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Lecture 7

Announcements:

The first two questions for assignment 2 have been posted.

I hope to add one or two more questions this week.

This week is my last lecture and then Nisarg Shah will do the
remaining lectures.

In case I mentioned it, there was a recent paper claiming a proof that
P 6= NP. However, that proof now seems to have been refuted.
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Todays agenda

Continue randomized algorithms for max-sat
1 Review of naive randomized algorithm for weghted max-sat.
2 Johnson’s deterministic Max-Sat algorithm
3 Online randomized 3

4 approximation for max-sat
4 Yannakakis randomized LP rounding for max-sat
5 The KVV algorithm for online unweighted bipartite matching
6 The Buchbinder et al two sided online greedy algorithm and application

to max-sat.

More ways to de-randomize

1 Buchbinder and Feldman De-randomization using parallel streams
2 Online with advice and relation to randomized online algorithms
3 De-randomization using two and multi pass algorithms

ROM, i.i.d. online models

The landscape for vertex and edge weighted online bipartite matching.

3 / 47



Review: The naive randomized algorithm for exact
Max-k-Sat

We continue our discussion of randomized algorthms by considering the
use of randomization for improving approximation algorithms. In this
context, randomization can be (and is) combined with any type of
algorithm. We will mainly focus today on using randomization for online
algorithms and how that can possibly lead to a deterministic algorithm.

We recall the weigted exact Max-k-Sat problem where we given a
CNF propositional formula in which every weighted clause has exactly
k literals. The goal is to find a satisfying assignment that maximizes
the size (or weight) of clauses that are satisfied.

Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.

The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.
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Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

5 / 47



Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F )|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F )|xi∈u{0,1}] as
E[w(F )|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F )|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?
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The derandomization of the naive algorithm is
Johnson’s algorithm

In [1974] Johnson published a determinstic algorithm for Weighted
Max-Sat. Johnson showed that the algorithm achieves an approximation
of at least 1/2.

As mentioned, the analysis of the de-randomization of the naive algorithm
does not immdiately yield a better bound because of the possible existence
of clauses containing only one literal.

Twenty years after Johnson’s algorithm, Yannakakis [1994] presented the
naive algorithm and showed that Johnson’s algorithm is the derandomized
naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the approximation of
Johnson’s algorithm is at best 2

3 . For example, consider the 2-CNF
F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm achieves
approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best approximation
ratio is .7968 (resp. .9401) using semi-definite programming and
randomized rounding.
Note: While existing combinatorial algorithms do not come close to these
best known ratios, it is still interesting to understand simple and even
online algorithms for Max-Sat.
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Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in formula F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := L \ P
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L \ N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

Aside: This reminds me of boosting (Freund and Shapire [1997])
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Modifying Johnson’s algorithm for Max-Sat

In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm, Chen et al asked whether or not the ratio could be
improved in the random order model (ROM); that is, by using a
random ordering of the propositional variables.

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnsons algorithm in the ROM model is at
most 2

√
157 ≈ .746 < 3/4 , the ratio first obtained by Yannakakis’

IP/LP approximation that we will soon present.

Moreover, Poloczek and Schnitger presented an online randomized
algorithm (called SLACK) that achieves a 3

4 approximation.
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The idea of the SLACK algorithm

Poloczek and Schnithger first consider a “canonical randomization” of
Johnson’s algorithm”; namely, the canonical randomization sets a variable

xi = true with probability
w ′i (P)

w ′i (P)+w ′i (N) where w ′i (P) (resp. w ′i (N)) is the

current combined weight of clauses in which xi occurs positively (resp.
negatively).

Their substantial additional idea is to adjust the random setting so as to
better account for the weight of unit clauses in which a variable occurs.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best approximation
ratio is .7968 (resp. .9401) using semi-definite programming and
randomized rounding.
Note: While existing combinatorial algorithms do not come close to these
best known ratios, it is still interesting to understand simple and even
online algorithms for Max-Sat.
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What are the limitations of deterministic simple
max-sat algorithms?

To precisely model the Max-Sat problem within the online, ROM, and
priority frameworks, we need to specify the input model.

