Lecture 8 Online bipartite matching (cont.)

Online Bipartite Matching

- Bipartite graph $G = (U \cup V, E), E \subseteq U \times V$
- |U| = |V| = n
- V is fixed
- Nodes in *U* arrive online, adversarially
 - \succ Say the arrival order is u_1, \dots, u_n
 - \succ With arrival of each $u_i \in U$, you discover its edges to V
 - Must irrevocably match it to one of its neighbors in V that is yet unmatched (if possible and desired)
- Compete with the maximum offline matching

Online Bipartite Matching

Algorithm INFANT

For every u_i, if it has unmatched neighbors in V, match it to one of the unmatched neighbors selected arbitrarily.

• Produces a *maximal* matching

Worst case ½ approximation of the maximum matching
 WHY?

• Can we do better?

Online Bipartite Matching

• Algorithm RANKING [KVV90]

- > Before the arrival starts, fix a random permutation σ of vertices in V. This acts as random priorities.
- > For every u_i , match it to its unmatched neighbor that is highest in σ (if one exists).
- Claim: RANKING gives a $1 \frac{1}{e}$ approximation.
- Question: If the priorities are random anyway, how is this different from matching to a random unmatched neighbor (Algorithm INFANT)?

Proofs

- The original 1990 paper had a bug in the proof, which was corrected by Krohn and Varadarajan in 2007 (17 years later!)
- Simple combinatorial proof by Birnbaum and Mathieu [08]
- A different IP/LP duality proof by Devanur, Jain and Kleinberg [13]

An Incorrect Proof

- Note: For the worst-case, we can assume the offline optimal m^{*} is a perfect matching.
- Suppose RANKING produces matching m_{σ} .
- Claim 1: For $u \in U$, if $v = m^*(u)$ is unmatched in m_{σ} , then $m_{\sigma}(u) = v'$ such that $\sigma(v') < \sigma(v)$.
 - If v is unmatched at the end, v was unmatched when u arrived
 - > *u* must have been matched to a higher priority vertex in *V*

An Incorrect Proof

- Claim 2: Let p_t = probability (over σ) that priority tvertex is matched. Then $1 - p_t \leq \frac{1}{n} \sum_{1 \leq s \leq t} p_s$
- Incorrect Proof:
 - → Let $u \in U$ be matched to priority t vertex ($v = \sigma(t)$) in m^* \circ That is, $m^*(u) = v$. Note that both u and v are random variables.
 - > Let $U_t \subseteq U$ be matched to vertices with priority < t in m_σ
 - > By Claim 1, if v is not matched, then u must be matched to a vertex with priority < t. Thus, $1 p_t ≤ Pr[u ∈ U_t]$.
 - > u is independent of U_t , so $\Pr[u \in U_t] = \frac{|U_t|}{n} = \frac{1}{n} \sum_{1 \le s \le t} p_s$

> What's wrong in this argument?

Sketch of the Correct Proof

- *u* and U_t are dependent on each other due to t
 u is matched to vertex with priority t under m^{*}
 U_t has vertices matched to priority < t under m_σ
- The correct (but less intuitive, and more complex) proof demonstrates that ...
 - > We can choose u independent of v (\Rightarrow independent of R_t)

> And yet achieve "v unmatched in $m_{\sigma} \Rightarrow u \in R_t$ "

The rest of the proof

• Claim 2: Let p_t = probability (over σ) that priority tvertex is matched. Then $1 - p_t \leq \frac{1}{n} \sum_{1 \leq s \leq t} p_s$ > How does this help derive $1 - \frac{1}{e}$ approximation? $\succ S_t = \sum_{1 < c < t} p_c.$ > Then, $1 - (S_t - S_{t-1}) \le (1/n)S_t$ • This simplifies to $1 + S_{t-1} \leq \left(\frac{n+1}{n}\right)S_t$ (1)> Approximation ratio = $\frac{|m_{\sigma}|}{n} = \frac{S_n}{n}$ \circ Smallest when all inequalities in (1) are equalities. • Solve the recurrence to get $\frac{S_n}{n} \ge 1 - \left(\frac{n}{n+1}\right)^n \ge 1 - \frac{1}{e}$

