hoeffding’s bound: (Y

oPr[Yi Xi<(l—€)-t]<e W <—

o Sete suchthat (1 —€¢')-(Y/,—€')=1/,—¢€
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Estimating Avg Degree in Graph

* Claim2:Prld¢ > (1 +€)d] <1—¢/,.

* Proof:
» Markov’s inequality

Elds] _ a _ 1 -
> Prlds > #] < y —(1+6)d—1+ES1

N | m

* Finishing the proof:
> Prlds < (1/, —€) d] < €/¢4 - low probability!
> Prlds > (1 +€)d] <1 —¢€/, --- high probability!
> Thus, we repeat 8/ times, and take the minimum.

o With 34 probability, no trial goes below (1/, — €) d, but at least
one comes below (1 + €)d. QED!
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Effect of Input Query Model

* “Degree Queries”

> Here, we assumed that we have O(1) time access to
degree of a node.

> Feige’s algorithm achieves (2 + €)-approximation using
0(\n/€) queries
> Feige also proved optimality of this algorithm: any

algorithm that gives (2 — €)-approximation must use
1(n) queries.

* What if the query model was different?
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Effect of Input Query Model

* “Neighbor Queries”

> Query: (v,))

> Obtain: j'" neighbor of v (in some order),
or “FALSE” (if v has degree less than j)

> We can mimic degree query using O(log n) queries
o Feige’s algorithm can run using 0(y/nlogn €~1) queries

> Goldreich and Ron show that this model is actually very
powerful
o We can do (1 + €)-approximation with O (\/ﬁ poly(logn,e‘l))

qgueries

o They also show a Q(,/n/e) lower bound.
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Estimating Maximal Matching

* Problem
> Input: Graph ¢ = (V,E)

> Output: m such that m < m < m + en with prob at least
2/5, where m is the size of some maximal matching

> Goal: 22(P) /€2 running time, where D is max degree
o Sublinear time when D = o(logn)

* Motivation

> Size of maximum matching and maximum vertex cover
both lie in [m, 2m]

> Gives a sublinear 2-approximation algorithms for these
problems
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Estimating Maximal Matching

* We will estimate the size of maximal matching
(MM) produced by the greedy algorithm
parametrized by an ordering o of the edges

(. Greedy MM(o): A

> Start with empty matching.

> For e € E (in the order of o)
. © If e does not “conflict” with already created matching, add it. )

* Fix an arbitrary o

» We can’t explicitly do this in sublinear time.
> We'll handle this later.
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Estimating Maximal Matching

* Suppose we have access to an oracle that tests

whether an edge e belongs to greedy matching M.

(Algorithm:

> S « 8/, vertices of V sampled i.i.d.

~N

» X, = 1 if there exists an edge e incidenton v € S thatisin

M, and 0 otherwise

~ 1 X 1
» Return m = —-(n-M)+—-(n-e)
2 |S] 2

\_

j
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Estimating Maximal Matching

. = L .Zvesxv) 1.(n.
Recall: m = » (n S + 5 (n-e€)

- Claim: E[fi] = |M| +%

* Proof:
> E %} = prob of a random vertex being matched in M
s Eln- %‘ = 2 |M]| (#matched vertices = 2 |M|)

* To prove |M| < m < |M| + en with prob = 2/,
> Apply Hoeffding’s inequality
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Estimating Maximal Matching

What's left:

1. Design an oracle for whether e is included in M

2. Handle the issue of not being able to fix o beforehand
3. Analyze running time

(.

\_

Oracle: Does e belong to greedy matching M?

> Observation: e belongs to M iff no edge e’ adjacent to e
with o(e’) < a(e) belongs to M.

~

> Recursive call on all adjacent edges with lower priority. If

all return NO, return YES, else return NO.

J
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Estimating Maximal Matching

e What'’s left:

1. Design an oracle for whether e is included in M
2. Handle the issue of not being able to fix o beforehand
3. Analyze running time

* Generating permutation o
> We will store a random number 7, ~ U[0,1] for each e.
> We will store them in a binary search tree.
> Start with an empty tree.

> When we need to check the priority of ¢, see if it’s
already generated. If not, generate it.
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Estimating Maximal Matching

* Running time : Oracle

> Consider the adjacency tree for edge e.
o Root=¢e
o For every node, its children are all its adjacent edges.

