Online Bipartite Matching

• Bipartite graph $G = (U \cup V, E)$, $E \subseteq U \times V$
• $|U| = |V| = n$
• V is fixed
• Nodes in U arrive online, adversarially
 ➢ Say the arrival order is u_1, \ldots, u_n
 ➢ With arrival of each $u_i \in U$, you discover its edges to V
 ➢ Must irrevocably match it to one of its neighbors in V that is yet unmatched (if possible and desired)

• Compete with the maximum offline matching
Online Bipartite Matching

• Algorithm INFANT
 ➢ For every u_i, if it has unmatched neighbors in V, match it to one of the unmatched neighbors selected arbitrarily.

• Produces a maximal matching
 ➢ Worst case $\frac{1}{2}$ approximation of the maximum matching
 ➢ WHY?

• Can we do better?
Online Bipartite Matching

• Algorithm RANKING [KVV90]
 ➢ Before the arrival starts, fix a random permutation σ of vertices in V. This acts as random priorities.
 ➢ For every u_i, match it to its unmatched neighbor that is highest in σ (if one exists).

• Claim: RANKING gives a $1 - \frac{1}{e}$ approximation.

• Question: If the priorities are random anyway, how is this different from matching to a random unmatched neighbor (Algorithm INFANT)?
Proofs

• The original 1990 paper had a bug in the proof, which was corrected by Krohn and Varadarajan in 2007 (17 years later!)

• Simple combinatorial proof by Birnbaum and Mathieu [08]

• A different IP/LP duality proof by Devanur, Jain and Kleinberg [13]
An Incorrect Proof

• Note: For the worst-case, we can assume the offline optimal \(m^* \) is a perfect matching.

• Suppose RANKING produces matching \(m_\sigma \).

• Claim 1: For \(u \in U \), if \(v = m^*(u) \) is unmatched in \(m_\sigma \), then \(m_\sigma(u) = v' \) such that \(\sigma(v') < \sigma(v) \).
 - If \(v \) is unmatched at the end, \(v \) was unmatched when \(u \) arrived
 - \(u \) must have been matched to a higher priority vertex in \(V \)
An Incorrect Proof

- **Claim 2:** Let $p_t = \text{probability (over } \sigma) \text{ that priority } t \text{ vertex is matched. Then } 1 - p_t \leq \frac{1}{n} \sum_{1 \leq s \leq t} p_s$

- **Incorrect Proof:**
 - Let $u \in U$ be matched to priority t vertex ($v = \sigma(t)$) in m^*
 - That is, $m^*(u) = v$. Note that both u and v are random variables.
 - Let $U_t \subseteq U$ be matched to vertices with priority $< t$ in m_σ
 - By Claim 1, if v is not matched, then u must be matched to a vertex with priority $< t$. Thus, $1 - p_t \leq \Pr[u \in U_t]$.
 - u is independent of U_t, so $\Pr[u \in U_t] = \frac{|U_t|}{n} = \frac{1}{n} \sum_{1 \leq s \leq t} p_s$
 - What’s wrong in this argument?
Sketch of the Correct Proof

• u and U_t are dependent on each other due to t
 - u is matched to vertex with priority t under m^*
 - U_t has vertices matched to priority $< t$ under m_σ

• The correct (but less intuitive, and more complex) proof demonstrates that ...
 - We can choose u independent of v (⇒ independent of R_t)
 - And yet achieve “v unmatched in $m_\sigma \Rightarrow u \in R_t$”
The rest of the proof

• **Claim 2:** Let $p_t = \text{probability (over } \sigma) \text{ that priority } t \text{ vertex is matched.} \text{ Then } 1 - p_t \leq \frac{1}{n} \sum_{1 \leq s \leq t} p_s$

 - How does this help derive $1 - \frac{1}{e}$ approximation?
 - $S_t = \sum_{1 \leq s \leq t} p_s$.
 - Then, $1 - (S_t - S_{t-1}) \leq (1/n) S_t$
 - This simplifies to $1 + S_{t-1} \leq \left(\frac{n+1}{n} \right) S_t \quad (1)$
 - Approximation ratio $= \frac{|m_\sigma|}{n} = \frac{S_n}{n}$
 - Smallest when all inequalities in (1) are equalities.
 - Solve the recurrence to get $\frac{S_n}{n} \geq 1 - \left(\frac{n}{n+1} \right)^n \geq 1 - \frac{1}{e}$
Devanur et al. Proof

• Proof using LP relaxation + duality
 ➢ Hope is that this will help in analyzing the unsolved adwords problem

Primal
\[
\begin{align*}
\text{max} & \quad \sum_{e \in E} x_e \\
\text{s.t.} & \quad \sum_{e \in \delta(v)} x_e \leq 1 \quad \forall v \in V \\
& \quad \sum_{e \in \delta(u)} x_e \leq 1 \quad \forall u \in U \\
& \quad x_e \geq 0 \quad \forall e \in E \\
\end{align*}
\]