In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

Model 0 Each propositional variable x is represented by the names of the
positive and negative clauses in which it appears.

Model 1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively. This is sufficient for the naive algorithm and its
derandomization.

Model 2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

Model 3 The variable x is represented by a complete specification of each clause
it which it appears.
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Can the Slack algorithm be de-randomized?

SLACK is a randomized online algorithm (i.e. adversary chooses the
ordering) where the variables can be represented within input model 1.

This approximation ratio is in contrast to Azar et al [2011] who prove
that no randomized online algorithm can achieve approximation
better than 2/3 when the input model is the weakest (i.e. Model 0)
of the input models.

Poloczek [2011] shows that no deterministic priority algorithm can
achieve a 3/4 approximation within the input model 2. This provides
a sense in which to claim that the Poloczek and Schnitger Slack
algorithm “cannot be derandomized”.

The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm and the best ROM algorithm.
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Revisiting the “cannot be derandomized comment”

Spoiler alert: we will be discussing how algorithms that cannot be
derandomized in one sense can be derandomized in another sense.

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic algorithm by a result
of Huang and Borodin [2014].

However, Buchbinder and Feldman [2016] show how to derandomize
the Buchbinder et al algorithm into a polynomial time online
deterministic algortihm.

The Buchbinder et al USM algorithm is the basis for a randomized
3/4 approximation online MaxSat (even Submodular Max Sat)
algorithm.

Pena and Borodin show how to derandomize this 3/4 approximation
algorithm following the approach of Buchbinder and Feldman.

Poloczek et al [2017] de-randomize an equivalent Max-Sat algorithm
using a 2-pass online algorithm.
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Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi ) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0. Why?
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Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k )k . Then

Prob[Cj is satisifed ] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e ) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.
(The algorithm can be de-randoimized but the de-randomized
algorithm will still be solving LPs.)
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Submodular maximization problems; An important
diversion before returning to MaxSat

A set function f : 2U → < is submodular if
f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for all S ,T ⊆ U.

Equivalently, f is submodular if it satisfies decreasing marginal gains;
that is,
f (S ∪{x})− f (S) ≥ f (T ∪{x})− f (T ) for all S ⊆ T ⊆ U and x ∈ U

We will always assume that f is normalized in that f (∅) = 0 and
non-negative.

Submodular functions arise naturally in many applications and has
been a topic of much recent activity.

Probably the most frequent application of (and papers about)
submodular functions is when the function is also monotone
(non-decreasing) in that f (S) ≤ f (T ) for S ⊆ T .

Note that linear set functions (also called modular) functions (i.e.
when f (S ∪ {x})− f (S) = f (T ∪ {x})− f (T )) are a special case of
monotone submodular functions.
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Submodular maximization continued

In the submodular maximization problem, we want to compute S so as to
maximize f (S).

For monotone functions, we are maximizing f (S) subject to some
constraint (otherwise just choose S = U).

For the non monotone case, the problem is already interesting in the
unconstrained case. Perhaps the most prominent example of such a
problem is Max-Cut (and Max-Di-Cut).

Max-Cut is an NP-hard problem. Using an SDP approach for
Max-Cut (and Max-2-Sat) yields the approximation ratio
α = 2

π min{0≤θ≤π}
θ

(1−cos(θ) ≈ .87856. Assuming UGC, this is optimal.

For a submodular function, we may be given an explicit representation
(when a succinct representation is possible as in Max-Cut) or we
access the function by an oracle such as the value oracle which given
S , outputs the value f (S); such an oracle call is considered to have
O(1) cost. Other oracles are possible (e.g. given S , output the
element x of U that maximizes f (S ∪ {x})− f (S)).
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Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation was augmented by Dobzinski and
Vondrak showing the same bound for an explicitly given instance
under the assumption that RP 6= NP.
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The Buchbinder et al (1/3) and (1/2)
approximations for USM

In their FOCS [2012] (and SICOMP [2015]) paper , Buchbinder et al gave
an elegant linear time deterministic 1/3 approximation and then extend
that to a randomized 1/2 approximization. The conceptually simple form
of the algorithm is (to me) as interesting as the optimality (subject to the
proven inapproximation results) of the result. Let U = u1, . . . un be the
elements of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi
then Xi := Xi−1 ∪ {ui};Yi := Yi−1

else Xi := Xi−1;Yi := Yi−1 \ {ui}
End If

End For
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The randomized 1/2 approximation for USM