- Proof using LP relaxation + duality
 - > Hope is that this will help in analyzing the unsolved adwords problem

Primal

$$\begin{array}{ll} \max \sum_{e \in E} x_e \\ \text{s.t.} \\ \sum_{e \in \delta(v)} x_e \leq 1 & \forall v \in \mathsf{V} \\ \sum_{e \in \delta(u)} x_e \leq 1 & \forall u \in U \\ x_e \geq 0 & \forall e \in E \end{array}$$

Dual

$$\min \sum_{v \in V} \alpha_v + \sum_{u \in U} \beta_u$$

s.t.
$$\alpha_v + \beta_u \ge 1 \quad \forall (u, v) \in E$$

$$\alpha_v, \beta_u \ge 0 \qquad \forall v \in V, u \in U$$

- Standard technique
 - Start constructing a dual solution (e.g., using water-filling)
 - > This may be a fractional solution
 - $\,\circ\,$ Thus not a feasible solution for the integral problem
 - Use this as a guide to set integral values of variables in the primal problem to generate a feasible solution that is not too far from the dual value
- But we already have a solution given by RANKING
 > We will simply see what it does in the dual formulation

- Outline
 - Take the primal solution given by RANKING
 O Primal objective value P = size of matching
 - Construct the corresponding fractional dual solution
 Let the dual objective value be D
 - Show that the dual solution is feasible
 - $\circ \text{ So } D \ge OPT \ge P$
 - $\circ OPT = size of maximum matching$
 - > Show that the primal value is not too far

$$\circ P \ge \left(1 - \frac{1}{e}\right) D \ge \left(1 - \frac{1}{e}\right) OPT$$

- Outline
 - Take the primal solution given by RANKING
 O Primal objective value P = size of matching
 - Construct the corresponding fractional dual solution
 Let the dual objective value be D
 - Show that the dual solution is feasible
 - \odot A technical note: Since m_σ is a random variable, the dual solution constructed is also random.
 - It suffices to show that the *expected dual solution* (i.e., one obtained by taking expected value of each variable) is feasible.

- Another side note
 - For simplicity, we will analyze the following algorithm equivalent to RANKING.
 - > Instead of creating a priority ordering σ, we will assign a random number Y_v ~ U[0,1] to each node v ∈ V
 Lower number means higher priority.

- Step 1: Construct dual solution from primal
 > Take a function g: [0,1] → [0,1] such that g(1) = 1.
 > Let F be the approximation factor we want to prove.
 For us, F = 1 1/e
 - > For every (u, v) matched by RANKING, set

$$\alpha_v = \frac{g(Y_v)}{F}, \qquad \beta_u = \frac{1 - g(Y_v)}{F}$$

> For all other u and v, set α_v and β_u to 0.

- A couple of observations about RANKING
 - > Take any edge (u, v) in the graph
 - Let y^c denote the priority of the vertex to which u would be matched if v was absent

 \circ If *u* would have been unmatched, set $y^c = 1$

- > Claim 1: If $Y_v < y^c$, then v must get matched.
 - $\circ v$ may get matched before u arrives. But if not, it is surely matched to u.
- Claim 2: u cannot be matched to a worse priority vertex due to presence of v

• WHY?

 \circ Thus, $\beta_u \ge \beta_u^c$ (which is β_u when v is absent)

- Step 2: Show that the expected dual is feasible.
 - We want to show that for any edge (u, v) in the graph, E[α_v + β_u] ≥ 1
 - Recall: α_v = g(Y_v)/F if v is matched by ranking.
 Recall: v is matched if Y_v < y^c
 E[α_v] ≥ ∫₀^{y^c} g(y)dy/F
 Recall: β_u ≥ β_u^c = (1 g(y^c))/F
 Thus, E[α_v + β_u] = (¹/_F) E [∫₀^{y^c} g(y)dy + 1 g(y^c)]
 Result follows if ∫₀^θ g(y)dy + 1 g(θ) ≥ F, for all θ ∈ [0,1]

- Now it's simple calculus.
 - > We can show that the optimal g is $g(y) = e^{y-1}$
 - > And the corresponding highest value of F (the highest approximation this method can prove) is $1 - e^{-1}$ $\circ \int_{0}^{\theta} g(y)dy + 1 - g(\theta) = e^{\theta - 1} - e^{-1} + 1 - e^{\theta - 1} = 1 - e^{-1}$
- We already know that RANKING does no better than $1 e^{-1}$.

