
Lecture 8
Online bipartite matching (cont.) 

CSC2420 – Allan Borodin & Nisarg Shah 1



Online Bipartite Matching

CSC2420 – Allan Borodin & Nisarg Shah 2

• Bipartite graph 𝐺 = (𝑈 ∪ 𝑉, 𝐸), 𝐸 ⊆ 𝑈 × 𝑉

• 𝑈 = 𝑉 = 𝑛

• 𝑉 is fixed

• Nodes in 𝑈 arrive online, adversarially
➢ Say the arrival order is 𝑢1, … , 𝑢𝑛

➢ With arrival of each 𝑢𝑖 ∈ 𝑈, you discover its edges to 𝑉

➢ Must irrevocably match it to one of its neighbors in 𝑉 that 
is yet unmatched (if possible and desired)

• Compete with the maximum offline matching



Online Bipartite Matching

CSC2420 – Allan Borodin & Nisarg Shah 3

• Algorithm INFANT
➢ For every 𝑢𝑖, if it has unmatched neighbors in 𝑉, match it 

to one of the unmatched neighbors selected arbitrarily.

• Produces a maximal matching
➢ Worst case ½ approximation of the maximum matching

➢ WHY?

• Can we do better?



Online Bipartite Matching

CSC2420 – Allan Borodin & Nisarg Shah 4

• Algorithm RANKING [KVV90]
➢ Before the arrival starts, fix a random permutation 𝜎 of 

vertices in 𝑉. This acts as random priorities.

➢ For every 𝑢𝑖, match it to its unmatched neighbor that is 
highest in 𝜎 (if one exists).

• Claim: RANKING gives a 1 − Τ1
𝑒 approximation.

• Question: If the priorities are random anyway, how 
is this different from matching to a random 
unmatched neighbor (Algorithm INFANT)?



Proofs

CSC2420 – Allan Borodin & Nisarg Shah 5

• The original 1990 paper had a bug in the proof, 
which was corrected by Krohn and Varadarajan in 
2007 (17 years later!)

• Simple combinatorial proof by Birnbaum and 
Mathieu [08]

• A different IP/LP duality proof by Devanur, Jain and 
Kleinberg [13]



An Incorrect Proof

CSC2420 – Allan Borodin & Nisarg Shah 6

• Note: For the worst-case, we can assume the offline 
optimal 𝑚∗ is a perfect matching.

• Suppose RANKING produces matching 𝑚𝜎.

• Claim 1: For 𝑢 ∈ 𝑈, if 𝑣 = 𝑚∗ 𝑢 is unmatched in 
𝑚𝜎, then 𝑚𝜎 𝑢 = 𝑣′ such that 𝜎 𝑣′ < 𝜎(𝑣).
➢ If 𝑣 is unmatched at the end, 𝑣 was unmatched when 𝑢

arrived

➢ 𝑢 must have been matched to a higher priority vertex in 𝑉



An Incorrect Proof

CSC2420 – Allan Borodin & Nisarg Shah 7

• Claim 2: Let 𝑝𝑡 = probability (over 𝜎) that priority 𝑡

vertex is matched. Then 1 − 𝑝𝑡 ≤
1

𝑛
σ1≤𝑠≤𝑡 𝑝𝑠

• Incorrect Proof:
➢ Let 𝑢 ∈ 𝑈 be matched to priority 𝑡 vertex (𝑣 = 𝜎(𝑡)) in 𝑚∗

o That is, 𝑚∗ 𝑢 = 𝑣. Note that both 𝑢 and 𝑣 are random variables.

➢ Let 𝑈𝑡 ⊆ 𝑈 be matched to vertices with priority < 𝑡 in 𝑚𝜎

➢ By Claim 1, if 𝑣 is not matched, then 𝑢 must be matched to 
a vertex with priority < 𝑡. Thus, 1 − 𝑝𝑡 ≤ Pr 𝑢 ∈ 𝑈𝑡 .

➢ 𝑢 is independent of 𝑈𝑡, so Pr 𝑢 ∈ 𝑈𝑡 =
𝑈𝑡

𝑛
=

1

𝑛
σ1≤𝑠≤𝑡 𝑝𝑠

➢ What’s wrong in this argument?



