Lecture 8

Online bipartite matching (cont.)

CSC2420 - Allan Borodin & Nisarg Shah

Online Bipartite Matching

* Bipartitegraph G = (UUV,E),EC U XYV
*|U| =|V]=n
* I/ is fixed

* Nodes in U arrive online, adversarially
» Say the arrival orderis u4, ..., u,
» With arrival of each u; € U, you discover its edges to V

» Must irrevocably match it to one of its neighbors in I/ that
is yet unmatched (if possible and desired)

* Compete with the maximum offline matching

CSC2420 - Allan Borodin & Nisarg Shah

Online Bipartite Matching

4 . N
e Algorithm INFANT
» For every u;, if it has unmatched neighbors in V, match it

to one of the unmatched neighbors selected arbitrarily.
_ J

* Produces a maximal matching

> Worst case 1% approximation of the maximum matching
> WHY?

e Can we do better?

CSC2420 - Allan Borodin & Nisarg Shah

Online Bipartite Matching

(Algorithm RANKING [KVV90] A

> Before the arrival starts, fix a random permutation o of
vertices in V. This acts as random priorities.

» For every u;, match it to its unmatched neighbor that is
highest in o (if one exists).
_ g () Y

* Claim: RANKING gives a 1 — 1/, approximation.

* Question: If the priorities are random anyway, how
is this different from matching to a random
unmatched neighbor (Algorithm INFANT)?

CSC2420 - Allan Borodin & Nisarg Shah

Proofs

* The original 1990 paper had a bug in the proof,
which was corrected by Krohn and Varadarajan in
2007 (17 years later!)

e Simple combinatorial proof by Birnbaum and
Mathieu [08]

* A different IP/LP duality proof by Devanur, Jain and
Kleinberg [13]

CSC2420 - Allan Borodin & Nisarg Shah

An Incorrect Proof

* Note: For the worst-case, we can assume the offline
optimal m™ is a perfect matching.

* Suppose RANKING produces matching m,.

e Claim 1: Foru € U, if v = m*(u) is unmatched in
my, then m,(u) = v' such that c(v') < o (v).
> If vis unmatched at the end, v was unmatched when u
arrived

> U must have been matched to a higher priority vertex in V

CSC2420 - Allan Borodin & Nisarg Shah

An Incorrect Proof

* Claim 2: Let p; = probability (over 0) that priority t
vertex is matched. Then 1 — p; < 21<S<tps

* Incorrect Proof:
> Let u € U be matched to priority t vertex (v = o(t)) inm”
o Thatis, m*(u) = v. Note that both u and v are random variables.
» Let U € U be matched to vertices with priority < t in m

> By Claim 1, if v is not matched, then u must be matched to
a vertex with priority < t. Thus, 1 — p; < Pr[u € U,].

|Ut|
21<s<t ps

> u is independent of Uy, so Pr[u € U] = "

> What’s wrong in this argument?

CSC2420 - Allan Borodin & Nisarg Shah

Sketch of the Correct Proof

* u and U; are dependent on each other dueto t

> U is matched to vertex with priority t under m*
» U, has vertices matched to priority < t under m

* The correct (but less intuitive, and more complex)
proof demonstrates that ...
» We can choose u independent of v (= independent of R;)
» And yet achieve “v unmatched inm, > u € R;”

CSC2420 - Allan Borodin & Nisarg Shah

The rest of the proof

* Claim 2: Let p; = probability (over 0) that priority t
vertex is matched. Then 1 — p; < 21<S<tps

> How does this help derive 1 — 1/, apprOX|mat|on?

> St = X1<s<t Ps-
> Then, 1 - (St - St—l) S (1/n)St

o This simplifiesto 1 + S;_; < ("“) S, 1)
L. _ S
> Approximation ratio = In;al = 7"

o Smallest when all inequalities in (1) are equalities.

n

S n
o Solve the recurrencetoget 2 > 1 — (—) >1-1/,
n n+1

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

* Proof using LP relaxation + duality

» Hope is that this will help in analyzing the unsolved
adwords problem

Primal Dual

max ZeEE Xe min ZvEV a, + ZuEU IBu

S.t. s.t.