Buchbinder et al show that the “natural randomization” of the
previous deterministic algorithm achieves approximation ratio 1/2.
That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.
Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.
This fact leads to the main lemma for the deterministic case:

f (OPTi−1 − f (OPTi ) ≤ [f (Xi − f (Xi−1] + [f (Yi )− f (Yi−1]

Here OPTi = (OPT ∪ {Xi}) ∩ Yi so that OPTi coincides with Xi and
Yi for elements 1, . . . i and coincides with OPT on elements
i + 1, . . . , n. Note that OPT0 = OPT and OPTn = Xn = Yn. That
is, the loss in OPT s value is bounded by the total value increase in
the algorithm’s solutions.
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Applying the algorithmic idea to Max-Sat

Buchbinder et al are able to adapt their randomized algorithm to the
Max-Sat problem (and even to the Submodular Max-Sat problem). So
assume we have a monotone normalized submodular function f (or just a
linear function as in the usual Max-Sat). The adaption to Submodular
Max-Sat is as follows:

Let φ : X → {0} ∪ {1} ∪∅ be a standard partial truth assignment.
That is, each variable is assigned exactly one of two truth values or
not assigned.
Let C be the set of clauses in formula Ψ. Then the goal is to
maximize f (C(φ)) where C(φ) is the sat of formulas satisfied by φ.
An extended assignment is a function φ′ : X → 2{0,1}. That is, each
variable can be given one, two or no values. (Equivalently
φ′ ⊆ X × {0, 1} is a relation.) A clause can then be satisfied if it
contains a positive literal (resp. negative literal) and the
corresponding variable has value {1} or {0, 1} (resp. has value {0} or
{0, 1}.
g(φ′) = f (C(φ′)) is a monotone normalized submodular function. ‘
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Buchbinder et al Submodular Max-Sat

Now starting with X0 = X ×∅ and Y0 = Y × {0, 1}, each variable is
considered and set to either 0 or to 1 (i.e. a standard assignment of
precisely one truth value) depending on the marginals as in USM problem.

Algorithm 3: RandomizedSSAT(f, Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:
Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.

10 else (with the compliment probability
si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.

12 return Xn (or equivalently Yn).
* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists
of a ground set N of n elements and k players, each
equipped with a normalized monotone submodular utility
function fi : 2N → R+. The goal is to divide the elements
among the players while maximizing the social welfare. For-
mally, the objective is to partition N into N1, N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second
proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.
Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:
1) The set of variables is N .
2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.
3) The objective function f : 2C → R+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P ) + f2(C ∩ (C \ P )).

Every assignment φ to this instance of SSAT corresponds
to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can
easily observe that this correspondence is reversible, and
that each assignment has the same value as the solution
it corresponds to. Hence, the above reduction preserves
approximation ratios.

Moreover, queries of f can be answered in constant time
using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \ P ).
For Algorithm 3 this can be done without effecting its
running time. Then, whenever the value of f(C) is queried,
answering it simply requires making two oracle queries:
f1(C ∩ P ) and f2(C ∩ (C \ P )).

Proof (2): In any feasible solution to SW with two
players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is
given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with
two players can be restated as the problem of maximizing
the function g over the subsets of N .

Observe that the function g is a submodular function, but
unlike f1 and f2, it is possibly non-monotone. Moreover,
we can answer queries to the function g using only two
oracle queries to f1 and f2

3. Thus, we obtain an instance
of USM. We apply Algorithm 2 to this instance. Using
the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that
g(∅) + g(N ) ≥ f1(N ) + f2(N ) ≥ g(OPT ), the claimed
(3/4)-approximation is obtained.
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Further discussion of the Unconstrained Submodular
Maximization and Submodular Max-Sat algorithms

The Buchbinder et al [2012] online randomized 1/2 approximation
algorithm for Unconstrained Submodular Maximization (USM) cannot
be derandomized into a “similar” deterministic online or priority style
algorithm by a result of Huang and Borodin [2014]. Like the Poloczek
result, we claimed that this was “in some sense” evidence that this
algorithm cannot be derandomized.