Dual
\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} \alpha_v + \sum_{u \in U} \beta_u \\
\text{s.t.} & \quad \alpha_v + \beta_u \geq 1 \quad \forall (u, v) \in E \\
& \quad \alpha_v, \beta_u \geq 0 \quad \forall v \in V, u \in U \\
\end{align*}
\]
Devanur et al. Proof

• Standard technique
 ➢ Start constructing a dual solution (e.g., using water-filling)
 ➢ This may be a fractional solution
 o Thus not a feasible solution for the integral problem
 ➢ Use this as a guide to set integral values of variables in the primal problem to generate a feasible solution that is not too far from the dual value

• But we already have a solution given by RANKING
 ➢ We will simply see what it does in the dual formulation
Devanur et al. Proof

• Outline
 ➢ Take the primal solution given by RANKING
 o Primal objective value $P = \text{size of matching}$
 ➢ Construct the corresponding fractional dual solution
 o Let the dual objective value be D
 ➢ Show that the dual solution is feasible
 o So $D \geq OPT \geq P$
 o $OPT = \text{size of maximum matching}$
 ➢ Show that the primal value is not too far
 o $P \geq \left(1 - \frac{1}{e}\right)D \geq \left(1 - \frac{1}{e}\right)OPT$
Devanur et al. Proof

• Outline
 ➢ Take the primal solution given by RANKING
 o Primal objective value $P = \text{size of matching}$
 ➢ Construct the corresponding fractional dual solution
 o Let the dual objective value be D
 ➢ Show that the dual solution is feasible
 o A technical note: Since m_σ is a random variable, the dual solution constructed is also random.
 o It suffices to show that the expected dual solution (i.e., one obtained by taking expected value of each variable) is feasible.
Devanur et al. Proof

• Another side note
 ➢ For simplicity, we will analyze the following algorithm equivalent to RANKING.

 ➢ Instead of creating a priority ordering σ, we will assign a random number $Y_v \sim U[0,1]$ to each node $v \in V$
 o Lower number means higher priority.
Devanur et al. Proof

• **Step 1:** Construct dual solution from primal
 ➢ Take a function $g: [0,1] \rightarrow [0,1]$ such that $g(1) = 1$.
 ➢ Let F be the approximation factor we want to prove.
 ○ For us, $F = 1 - 1/e$

 ➢ For every (u, v) matched by RANKING, set

 $$\alpha_v = \frac{g(Y_v)}{F}, \quad \beta_u = \frac{1 - g(Y_v)}{F}$$

 ➢ For all other u and v, set α_v and β_u to 0.
Devanur et al. Proof

• A couple of observations about RANKING
 ➢ Take any edge \((u, v)\) in the graph
 ➢ Let \(y^c\) denote the priority of the vertex to which \(u\) would be matched if \(v\) was absent
 o If \(u\) would have been unmatched, set \(y^c = 1\)
 ➢ Claim 1: If \(Y_v < y^c\), then \(v\) must get matched.
 o \(v\) may get matched before \(u\) arrives. But if not, it is surely matched to \(u\).
 ➢ Claim 2: \(u\) cannot be matched to a worse priority vertex due to presence of \(v\)
 o WHY?
 o Thus, \(\beta_u \geq \beta_u^c\) (which is \(\beta_u\) when \(v\) is absent)
Devanur et al. Proof

• Step 2: Show that the expected dual is feasible.
 ➢ We want to show that for any edge \((u, v)\) in the graph,
 \[E[\alpha_v + \beta_u] \geq 1 \]
 ➢ Recall: \(\alpha_v = g(Y_v)/F\) if \(v\) is matched by ranking.
 ➢ Recall: \(v\) is matched if \(Y_v < y^c\)
 - \(E[\alpha_v] \geq \int_0^{y^c} g(y)dy/F\)
 ➢ Recall: \(\beta_u \geq \beta_u^c = (1 - g(y^c))/F\)
 ➢ Thus, \(E[\alpha_v + \beta_u] = \left(\frac{1}{F}\right) E \left[\int_0^{y^c} g(y)dy + 1 - g(y^c) \right] \)
 - Result follows if \(\int_0^\theta g(y)dy + 1 - g(\theta) \geq F\), for all \(\theta \in [0,1]\)
Devanur et al. Proof

• Now it’s simple calculus.
 ➢ We can show that the optimal \(g \) is \(g(y) = e^{y-1} \)
 ➢ And the corresponding highest value of \(F \) (the highest approximation this method can prove) is \(1 - e^{-1} \)
 \[
 \int_0^\theta g(y) dy + 1 - g(\theta) = e^{\theta-1} - e^{-1} + 1 - e^{\theta-1} = 1 - e^{-1}
 \]

• We already know that RANKING does no better than \(1 - e^{-1} \).
Devanur et al. Proof

• **Step 4:** Show that the integral primal solution is not too far from the fractional dual solution: \(P \geq F \cdot D \)
 - Recall that in our construction, for every edge \((u, v)\) in the primal, we set \(\alpha_v \) and \(\beta_u \) such that \(\alpha_v + \beta_u = 1/F \).
 - Crucially, for all other vertices, we set them 0.
 - So \(D = \sum_v \alpha_v + \sum_u \beta_u = P/F \)
 - QED!
What’s Cookin’?