YecsmXe <1 VVEV a,+B,=1 VY(uv)€EE
Decs)Xe =1 YueU a, B, =0 VveEV,uelU

Xe = 0 Ve € E

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

e Standard technique
> Start constructing a dual solution (e.g., using water-filling)

> This may be a fractional solution
o Thus not a feasible solution for the integral problem

> Use this as a guide to set integral values of variables in
the primal problem to generate a feasible solution that is
not too far from the dual value

* But we already have a solution given by RANKING
> We will simply see what it does in the dual formulation

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

e Outline
» Take the primal solution given by RANKING
o Primal objective value P = size of matching

> Construct the corresponding fractional dual solution
o Let the dual objective value be D

> Show that the dual solution is feasible
oSoD =OPT =P
o OPT = size of maximum matching

» Show that the primal value is not too far
1 1
oP2(1-2)D2(1-3)oPT

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

e Outline
» Take the primal solution given by RANKING

o Primal objective value P = size of matching

> Construct the corresponding fractional dual solution
o Let the dual objective value be D

> Show that the dual solution is feasible

o A technical note: Since m, is a random variable, the dual solution
constructed is also random.

o It suffices to show that the expected dual solution (i.e., one
obtained by taking expected value of each variable) is feasible.

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

* Another side note

> For simplicity, we will analyze the following algorithm
equivalent to RANKING.

> Instead of creating a priority ordering g, we will assign a
random number Y,, ~ U[0,1] to each node v € V

o Lower number means higher priority.

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

* Step 1: Construct dual solution from primal
> Take a function g:[0,1] — [0,1] such that g(1) = 1.
> Let F be the approximation factor we want to prove.
oForus, F=1—-1/e

> For every (u, v) matched by RANKING, set

_g(yv) I _1_g(Yv)
F '’ " F

> For all other u and v, set a,, and 5, to 0.

Ay

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

* A couple of observations about RANKING
> Take any edge (u, v) in the graph
> Let y© denote the priority of the vertex to which u would
be matched if v was absent
o If u would have been unmatched, set y¢ =1

» Claim 1: If Y;, < y©, then v must get matched.

o v may get matched before u arrives. But if not, it is surely
matched to u.

> Claim 2: u cannot be matched to a worse priority vertex
due to presence of v
o WHY?
o Thus, 8, = B (which is §,, when v is absent)

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

e Step 2: Show that the expected dual is feasible.

> We want to show that for any edge (u, v) in the graph,
Ela, + B, =1

> Recall: a,, = g(Y,,)/F if v is matched by ranking.
> Recall: v is matched if ¥, < y©

o Ela,] = fgcg(y)dy/F
> Recall: B, = B, = (1 — g(y°))/F

1 C
> Thus, Ela, + By] = (;) E [f(;y g(y)dy +1 - g(y")]
o Result follows if foeg(y)dy +1—-g(8) = F,forall6 € [0,1]

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

* Now it’s simple calculus.

> We can show that the optimal g is g(y) = e¥~1

> And the corresponding highest value of F (the highest
approximation this method can prove)is 1 — e~

o foeg(y)dy +1-g@) =e?T—e1+1—-ef1=1-¢"1

* We already know that RANKING does no better
than1 —e™ 1.

CSC2420 - Allan Borodin & Nisarg Shah

Devanur et al. Proof

 Step 4: Show that the integral primal solution is not
too far from the fractional dual solution: P = F - D

> Recall that in our construction, for every edge (u, v) in
the primal, we set a, and 5, such that a, + 5, = 1/F.

> Crucially, for all other vertices, we set them 0.

>SoD =Yy ay+ 2y Bu=P/F
> QED!

CSC2420 - Allan Borodin & Nisarg Shah

What's Cookin’?