Their algorithm is shown to have a 3
4 approximation ratio for

Monotone Submodular Max-Sat.

For the standard, weighted Max-Sat problem, Poloczek et al [2017]
show that the Buchbinder et al algorithm turns out to be equivalent
to a previous Max-Sat algorithm by van Zuylen.
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The randomized (weighted) max-sat 3
4

approximation algorithm

The idea of the algorithm is that in setting the variables, we want to
balance the weight of clauses satisfied with that of the weight of clauses
not yet unsatisfied.
Let Si be the assignment to the first i variables and let SATi (resp.
UNSATi ) be the weight of satisfied clauses (resp., unsatsifed clauses) with
respect to Si . Let Bi = 1

2 (SATi + W − UNSATi ) where W is the total
weight of all clauses.

The algorithm’s plan is to randomly set variable xi so as to increase
E[Bi − Bi−1].

To that end, let ti (resp. fi ) be the value of w(Bi )− w(Bi−1) when xi is
set to true (resp. false).
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The randomized max-sat approximation algorithm
continued

For i = 1 . . . n
If fi ≤ 0, then set xi = true
Else if ti ≤ 0,

then set xi = false
Else set xi true with probability ti

ti+fi
.

End For

Consider an optimal solution (even an LP optimal) x∗ and let OPTi be the
assignment in which the first i variables are as in Si and the remaining
n − i variables are set as in x∗. (Note: x∗ is not calculated.)

The analysis follows as in Poloczek and Schnitger, Poloczek, and in
Buchbinder et al. One shows the following:

ti + fi ≥ 0

E[w(OPTi−1)− w(OPTi )] ≤ E[w(Bi )− w(Bi−1)]
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De-randomizing the Max-Sat algorithm by a two
pass online algorithm

The idea of the two pass de-randomization is that the first pass is setting
the relevant probabilities ti and fi but not setting the truth assignment of
any propositional variable.

Now the goal is to set the variables in the second pass using the method
of conditional expectation. Sounds good?

But unlike the naive randomixed algorithm, we do not have a probability
for each level of the randomized tree as the probability pi (bi−1) for setting
xi − 1 depends on the partial assignment bi−1 to the first i − 1 variables
x1, . . . , xi−1.

The additional substantial and interesting idea in Poloczek et al is to
contract all the nodes at level i − 1 into a super node where each node at
that level is represented by the probability of the node being the one
reached by the two pass algorithm.

The resulting 2-pass algorithm is deterministic and “online” in the sense
that the same adversarial ordering is used in both passes.
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The Buchbinder and Feldman derandomization of
the USM algorithm

Contrary to the Poloczek, (resp. Huang and B.) priority
inapproximations for Max-Sat (resp. USM), there is a sense in which
these algorithms can be derandomized.
In fact the derandomization becomes an “online algorithm” in the
sense that an adversary is choosing the order of the input variables.
However rather than creating a single solution, the algorithm is
creating a tree of solutions and then takng the best of these.
The idea is as follows. The analysis of the randomized USM
approximation bound shows that a certain linear inequality holds at
each iteration of the algorithm. Namely,

E [f (OPTi−1 − f (OPTi )] ≤ 1

2
E [f (Xi )− f (Xi−1) + f (Yi )− f (Yi−1]

That is, the expected change in restricting OPT in an iteration (by
setting the i th variable) is bounded by the average change in the two
values being maintained by the algorithm.
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Continuing the Buchbinder and Feldman
derandomization idea

These inequalities induce two additional inequalties per iteration on
the distributions of solutions that can exist at each iteration.

This then gets used to describe an LP corresponding to these 2i
constraints we have for the distributions that hold at each iteration of
the algorithm.

But then using LP theory again (i.e. the number of non-zero variables
in a basic solution). It follows that we only need distributions with
support 2i at each iteration rather than the naive 2i that would follow
from just considering the randomized tree.