• Better approximations in other models
 ➢ \(CR(\text{adv}) \leq CR(\text{ROM}) \leq CR(\text{Unknown-IID}) \leq CR(\text{Known-IID}) \)

• **Q:** Why is \(CR(\text{ROM}) \leq CR(\text{Unknown-IID}) \)?
 ➢ Take an algorithm with \(\alpha \) approximation for ROM, and apply it for Known-IID model.
 ➢ Take sequences generated by known-IID model.
 ➢ Partition them such that in each part, all sequences have same multiset of items.
 ➢ In each part, ROM approximation applies.
What’s Cookin’?

• Better approximations in other models
 ➢ CR(adv) ≤ CR(ROM) ≤ CR(Unknown-IID) ≤ CR(Known-IID)

• ROM/Unknown-IID: RANKING gives 0.696. It’s not clear if we can do better.

• Known-IID: Can do at least 0.708, but not better than 0.823.
What’s Cookin’?

• **Adwords Problem**
 - Left = advertisers, right (online) = ads
 - Advertisers bid on incoming ads (weighted edges)
 - Advertisers have budget
 - Cannot always assign every ad to highest-bid advertiser

• Adversarial model: Greedy gives (1/2)-approximation, but it’s not clear if we can do better
 - If we assume bids \ll budget, then $1 - 1/e$ approximation is possible.
Randomization Continued

• In previous examples, we used randomization to achieve approximation because OPT is
 ➢ either unknowable (online case)
 ➢ or incomputable (NP-hard)

• Randomization can also be used to reduce the expected running time of an algorithm
 ➢ We still want *the* optimal solution, but we want to compute it in time that is polynomial in expectation
Revisiting 2-SAT

• CNF formula with two literals in every clause
 ➢ E.g., \((x_1 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3) \land (x_1 \lor x_2)\)

• Bad example because
 ➢ MAX-2-SAT is NP-hard, but 2-SAT (find a satisfying assignment if it exists, return FALSE if it doesn’t) is in P.
 ➢ We want to solve 2-SAT, which can be solved in polytime deterministically.
 ➢ We’ll use randomization anyway. Just because.
Revisiting 2-SAT

• First, let’s do deterministic polytime 2-SAT.

• Algorithm:
 ➢ Eliminate all unit clauses, set the corresponding literals.
 ➢ Create a graph with $2n$ literals as vertices.
 ➢ For every clause $(x \lor y)$, add two edges:
 $\overline{x} \rightarrow y$ and $\overline{y} \rightarrow x$.
 o If the source is true, then the destination must be true.
 ➢ Formula is satisfiable iff there are no paths from x to \overline{x} or \overline{x} to x for any x
 ➢ Just solve $s \leftrightarrow t$ connectivity problem in polynomial time
Random Walk + 2-SAT

• Here’s a cute randomized algorithm by Papadimitriou [1991]

• Start with an arbitrary assignment.
• While there is an unsatisfied clause $C = (x \lor y)$
 ➢ Pick one of the two literals with equal probability.
 ➢ Flip the variable value so that C is satisfied.

• But, but, this can hurt other clauses?
Random Walk + 2-SAT

• **Theorem:** If there exists a satisfying assignment τ^*, then the expected time taken by the algorithm to reach a satisfying assignment is at most $2n^2$.

• **Proof:**
 - Fix τ^*. Let τ_0 be the starting assignment. Let τ_i be the assignment after i iterations.
 - Consider the “hamming distance” d_i between τ_i and τ^*
 - $d_i \in \{0,1,\ldots,n\}$.
 - We want to show that in expectation, we will hit $d_i = 0$ in $2n^2$ iterations, unless the algorithm stops before that.
Random Walk + 2-SAT

• Observation: \(d_{i+1} = d_i - 1 \) or \(d_{i+1} = d_i + 1 \)
 ➢ Because we change one variable in each iteration.