Sketch of the Correct Proof

CSC2420 – Allan Borodin & Nisarg Shah 8

• 𝑢 and 𝑈𝑡 are dependent on each other due to 𝑡
➢ 𝑢 is matched to vertex with priority 𝑡 under 𝑚∗

➢ 𝑈𝑡 has vertices matched to priority < 𝑡 under 𝑚𝜎

• The correct (but less intuitive, and more complex) 
proof demonstrates that …
➢ We can choose 𝑢 independent of 𝑣 (⇒ independent of 𝑅𝑡)

➢ And yet achieve “𝑣 unmatched in 𝑚𝜎 ⇒ 𝑢 ∈ 𝑅𝑡”



The rest of the proof

CSC2420 – Allan Borodin & Nisarg Shah 9

• Claim 2: Let 𝑝𝑡 = probability (over 𝜎) that priority 𝑡

vertex is matched. Then 1 − 𝑝𝑡 ≤
1

𝑛
σ1≤𝑠≤𝑡 𝑝𝑠

➢ How does this help derive 1 − Τ1
𝑒 approximation?

➢ 𝑆𝑡 = σ1≤𝑠≤𝑡 𝑝𝑠. 

➢ Then, 1 − 𝑆𝑡 − 𝑆𝑡−1 ≤ 1/𝑛 𝑆𝑡

o This simplifies to 1 + 𝑆𝑡−1 ≤
𝑛+1

𝑛
𝑆𝑡 (1)

➢ Approximation ratio = 
𝑚𝜎

𝑛
=

𝑆𝑛

𝑛
o Smallest when all inequalities in (1) are equalities.

o Solve the recurrence to get 
𝑆𝑛

𝑛
≥ 1 −

𝑛

𝑛+1

𝑛
≥ 1 − Τ1

𝑒



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 10

• Proof using LP relaxation + duality
➢ Hope is that this will help in analyzing the unsolved 

adwords problem

Primal
max σ𝑒∈𝐸 𝑥𝑒
s.t.
σ𝑒∈𝛿 𝑣 𝑥𝑒 ≤ 1 ∀𝑣 ∈ V
σ𝑒∈𝛿 𝑢 𝑥𝑒 ≤ 1 ∀𝑢 ∈ 𝑈
𝑥𝑒 ≥ 0 ∀𝑒 ∈ 𝐸

Dual
min σ𝑣∈𝑉 𝛼𝑣 + σ𝑢∈𝑈 𝛽𝑢
s.t.
𝛼𝑣 + 𝛽𝑢 ≥ 1 ∀(𝑢, 𝑣) ∈ 𝐸
𝛼𝑣, 𝛽𝑢 ≥ 0 ∀𝑣 ∈ 𝑉, 𝑢 ∈ 𝑈



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 11

• Standard technique
➢ Start constructing a dual solution (e.g., using water-filling)

➢ This may be a fractional solution
o Thus not a feasible solution for the integral problem

➢ Use this as a guide to set integral values of variables in 
the primal problem to generate a feasible solution that is 
not too far from the dual value

• But we already have a solution given by RANKING
➢ We will simply see what it does in the dual formulation



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 12

• Outline
➢ Take the primal solution given by RANKING
o Primal objective value 𝑃 = size of matching

➢ Construct the corresponding fractional dual solution
o Let the dual objective value be 𝐷

➢ Show that the dual solution is feasible
o So 𝐷 ≥ 𝑂𝑃𝑇 ≥ 𝑃

o 𝑂𝑃𝑇 = size of maximum matching

➢ Show that the primal value is not too far

o 𝑃 ≥ 1 −
1

𝑒
𝐷 ≥ 1 −

1

𝑒
𝑂𝑃𝑇



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 13

• Outline
➢ Take the primal solution given by RANKING
o Primal objective value 𝑃 = size of matching

➢ Construct the corresponding fractional dual solution
o Let the dual objective value be 𝐷

➢ Show that the dual solution is feasible
o A technical note: Since 𝑚𝜎 is a random variable, the dual solution 

constructed is also random.

o It suffices to show that the expected dual solution (i.e., one 
obtained by taking expected value of each variable) is feasible.



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 14

• Another side note
➢ For simplicity, we will analyze the following algorithm 

equivalent to RANKING.

➢ Instead of creating a priority ordering 𝜎, we will assign a 
random number 𝑌𝑣 ~ 𝑈[0,1] to each node 𝑣 ∈ 𝑉
o Lower number means higher priority.



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 15

• Step 1: Construct dual solution from primal
➢ Take a function 𝑔: 0,1 → [0,1] such that 𝑔 1 = 1.