Finally, since there must be at least one distribution (amongst the
final 2n distributions) for which the corresponding solution is at least
as good as the expected value. Thus if suffices to take the max over a
“small” number of solutions.
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How much online paralellism is needed to maintain 3
4

approximation? for Ma-Sat

In the recent (so far unpublihsed) journal version of the Buchbinder and
Feldman paper, they show that width O( 1

ε ) is sufficient to obtain a
(1− ε) 1

2 approximation for their USM de-randomization.

It is likely that a similar result holds for the de-randomization of Max-Sat.

Pena and Boroodin show that for Max-Sat input model 2, exponential
width would be required to obtain an approximation better than 3

4 . It is an
open problem (just as in the case of one pass priority algorithms) if one
can obtain the same inapproximation for the max-sat input model 3.
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Randomized online bipartite matching

We have seen evidence of the power of randomization for online
algorithms in the context of the USM and MaxSat problems. We now
consider the same issues for the online bipartite matching problem.

Another nice sequence of results begins with a randomized online
algorithm for bipartite matching due to Karp, Vazirani and Vazirani
[1990]. We quickly overview some results in this area as it represents
a topic of continuing interest.

In the online bipartite matching problem, we have a bipartite graph G
with nodes U ∪ V . Nodes in U enter online revealing all their edges.
A deterministic greedy matching produces a maximal matching and
hence a 1

2 approximation.

It is easy to see that any deterministic online (i.e., adversarial order)
algorithm cannot be better than a 1

2 approximation even when the
degree of every u ∈ U is at most (equal) 2
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The Ranking (1− 1
e ) approximation algorithm

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).
Note: Making a random choice for each u is still only a 1

2 approx.
Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.
That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.
To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.
Note: This is not a claim that there is any equivalence between
deterministic ROM algorithms and deterministic online algorithms. It
is just the special symmetrc nature of this algorithm that makes it
possible to view the KVV randomized algorithm as a deterministic
ROM algorithm.
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Can KVV be derandomized using parallel online
streams or multi pass algorithms?

As previously noted, there is an immediate correspondence between online
algorithms using t bits of advice (in the advice tape model) and algorithms
comprised of 2t online streams (and then taking the best outcome).

There are two interesting and perhaps surprising results concerning the
relation of randomized online algorithms and deterministic online
algorithms with advice.

1 Böckenhauer et al show that a randomized online algorithm achieving
an approximation ratio c on inputs of length n implies that there is a
deterministic online algorithm using O(log n) advice achieving ratio
(1 + ε) · c algorithm

2 Mikklesen show an equivalence between randomized online algorithms
with ratio c + ε) and deterministic algorithms with o(n) advice and
ratio c + ε). This result requires a technical definition as to the nature
of the online problem but suffice it to say the results hold for many or
most online problems including the online bipartite matching problem.
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The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous. There is an alternative proof (and
extension) by Goel and Mehta [2008], and then another proof in
Birnbaum and Mathieu [2008]. Other alternative proofs have followed.

Recall that this positive result can be stated either as the bound for a
particular deterministic algorithm in the stochastic ROM model, or as
the randomized Ranking algorithm in the (adversarial) online model.

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

33 / 47



Some more progress with regard to bipartite
matching in the ROM model

In the ROM model, Karande, Mehta, Tripathi [2011] show that
randomized Ranking achieves approximation at least .653 (beating
1− 1/e) and no better than .727. The approximation ratio was
improved to .696 by Mahdian and Yan [2011]].

Karande et al show that any ROM approximation result implies the
same result for the unknown i.i.d. model and hence the known i.i.d.
model.

Manshadi et al give a .823 inapproximation for biparitie matching in
the known i.i.d. distribution model. This implies the same
inapproximation in the unknown i.i.d. and ROM models improving
the 5

6 inapproximation of Goel and Mehta.

Dürr et al show that a deterministic 2 pass online algorithm can
achieve ratio 3

5 . This can be extended to obtain a
F2k−1

F2k
≈ .618

approximation by a k pass algorithm. Here Fk is the kth Fibonacci
number.
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Weighted extensions of online bipartite matching

There is a large landscape (and continuing research) of weighted
online bipartite matching problems such as the adwords and display
ads problems motivated by applications to online advertising.
Although slightly out of data, the survey by Mehta [2013] is an
excellent reference. Note: The table in the survey identifies the ROM
and unknown i.i.d. model and although there are no provable
separations, there are problems where better results are known for the
unknown i.i.d model.
The following problems can all be studied in the adversarial, ROM
and i.i.d online input models. These weighted problems will be
defined in the following slides.