• Claim: \(\Pr[d_{i+1} = d_i - 1] \geq 1/2 \)

• Proof:
 ➢ Iteration \(i \) considers an unsatisfied clause \(C = (x \lor y) \)
 ➢ \(\tau^* \) satisfies at least one of \(x \) or \(y \), while \(\tau_i \) satisfies neither
 ➢ Because we pick a literal randomly, w.p. at least \(1/2 \) we pick one where \(\tau_i \) and \(\tau^* \) differ, and decrease distance.
 ➢ Q: Why did we need an unsatisfied clause? What if we pick one of \(n \) variables randomly, and flip it?
Random Walk 2-SAT

• A: We want the distance to decrease with probability at least $\frac{1}{2}$ no matter how close or far we are from τ^*.

• If we are already close, choosing a variable at random will likely choose one where τ and τ^* already match.
 - Flipping this variable will increase the distance with high probability.

• An unsatisfied clause narrows it down to two variables s.t. τ and τ^* differ on at least one of them.
Random Walk + 2-SAT

• Observation: $d_{i+1} = d_i - 1$ or $d_{i+1} = d_i + 1$
• Claim: $\Pr[d_{i+1} = d_i - 1] \geq 1/2$

• How does this help?
Random Walk + 2-SAT

• How does this help?
 ➢ Can view this as Markov chain and use hitting time results
 ➢ But let’s prove it with elementary methods.
 ➢ \(T_{i+1,i} \) = expected time to go from \(i + 1 \) to \(i \)
 ✓ \(T_{i+1,i} \leq \left(\frac{1}{2} \right) \times 1 + \left(\frac{1}{2} \right) \times \frac{T_{i+2,i}}{2} \) \(\leq \frac{1}{2} + \left(\frac{1}{2} \right) \times (T_{i+2,i+1} + T_{i+1,i}) \)
 ✓ Thus, \(T_{i+1,i} \leq 1 + T_{i+2,i+1} \rightarrow T_{i+1,i} = O(n) \)
 ✓ \(T_{n,0} \leq T_{n,n-1} + \cdots + T_{1,0} = O(n^2) \)
Random Walk + 2-SAT

• Can view this algorithm as a “drunken local search”
 ➢ We are searching the local neighborhood
 ➢ But we don’t ensure that we necessarily improve.
 ➢ We just ensure that in expectation, we aren’t hurt.
 ➢ Hope to reach a feasible solution in polynomial time

• Schöning extended this technique to k-SAT
 ➢ Schöning’s algorithm no longer runs in polynomial time, but this is okay because k-SAT is NP-hard
 ➢ It still improves upon the naïve 2^n
 ➢ Later derandomized by Moser and Scheder [2011]
Schöning’s Algorithm

• Choose a random assignment τ.
• Repeat $3n$ times ($n = \#\text{variables}$)
 ➢ If τ satisfies the CNF, stop.
 ➢ Else, pick an arbitrary unsatisfied clause, and flip a random literal in the clause.
Schöning’s Algorithm

• Randomized algorithm with one-sided error
 ➢ If the CNF is satisfiable, it finds an assignment with probability at least $\left(\frac{1}{2} \right) \left(\frac{k}{k-1} \right)^n$
 ➢ If the CNF is unsatisfiable, it surely does not find an assignment.

• Expected # times we need to repeat = $\left(2 \left(1 - \frac{1}{k} \right) \right)^n$
 ➢ For $k = 3$, this gives $O(1.3333^n)$
 ➢ For $k = 4$, this gives $O(1.5^n)$
Best Known Results

• 3-SAT

• Deterministic
 ➢ Derandomized Schöning’s algorithm: $O(1.3333^n)$
 ➢ Best known: $O(1.3303^n)$ [HSSW]
 o If there is a unique satisfying assignment: $O(1.3071^n)$ [PPSZ]

• Randomized
 ➢ Nothing better known without one-sided error
 ➢ With one-sided error, best known is $O(1.30704^n)$ [Modified PPSZ]
Random Walk + 2-SAT

- Random walks are not only of theoretical interest
 - WalkSAT is a practical SAT algorithm
 - At each iteration, pick an unsatisfied clause \textit{at random}
 - Pick a variable in the unsatisfied clause to flip:
 - With some probability, pick at random.
 - With the remaining probability, pick one that will make the fewest previously satisfied clauses unsatisfied.
 - Restart a few times (avoids being stuck in local minima)

- Faster than “intelligent local search” (GSAT)
 - Flip the variable that satisfies most clauses
Random Walks on Graphs

• Aleliunas et al. [1979]
 ➢ Let G be a connected undirected graph. Then a random walk starting from any vertex will cover the entire graph (visit each vertex at least once) in $O(mn)$ steps.

• Also care about limiting probability distribution
 ➢ In the limit, the random walk with spend $\frac{d_i}{2m}$ fraction of the time on vertex with degree d_i

• Markov chains
 ➢ Generalize to directed (possibly infinite) graphs with unequal edge probabilities