➢ Let 𝐹 be the approximation factor we want to prove.
o For us, 𝐹 = 1 − 1/𝑒

➢ For every (𝑢, 𝑣) matched by RANKING, set 

𝛼𝑣 =
𝑔 𝑌𝑣

𝐹
, 𝛽𝑢 =

1 − 𝑔 𝑌𝑣

𝐹

➢ For all other 𝑢 and 𝑣, set 𝛼𝑣 and 𝛽𝑢 to 0.



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 16

• A couple of observations about RANKING
➢ Take any edge (𝑢, 𝑣) in the graph

➢ Let 𝑦𝑐 denote the priority of the vertex to which 𝑢 would 
be matched if 𝑣 was absent
o If 𝑢 would have been unmatched, set 𝑦𝑐 = 1

➢ Claim 1: If 𝑌𝑣 < 𝑦𝑐, then 𝑣 must get matched.
o 𝑣 may get matched before 𝑢 arrives. But if not, it is surely 

matched to 𝑢.

➢ Claim 2: 𝑢 cannot be matched to a worse priority vertex 
due to presence of 𝑣
o WHY?

o Thus, 𝛽𝑢 ≥ 𝛽𝑢
𝑐 (which is 𝛽𝑢 when 𝑣 is absent)



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 17

• Step 2: Show that the expected dual is feasible.
➢ We want to show that for any edge (𝑢, 𝑣) in the graph, 

𝐸 𝛼𝑣 + 𝛽𝑢 ≥ 1

➢ Recall: 𝛼𝑣 = 𝑔(𝑌𝑣)/𝐹 if 𝑣 is matched by ranking.

➢ Recall: 𝑣 is matched if 𝑌𝑣 < 𝑦𝑐

o 𝐸 𝛼𝑣 ≥ 0

𝑦𝑐

𝑔 𝑦 𝑑𝑦/𝐹

➢ Recall: 𝛽𝑢 ≥ 𝛽𝑢
𝑐 = (1 − 𝑔 𝑦𝑐 )/𝐹

➢ Thus, 𝐸 𝛼𝑣 + 𝛽𝑢 =
1

𝐹
𝐸 0

𝑦𝑐

𝑔 𝑦 𝑑𝑦 + 1 − 𝑔 𝑦𝑐

o Result follows if 0

𝜃
𝑔 𝑦 𝑑𝑦 + 1 − 𝑔 𝜃 ≥ 𝐹, for all 𝜃 ∈ [0,1]



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 18

• Now it’s simple calculus.
➢ We can show that the optimal 𝑔 is 𝑔 𝑦 = 𝑒𝑦−1

➢ And the corresponding highest value of 𝐹 (the highest 
approximation this method can prove) is 1 − 𝑒−1

o 0

𝜃
𝑔 𝑦 𝑑𝑦 + 1 − 𝑔 𝜃 = 𝑒𝜃−1 − 𝑒−1 + 1 − 𝑒𝜃−1 = 1 − 𝑒−1

• We already know that RANKING does no better 
than 1 − 𝑒−1.



Devanur et al. Proof

CSC2420 – Allan Borodin & Nisarg Shah 19

• Step 4: Show that the integral primal solution is not 
too far from the fractional dual solution: 𝑃 ≥ 𝐹 ⋅ 𝐷
➢ Recall that in our construction, for every edge (𝑢, 𝑣) in 

the primal, we set 𝛼𝑣 and 𝛽𝑢 such that 𝛼𝑣 + 𝛽𝑢 = 1/𝐹.

➢ Crucially, for all other vertices, we set them 0.

➢ So 𝐷 = σ𝑣 𝛼𝑣 + σ𝑢 𝛽𝑢 = 𝑃/𝐹

➢ QED!



What’s Cookin’?

CSC2420 – Allan Borodin & Nisarg Shah 20

• Better approximations in other models
➢ CR(adv) ≤ CR(ROM) ≤ CR(Unknown-IID) ≤ CR(Known-IID)

• Q: Why is CR(ROM) ≤ CR(Unknown-IID)?
➢ Take an algorithm with 𝛼 approximation for ROM, and 

apply it for Known-IID model.

➢ Take sequences generated by known-IID model.

➢ Partition them such that in each part, all sequences have 
same multiset of items.

➢ In each part, ROM approximation applies.



What’s Cookin’?

CSC2420 – Allan Borodin & Nisarg Shah 21

• Better approximations in other models
➢ CR(adv) ≤ CR(ROM) ≤ CR(Unknown-IID) ≤ CR(Known-IID)

• ROM/Unknown-IID: RANKING gives 0.696. It’s not 
clear if we can do better.