1 Vertex and edge weighted online matching
2 Adwords with small and large (compared to the budget) bids.
3 The Display Ads problem with and without free disposal and with small

and large capacities. .
4 The adwords problem with small bids can be reduced to the display ads

problem with lage capacities. Both of these problems are generalized
by the submodular welfare maximization problem.

Online algorithms with Reassignments.
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The Mehta survey table

282 Classification: Problems and Models

Table 2.2. Summary of results for online matching problems in different arrival models.
Rows correspond to problems and columns to arrival models. The entries are the best known
ratios, and the corresponding upper bounds (in parentheses). Question marks correspond
to open questions where no bound is known besides that which follows from some other
input model or problem. Citations are provided in the text. Recall that 1 − 1

e
≃ 0.63.

Adversarial Random Order/
Order unknown IID Known IID

Bipartite matching 1 − 1
e

0.696 0.702
(optimal) (?) (0.823)

Vertex-weighted bipartite 1 − 1
e

1 − 1
e

1 − 1
e

matching (optimal) (?) (?)

Adwords 1 − 1
e

1 − ϵ 1 − ϵ

(small bids) (optimal) (optimal) (optimal)

Adwords 1
2

1 − 1
e

1 − 1
e

(general bids) (?) (?) (?)

Display Ads 1 − 1
e

1 − 1
e

(IID) 1 − 1
e

with free-disposal (?) (?) (?)

(large capacities)

Display Ads 1
2

1 − 1
e

(IID) 1 − 1
e

with free-disposal (?) (?) (?)

(general capacities)

Display Ads 0 1
e

?

no free-disposal (0) (optimal) (?)

(general capacities)

Submodular welfare 1
2

1 − 1
e

(IID) 1 − 1
e

(optimal) (?) (?)

(the non-identical distributions model, and the distribution-of-metrics

model) in Sections 9 and 10.

2.3 Offline Versions

We briefly mention the complexity of the offline versions of the prob-

lems we study here; recall that, in the offline versions, the entire
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Updating the Mehta table

ADV ROM Unknown IID Known IID

Adwords
(small bids)

1 � 1/e (optimal) [8] 1 � ✏ [9] 1 � ✏ 1 � ✏

Adwords
(large bids)

1/2 0.51 [1] 1 � 1/e 1 � 1/e

Display Ads with Free Disposal
(large capacities)

1 � 1/e (optimal) [5] 1 � ✏ [7] 1 � ✏ 1 � ✏

Display Ads with Free Disposal
(general capacities)

0.5018 [2] 0.51 [1] 1 � 1/e 0.705

Display Ads
without Free Disposal

0 1/e (optimal) [6] 1/e 0.705 [4]

Submodular Welfare Maximiza-
tion

1/2 (optimal) [3] 0.505 [1] 1 � 1/e (optimal) [3] 1 � 1/e

References

[1] Nitish Korula, Vahab Mirrokni, Morteza Zadimoghaddam. Online Submod-
ular Welfare Maximization: Greedy Beats 1/2 in Random Order. STOC ’15.

[2] Morteza Zadimoghaddam. Online Weighted Matching: Beating the 1/2 Bar-
rier.(2017)
https://arxiv.org/pdf/1704.05384.pdf

[3] Michael Kapralov, Ian Post, Jan Vondrak. Online Submodular Welfare Max-
imization: Greedy is optimal. SODA ’13.

[4] Brian Brubach, Karthik Abinav Sankararaman, Aravind Srinivasan, Pan Xu.
New Algorithms, Better Bounds, and a novel mOdel for Online Stochastic
Matching. ESA ’16.

[5] Jon Feldman, Nitish Korula, Vahab Mirrokni, S. Muthukrishnan, Martin
Pal. Online Ad Assignment with Free Disposal. WINE ’09.