- Step 4: Show that the integral primal solution is not too far from the fractional dual solution: $P \ge F \cdot D$
 - > Recall that in our construction, for every edge (u, v) in the primal, we set α_v and β_u such that $\alpha_v + \beta_u = 1/F$.
 - > Crucially, for all other vertices, we set them 0.

> So
$$D = \sum_{v} \alpha_{v} + \sum_{u} \beta_{u} = P/F$$

> QED!

What's Cookin'?

- Better approximations in other models
 > CR(adv) ≤ CR(ROM) ≤ CR(Unknown-IID) ≤ CR(Known-IID)
- Q: Why is $CR(ROM) \leq CR(Unknown-IID)$?
 - Take an algorithm with α approximation for ROM, and apply it for Known-IID model.
 - > Take sequences generated by known-IID model.
 - Partition them such that in each part, all sequences have same multiset of items.
 - > In each part, ROM approximation applies.

What's Cookin'?

- Better approximations in other models
 > CR(adv) ≤ CR(ROM) ≤ CR(Unknown-IID) ≤ CR(Known-IID)
- ROM/Unknown-IID: RANKING gives 0.696. It's not clear if we can do better.
- Known-IID: Can do at least 0.708, but not better than 0.823.

What's Cookin'?

- Adwords Problem
 - Left = advertisers, right (online) = ads
 - > Advertisers bid on incoming ads (weighted edges)
 - > Advertisers have budget
 - $\,\circ\,$ Cannot always assign every ad to highest-bid advertiser
- Adversarial model: Greedy gives (1/2)approximation, but it's not clear if we can do better
 - > If we assume bids << budget, then 1 1/e approximation is possible.

Randomization Continued

 In previous examples, we used randomization to achieve approximation because OPT is

> either unknowable (online case)

> or incomputable (NP-hard)

- Randomization can also be used to reduce the expected running time of an algorithm
 - > We still want *the* optimal solution, but we want to compute it in time that is polynomial in expectation

Revisiting 2-SAT

- CNF formula with two literals in every clause
 ▷ E.g., (x₁ ∨ x₃) ∧ (x₂ ∨ x₃) ∧ (x₁ ∨ x₂)
- Bad example because
 - MAX-2-SAT is NP-hard, but 2-SAT (find a satisfying assignment if it exists, return FALSE if it doesn't) is in P.
 - > We want to solve 2-SAT, which can be solved in polytime deterministically.
 - > We'll use randomization anyway. Just because.

Revisiting 2-SAT

- First, let's do deterministic polytime 2-SAT.
- Algorithm:
 - > Eliminate all unit clauses, set the corresponding literals.
 - \succ Create a graph with 2n literals as vertices.
 - > For every clause $(x \lor y)$, add two edges:

 $\bar{x} \rightarrow y \text{ and } \bar{y} \rightarrow x.$

 $_{\odot}$ If the source is true, then the destination must be true.

> Formula is satisfiable iff there are no paths from x to \overline{x} or \overline{x} to x for any x

> Just solve s - t connectivity problem in polynomial time

- Here's a cute randomized algorithm by Papadimitriou [1991]
- Start with an arbitrary assignment.
- While there is an unsatisfied clause C = (x ∨ y)
 Pick one of the two literals with equal probability.
 - Flip the variable value as that C is satisfied
 - Flip the variable value so that C is satisfied.
- But, but, this can hurt other clauses?

- Theorem: If there exists a satisfying assignment τ^* , then the expected time taken by the algorithm to reach a satisfying assignment is at most $2n^2$.
- Proof:
 - > Fix τ^* . Let τ_0 be the starting assignment. Let τ_i be the assignment after *i* iterations.
 - > Consider the "hamming distance" d_i between au_i and au^*
 - $\succ d_i \in \{0,1,\ldots,n\}.$
 - > We want to show that in expectation, we will hit $d_i = 0$ in $2n^2$ iterations, unless the algorithm stops before that.