• Known-IID: Can do at least 0.708, but not better 
than 0.823.



What’s Cookin’?

CSC2420 – Allan Borodin & Nisarg Shah 22

• Adwords Problem
➢ Left = advertisers, right (online) = ads

➢ Advertisers bid on incoming ads (weighted edges)

➢ Advertisers have budget
o Cannot always assign every ad to highest-bid advertiser

• Adversarial model: Greedy gives (1/2)-
approximation, but it’s not clear if we can do better
➢ If we assume bids << budget, then 1 − 1/𝑒

approximation is possible.



Randomization Continued

CSC2420 – Allan Borodin & Nisarg Shah 23

• In previous examples, we used randomization to 
achieve approximation because OPT is 
➢ either unknowable (online case)

➢ or incomputable (NP-hard)

• Randomization can also be used to reduce the 
expected running time of an algorithm
➢ We still want *the* optimal solution, but we want to 

compute it in time that is polynomial in expectation



Revisiting 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 24

• CNF formula with two literals in every clause
➢ E.g., 𝑥1 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∧ (𝑥1 ∨ 𝑥2)

• Bad example because 
➢ MAX-2-SAT is NP-hard, but 2-SAT (find a satisfying 

assignment if it exists, return FALSE if it doesn’t) is in P.

➢ We want to solve 2-SAT, which can be solved in polytime 
deterministically.

➢ We’ll use randomization anyway. Just because.



Revisiting 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 25

• First, let’s do deterministic polytime 2-SAT.

• Algorithm:
➢ Eliminate all unit clauses, set the corresponding literals.

➢ Create a graph with 2𝑛 literals as vertices.

➢ For every clause (𝑥 ∨ 𝑦), add two edges: 
ҧ𝑥 → 𝑦 and ത𝑦 → 𝑥.
o If the source is true, then the destination must be true.

➢ Formula is satisfiable iff there are no paths from 𝑥 to ҧ𝑥 or 
ҧ𝑥 to 𝑥 for any 𝑥

➢ Just solve 𝑠 − 𝑡 connectivity problem in polynomial time



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 26

• Here’s a cute randomized algorithm by 
Papadimitriou [1991]

• Start with an arbitrary assignment.

• While there is an unsatisfied clause 𝐶 = (𝑥 ∨ 𝑦)
➢ Pick one of the two literals with equal probability.

➢ Flip the variable value so that 𝐶 is satisfied.

• But, but, this can hurt other clauses?



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 27

• Theorem: If there exists a satisfying assignment 𝜏∗, 
then the expected time taken by the algorithm to 
reach a satisfying assignment is at most 2𝑛2.

• Proof: 
➢ Fix 𝜏∗. Let 𝜏0 be the starting assignment. Let 𝜏𝑖 be the 

assignment after 𝑖 iterations.

➢ Consider the “hamming distance” 𝑑𝑖 between 𝜏𝑖 and 𝜏∗

➢ 𝑑𝑖 ∈ {0,1, … , 𝑛}. 

➢ We want to show that in expectation, we will hit 𝑑𝑖 = 0
in 2𝑛2 iterations, unless the algorithm stops before that.



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 28

• Observation: 𝑑𝑖+1 = 𝑑𝑖 − 1 or 𝑑𝑖+1 = 𝑑𝑖 + 1
➢ Because we change one variable in each iteration.

• Claim: Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1/2

• Proof:
➢ Iteration 𝑖 considers an unsatisfied clause 𝐶 = (𝑥 ∨ 𝑦)

➢ 𝜏∗ satisfies at least one of 𝑥 or 𝑦, while 𝜏𝑖 satisfies neither

➢ Because we pick a literal randomly, w.p. at least ½ we 
pick one where 𝜏𝑖 and 𝜏∗ differ, and decrease distance.

➢ Q: Why did we need an unsatisfied clause? What if we 
pick one of 𝑛 variables randomly, and flip it?



Random Walk 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 29

• A: We want the distance to decrease with 

probability at least 
1

2
no matter how close or far we 

are from 𝜏∗.

• If we are already close, choosing a variable at 
random will likely choose one where 𝜏 and 𝜏∗

already match.
➢ Flipping this variable will increase the distance with high 

probability.