> Consider a node t at depth k

o For the oracle to be called on t, the k + 1 priorities from root to t
must be monotonically decreasing

o This happens with probability 1/(k + 1)!
> #nodes at depth k = (2D)*

o Max degree D = fanout is at most 2D

i . (ZD)k eZD
> Expected recursive calls < ),.—o <
(k+1)! 2D
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Estimating Maximal Matching

* Running time : Algorithm

> For 8/_, nodes, call the oracle on all their incident edges

(at most D per node)
eZD ZO(D)
> Total queries to the graph = (8/62) -D - 5=

D €2
> QED!
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Estimating Maximal Matching

* Note
> Let m” be the size of a maximum matching

<m<2m*+en (w.p.2/3)

> Suppose we want to achievem* <m < (1 4+ 6)m* + en
(w.p 2/3)
>»letk=1/6

%

. m
> This only ensures »

,0(p) .
o Nguyen and Onak show e+ query complexity
€

o Yoshida, Yamamoto, and Ito improve it to DO(k*) g 00k) ¢ =2
* For a constant § (thus a constant k), this is polynomial in D
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Estimating Maximal Matching

* Note

> In all the previous algorithms...
o We ensured sublinear running time.

o Randomization was only used to ensure that the output is
approximately accurate with high probability.

> In this algorithm...

o We make sublinear calls to the oracle only in expectation. In some
realizations, we might make (1(n) oracle calls.

o We can avoid this by “cutting off” each call to the oracle after
more than c29®) recursive calls are made, for a large constant c.

o Using Markov’s inequality, this has a low chance of happening.
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Property Testing

* The inexact algorithms we saw until now were
about estimating numerical values.

> | say inexact because we saw two exact algorithms for
yes/no problems: binary search (deterministic) and
searching in sorted list (randomized).

* We will now see inexact algorithms for yes/no
problems.
> One such area is “property testing”.

> It’s one of the most prevalent applications of sublinear
time algorithms, and a research area of its own.
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Property Testing

* Problem:
> Given input I, test if it satisfies property P.

* Inexact goal:

> If [ satisfies P, must return “yes”.
> If I is at least “e-far” from satisfying P,

must return “no” with probability at least #/5.

> If I violates P, but is “e-close” to satisfying P,
free to return anything (we don’t carel).

* Notes

Only €
violation
= don’t care

A

satisfied
= yes

> € violation
= no with
constant
probability

> For 2-sided error, we also require “yes” w.p. at least 2/5.

> What's “e-far”? We'll see.
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Testing Linearity of Function

* Consider a Boolean function f:{0,1}" — {0,1}

* We want to test if f is linear:
> 3aq, ...,ay € {0,1}s.t. f(xq, e, X)) = agx7 + -+ apx,?
» All computations are in [F, (modulo 2).
> Equivalently: f(x +y) = f(x) + f(y), Vx,y € {0,1}"?

* We say that f is e-close to being linear if 3g such
that |[{x: f(x) # g(x)}| < e2™.

> Only need to change € fraction of values to make it linear.
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Testing Linearity of Function

* Input: Oracle for accessing f

* Goal: 1-sided algorithm for testing linearity of f
that makes O (1/¢) queries.

> Note: This is independent of n. This is actually achievable
for testing many properties.

* Motivation
> Subroutine for many other property testing algorithms

> Applications in cryptography, coding theory, program
checking, PCPs (inapproximability), and Fourier analysis

CSC2420 - Allan Borodin & Nisarg Shah



Testing Linearity of Function

(o Algorithm: A
> Sample ?/¢ random pairs (x, y)
> If f(x +y) # f(x) + f(y) for any pair, output “no”.

\ > Else, output “yes”. y

* Note

> Algorithm always outputs “yes” if f is linear.

> We want to prove that if f is e-far from being linear, then
it outputs “no”, i.e., finds a “violating pair” with
probability at least 2/5.
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Testing Linearity of Function

* [Bellare, Coppersmith, Hastad, Kiwi, Sudan ‘95]
If f is e-far from linear, then the test fails on a
random (x, y) pair with probability at least €.

> Deep result that uses results from Fourier analysis.

* Assuming this result...
> Probability that algorithm failson 1 sample < 1 — €
> Probability that algorithm fails on 2 /€ samples <

(1 —e)z < (1)2 <§

e

CSC2420 - Allan Borodin & Nisarg Shah