* Better approximations in other models
> CR(adv) < CR(ROM) < CR(Unknown-IID) < CR(Known-IID)

* Q: Why is CR(ROM) < CR(Unknown-IID)?
> Take an algorithm with a approximation for ROM, and
apply it for Known-1ID model.
> Take sequences generated by known-IID model.

» Partition them such that in each part, all sequences have
same multiset of items.

> In each part, ROM approximation applies.

CSC2420 - Allan Borodin & Nisarg Shah

What's Cookin’?

* Better approximations in other models
> CR(adv) < CR(ROM) < CR(Unknown-IID) < CR(Known-IID)

* ROM/Unknown-11D: RANKING gives 0.696. It’s not
clear if we can do better.

 Known-IID: Can do at least 0.708, but not better
than 0.823.

CSC2420 - Allan Borodin & Nisarg Shah

What's Cookin’?

* Adwords Problem
> Left = advertisers, right (online) = ads
> Advertisers bid on incoming ads (weighted edges)

> Advertisers have budget
o Cannot always assign every ad to highest-bid advertiser

» Adversarial model: Greedy gives (1/2)-
approximation, but it’s not clear if we can do better

> If we assume bids << budget, then1 — 1/e
approximation is possible.

CSC2420 - Allan Borodin & Nisarg Shah

Randomization Continued

* In previous examples, we used randomization to
achieve approximation because OPT is
> either unknowable (online case)
> or incomputable (NP-hard)

e Randomization can also be used to reduce the
expected running time of an algorithm

> We still want *the* optimal solution, but we want to
compute it in time that is polynomial in expectation

CSC2420 - Allan Borodin & Nisarg Shah

Revisiting 2-SAT

* CNF formula with two literals in every clause
> E.g., (0 VX3) Az Vxg) A (X V xp)

* Bad example because

> MIAX-2-SAT is NP-hard, but 2-SAT (find a satisfying
assignment if it exists, return FALSE if it doesn’t) is in P.

> We want to solve 2-SAT, which can be solved in polytime
deterministically.

> We'll use randomization anyway. Just because.

CSC2420 - Allan Borodin & Nisarg Shah

Revisiting 2-SAT

* First, let’s do deterministic polytime 2-SAT.

ﬁlgorithm: \

> Eliminate all unit clauses, set the corresponding literals.
> Create a graph with 2n literals as vertices.
> For every clause (x V y), add two edges:

X —>yandy — x.

o If the source is true, then the destination must be true.

> Formula is satisfiable iff there are no paths from x to x or
X to x forany x

\> Just solve s — t connectivity problem in polynomial timy

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

* Here’s a cute randomized algorithm by
Papadimitriou [1991]

e Start with an arbitrary assignment.

* While there is an unsatisfied clause C = (x V y)
> Pick one of the two literals with equal probability.
> Flip the variable value so that C is satisfied.

_

~

e But, but, this can hurt other clauses?

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

* Theorem: If there exists a satisfying assignment 77,
then the expected time taken by the algorithm to
reach a satisfying assignment is at most 2n?.

* Proof:

> Fix T*. Let T be the starting assignment. Let 7; be the
assignment after i iterations.

» Consider the “hamming distance” d; between t; and t°
> di (S {0,1, ...,Tl}.

» We want to show that in expectation, we will hitd; = 0
in 2n? iterations, unless the algorithm stops before that.

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

* Observation: d;;,; =d; —1ord;;,1 =d; +1
> Because we change one variable in each iteration.

* Claim: Pr[di+1 — di — 1] = 1/2

* Proof:
> Iteration i considers an unsatisfied clause C = (x V y)
» T" satisfies at least one of x or y, while 7; satisfies neither

> Because we pick a literal randomly, w.p. at least 2 we
pick one where t; and 7™ differ, and decrease distance.

> Q: Why did we need an unsatisfied clause? What if we
pick one of n variables randomly, and flip it?