• An unsatisfied clause narrows it down to two 
variables s.t. 𝜏 and 𝜏∗ differ on at least one of them



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 30

• Observation: 𝑑𝑖+1 = 𝑑𝑖 − 1 or 𝑑𝑖+1 = 𝑑𝑖 + 1

• Claim: Pr 𝑑𝑖+1 = 𝑑𝑖 − 1 ≥ 1/2

• How does this help?

0 1 2 3 4 𝑛5

≥
1

2
≤

1

2
≥

1

2
≤

1

2



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 31

• How does this help?
➢ Can view this as Markov chain and use hitting time results

➢ But let’s prove it with elementary methods. 

➢ 𝑇𝑖+1,𝑖 = expected time to go from 𝑖 + 1 to 𝑖

o 𝑇𝑖+1,𝑖 ≤
1

2
∗ 1 +

1

2
∗ 𝑇𝑖+2,𝑖 ≤

1

2
+

1

2
∗ 𝑇𝑖+2,𝑖+1 + 𝑇𝑖+1,𝑖

o Thus, 𝑇𝑖+1,𝑖 ≤ 1 + 𝑇𝑖+2,𝑖+1 → 𝑇𝑖+1,𝑖 = 𝑂(𝑛)

o 𝑇𝑛,0 ≤ 𝑇𝑛,𝑛−1 + ⋯ + 𝑇1,0 = 𝑂 𝑛2

0 1 2 3 4 𝑛5

≥
1

2
≤

1

2
≥

1

2
≤

1

2



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 32

• Can view this algorithm as a “drunken local search”
➢ We are searching the local neighborhood

➢ But we don’t ensure that we necessarily improve.

➢ We just ensure that in expectation, we aren’t hurt.

➢ Hope to reach a feasible solution in polynomial time

• Schöning extended this technique to 𝑘-SAT
➢ Schöning’s algorithm no longer runs in polynomial time, 

but this is okay because 𝑘-SAT is NP-hard

➢ It still improves upon the naïve 2𝑛

➢ Later derandomized by Moser and Scheder [2011]



Schöning’s Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 33

• Choose a random assignment 𝜏.

• Repeat 3𝑛 times (𝑛 = #variables)
➢ If 𝜏 satisfies the CNF, stop.

➢ Else, pick an arbitrary unsatisfied clause, and flip a 
random literal in the clause.



Schöning’s Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 34

• Randomized algorithm with one-sided error
➢ If the CNF is satisfiable, it finds an assignment with 

probability at least 
1

2

𝑘

𝑘−1

𝑛

➢ If the CNF is unsatisfiable, it surely does not find an 
assignment.

• Expected # times we need to repeat = 2 1 −
1

𝑘

𝑛

➢ For 𝑘 = 3, this gives 𝑂(1.3333𝑛)

➢ For 𝑘 = 4, this gives 𝑂 1.5𝑛



Best Known Results

CSC2420 – Allan Borodin & Nisarg Shah 35

• 3-SAT

• Deterministic
➢ Derandomized Schöning’s algorithm: 𝑂(1.3333𝑛)

➢ Best known: 𝑂(1.3303𝑛) [HSSW]
o If there is a unique satisfying assignment: 𝑂(1.3071𝑛) [PPSZ]

• Randomized
➢ Nothing better known without one-sided error

➢ With one-sided error, best known is 𝑂 1.30704𝑛

[Modified PPSZ]



Random Walk + 2-SAT

CSC2420 – Allan Borodin & Nisarg Shah 36

• Random walks are not only of theoretical interest
➢ WalkSAT is a practical SAT algorithm

➢ At each iteration, pick an unsatisfied clause at random

➢ Pick a a variable in the unsatisfied clause to flip:
o With some probability, pick at random.

o With the remaining probability, pick one that will make the fewest 
previously satisfied clauses unsatisfied. 

➢ Restart a few times (avoids being stuck in local minima)

• Faster than “intelligent local search” (GSAT)
➢ Flip the variable that satisfies most clauses



Random Walks on Graphs

CSC2420 – Allan Borodin & Nisarg Shah 37

• Aleliunas et al. [1979]
➢ Let 𝐺 be a connected undirected graph. Then a random 

walk starting from any vertex will cover the entire graph 
(visit each vertex at least once) in 𝑂(𝑚𝑛) steps.

• Also care about limiting probability distribution
➢ In the limit, the random walk with spend 

𝑑𝑖

2𝑚
fraction of 

the time on vertex with degree 𝑑𝑖

• Markov chains 
➢ Generalize to directed (possibly infinite) graphs with 

unequal edge probabilities