[6] Thomas Kesselheim, Klaus Radke, Andreas Tonnis, Berthold Vocking. An
Optimal Online ALgorithm for Weighted Bipartite Matching and Extensions
to Combinatorial Auctions. ESA ’13.

[7] Jon Feldman, Monika Henzinger, Nitish Korula, Vahab S Mirrokni, Cli↵
Stein. Online stochastic packing applied to display ad allocation. ESA ’10.

[8] A. Mehta, A. Saberi, U. V. Vazirani, and V. V. Vazirani. Adwords and
generalized online matching. Journal of ACM, vol. 54, no. 5, 2007.

1

Figure : An updated table due to Chris Karavasilis. See end of slides for
refereces to papers in the table.
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Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve the same 1-1/e bound for this class of vertex weighted
bipartite matching.
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The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e−(1−x)

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv ). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.
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The classic edge weighted bipartite matching
problem

In the offline setting, edge weighted bipartite matchinga (called the
assignment problem) can be solved by the “Hungarian algorithm” which is
based on a primal dual approach.

In the online adversarial setting it is easy to see that no constant
approximation ratio is possible even for randomized algorithms.

In the ROM model, the problem can be viewed as an extension of the
classical secretary problem. The secretary problem is the case of one offline
node when studied in the ROM model. It is where the ROM model was
first studied. It is known that 1

e is the optimal appoximation ratio for the
secretary problem. Kesselheim et al [2013] show that the same optimal 1

e
bound is possible for edge weighted bipartite matching in the ROM model.

I am now aware of any results for the adversaial and ROM versions of
online biparitite matching when the online vertices are weighted.
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The adwords problem: an extension of bipartite
matching motivated by online auctions

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each advertiser also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets. Without budgets and when each advertiser will pay for at
most one query, the problem then is edge weighted bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.
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Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).
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The submodular welfare maximization problem

A generaliztion of both the Adwords problem and the Display Ads problem
with free disposal is the online submodular welfare maximization problem.
Submodular welfare maximization is well studied in auctions.

In the online version, the online vertices correspond to sellers (selling a
unique item) and the offline vertices crrespnd to buyers where each buyers
valuation function is a monotone submodular function of the items
purchased (ie. assigned to the buyer) at the edge weight (i.e. price of the
item for that buyer).

As one can see in the Mehta and Karavasilis tables, there are provably
better results for display ads with free disposal for the adversarial, ROM
and known i.i.d models.
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Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.
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Some concluding remarks on max-sat and bipartite
matching

The ROM model subsumes the stochastic model where inputs are
chosen i.i.d. from an unknown distribution (which in turn subsumes
i.i.d. inputs from a known distribution). Why? Hence a positive
result in the ROM model implies a positive result in the i.i.d.
unknown distribution model.

A research problem of current interest (work by Nicolas Pena) is to
see to what extent some form of an extended online framework can
yield a deterministic online bipartite matching algorithm with
approximation ratio better than 1/2.

As mentioned before, Pena can show that a 3/4 approximation can be
obtained by a ideterministic “poly width” online algorithm.

One can formulate the Buchbinder and Feldman method in the
framework of the priority BT model of Alekhnovich et al. Can we
show that a bounded width online (or priority) BT algorithm cannot
obtain a 3/4 ratio?
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Online and priority width bounds for max-sat and
bipartite matching

We have the following width inapproximation results.

To improve upon the 3
4 approximation (using online width 2n) result,

we need exponential width. More precisely,
For any ε > 0 there exists δ > 0 such that, for k < eδn, no online
width-cut-k algorithm can achieve an asymptotic approximation ratio
of 3/4 + ε for unweighted exact max-2-sat with input model 2.

For any ε > 0 there exists δ > 0 such that, for k < eδn, no PBR
width-cut-k algorithm can achieve an asymptotic approximation ratio
of 21/22 + ε for unweighted max-2-sat with input model 3.

For any ε > 0, no bounded width online algorithm can achieve a 1
2 + ε

approximation for bipartite matching.

For any ε > 0, no priority algorithm can achieve a 1
2 + ε

approximation for bipartite matching.
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References for updated table of weighted bipartite
matching problems
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