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk 2-SAT

 A: We want the distance to decrease with

. 1
probability at least > NO matter how close or far we
are from t~.

* If we are already close, choosing a variable at
random will likely choose one where T and t°
already match.

> Flipping this variable will increase the distance with high
probability.

e An unsatisfied clause narrows it down to two
variables s.t. T and T* differ on at least one of them

CSC2420 - Allan Borodin & Nisarg Shah 29

Random Walk + 2-SAT

* Observation: d;;,; =d; —1ord;;,1 =d; +1
* Claim: Pr[di+1 — di — 1] = 1/2

N =

1 1 1
>~ <= >~ <
2 2 2

* How does this help?

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

A\
N =
IA
N =
Y]
N =
IA
N =

%
;

* How does this help?
» Can view this as Markov chain and use hitting time results
> But let’s prove it with elementary methods.
> Ti+1; = expected timetogofromi+ 1toi
O Ti41; < G) *1+ G) *Tiyo,i < % + G) * (Tixzie1 + Tivn,)
o Thus, Tip1; <1+ Tiyz441 = Tir1, = 0(0)
0 Tno <Tpn_1++To=0mn?

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

e Can view this algorithm as a “drunken local search”
» We are searching the local neighborhood
> But we don’t ensure that we necessarily improve.
> We just ensure that in expectation, we aren’t hurt.
> Hope to reach a feasible solution in polynomial time

* Schoning extended this technique to k-SAT

> Schoning’s algorithm no longer runs in polynomial time,
but this is okay because k-SAT is NP-hard

> It still improves upon the naive 2™
> Later derandomized by Moser and Scheder [2011]

CSC2420 - Allan Borodin & Nisarg Shah

Schoning’s Algorithm

* Choose a random assighment 7.

* Repeat 3n times (n = #variables)
> If T satisfies the CNF, stop.

> Else, pick an arbitrary unsatisfied clause, and flip a
random literal in the clause.

_

J

CSC2420 - Allan Borodin & Nisarg Shah

Schoning’s Algorithm

* Randomized algorithm with one-sided error
> If the CNF is satisfiable, it finds an assignment with

probability at least G) (kL)n

> If the CNF is unsatisfiable, it surely does not find an
assignment.

* Expected # times we need to repeat = (2 (1 = %))n

> For k = 3, this gives 0(1.3333")
> For k = 4, this gives 0(1.5™)

CSC2420 - Allan Borodin & Nisarg Shah

Best Known Results

o 3-SAT

* Deterministic
> Derandomized Schoning’s algorithm: 0(1.3333")

» Best known: 0(1.3303") [HSSW]
o If there is a unique satisfying assignment: 0(1.3071") [PPSZ]

e Randomized

> Nothing better known without one-sided error

> With one-sided error, best known is 0(1.30704")
[Modified PPSZ]

CSC2420 - Allan Borodin & Nisarg Shah

Random Walk + 2-SAT

 Random walks are not only of theoretical interest
» WalkSAT is a practical SAT algorithm
> At each iteration, pick an unsatisfied clause at random

> Pick a a variable in the unsatisfied clause to flip:
o With some probability, pick at random.

o With the remaining probability, pick one that will make the fewest
previously satisfied clauses unsatisfied.

> Restart a few times (avoids being stuck in local minima)

* Faster than “intelligent local search” (GSAT)
> Flip the variable that satisfies most clauses

CSC2420 - Allan Borodin & Nisarg Shah

Random Walks on Graphs

e Aleliunas et al. [1979]

> Let G be a connected undirected graph. Then a random
walk starting from any vertex will cover the entire graph
(visit each vertex at least once) in O (mn) steps.

* Also care about limiting probability distribution

. : d :
> In the limit, the random walk with spend P fraction of
the time on vertex with degree d;

 Markov chains

> Generalize to directed (possibly infinite) graphs with
unequal edge probabilities

CSC2420 - Allan Borodin & Nisarg Shah