- Observation: d_{i+1} = d_i − 1 or d_{i+1} = d_i + 1
 > Because we change one variable in each iteration.
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$

• Proof:

- > Iteration *i* considers an unsatisfied clause $C = (x \lor y)$
- > τ^* satisfies at least one of x or y, while τ_i satisfies neither
- > Because we pick a literal randomly, w.p. at least $\frac{1}{2}$ we pick one where τ_i and τ^* differ, and decrease distance.
- Q: Why did we need an unsatisfied clause? What if we pick one of n variables randomly, and flip it?

- A: We want the distance to decrease with probability at least $\frac{1}{2}$ no matter how close or far we are from τ^* .
- If we are already close, choosing a variable at random will likely choose one where τ and τ^* already match.
 - Flipping this variable will increase the distance with high probability.
- An unsatisfied clause narrows it down to two variables s.t. τ and τ^* differ on at least one of them

- Observation: $d_{i+1} = d_i 1$ or $d_{i+1} = d_i + 1$
- Claim: $\Pr[d_{i+1} = d_i 1] \ge 1/2$

• How does this help?

- How does this help?
 - > Can view this as Markov chain and use hitting time results
 - > But let's prove it with elementary methods.
 - > $T_{i+1,i}$ = expected time to go from i + 1 to i

$$\circ \quad T_{i+1,i} \le \left(\frac{1}{2}\right) * 1 + \left(\frac{1}{2}\right) * T_{i+2,i} \le \frac{1}{2} + \left(\frac{1}{2}\right) * \left(T_{i+2,i+1} + T_{i+1,i}\right)$$

• Thus,
$$T_{i+1,i} \le 1 + T_{i+2,i+1} \to T_{i+1,i} = O(n)$$

o
$$T_{n,0} \le T_{n,n-1} + \dots + T_{1,0} = O(n^2)$$

- Can view this algorithm as a "drunken local search"
 - > We are searching the local neighborhood
 - > But we don't ensure that we necessarily improve.
 - > We just ensure that in expectation, we aren't hurt.
 - > Hope to reach a feasible solution in polynomial time
- Schöning extended this technique to k-SAT
 - Schöning's algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 - \succ It still improves upon the naïve 2^n
 - Later derandomized by Moser and Scheder [2011]

Schöning's Algorithm

- Choose a random assignment au.
- Repeat 3n times (n = #variables)
 - > If τ satisfies the CNF, stop.
 - > Else, pick an arbitrary unsatisfied clause, and flip a random literal in the clause.

Schöning's Algorithm

- Randomized algorithm with one-sided error
 - > If the CNF is satisfiable, it finds an assignment with probability at least $\left(\frac{1}{2}\right)\left(\frac{k}{k-1}\right)^n$
 - If the CNF is unsatisfiable, it surely does not find an assignment.
- Expected # times we need to repeat = $\left(2\left(1-\frac{1}{k}\right)\right)^n$

> For
$$k = 3$$
, this gives $O(1.3333^n)$

> For
$$k = 4$$
, this gives $O(1.5^n)$

Best Known Results

- 3-SAT
- Deterministic
 - > Derandomized Schöning's algorithm: $O(1.3333^n)$
 - > Best known: $O(1.3303^n)$ [HSSW]
 - \circ If there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]

Randomized

- > Nothing better known without one-sided error
- With one-sided error, best known is O(1.30704ⁿ) [Modified PPSZ]

- Random walks are not only of theoretical interest
 - > WalkSAT is a practical SAT algorithm
 - > At each iteration, pick an unsatisfied clause at random
 - > Pick a a variable in the unsatisfied clause to flip:
 - $\,\circ\,$ With some probability, pick at random.
 - With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied.
 - > Restart a few times (avoids being stuck in local minima)
- Faster than "intelligent local search" (GSAT)
 Flip the variable that satisfies most clauses

Random Walks on Graphs

- Aleliunas et al. [1979]
 - Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in O(mn) steps.
- Also care about limiting probability distribution
 - > In the limit, the random walk with spend $\frac{d_i}{2m}$ fraction of the time on vertex with degree d_i
- Markov chains
 - Generalize to directed (possibly infinite) graphs with unequal edge probabilities