
CSC2420: Algorithm Design, Analysis and Theory
Fall 2017

Allan Borodin and Nisarg Shah

October 18, 2017

1 / 36

Lecture 6

Announcements:

The first assignment was due today. Any questions?

The first two questions for assignment 2 have been posted.

This week and next week are my last two lectures and then my
colleague Nisarg Shah will do the remaining lectures.

2 / 36

Todays agenda and continuing on to next week

Go over application of min cut to the metric labelling problem with
two labels.

Return to IP/LP. Makespan problem for the unrelated machines model

Introduction to duality, primal dual algorithms, dual fitting.

Introduction to randomized algorithms
1 Randomization and relation to complexity theory
2 Naive exact max-k-sat algorithm
3 De-randomization by the method of conditional expectation
4 Yannakakis randomized LP rounding for max-sat
5 The KVV algorithm for online unweighted bipartite matching
6 The Buchbinder et al two sided online greedy algorithm and application

to max-sat.
7 Online with advice and relation to randomized online algorithms
8 De-randomization using two and multi pass algorithms

ROM, i.i.d. online models

The landscape for vertex and edge weighted online bipartite matching.

3 / 36

The {0,1} metric labelling problem.

We consider one more application of max flow-min cut, the {0,1} metric
labelliing problem, discussed in 7.10 and 12.6 of the Kleinberg-Tardos text.
This problem is a special case of the following more general metric
labelling problem defined as follows:

The input is an edge weighted graph G = (V ,E), a set of labels
L = {a1, . . . , ar} in a metric space with distance metric d , and
functions w : E → R≥0 and β : V × L→ R≥0.
β(u, aj) is the benefit of giving label aj to node u.
Goal: Find a labelling λ : V → L of the nodes so as to maximize∑

u

β(u, λ(u))−
∑

(u,v)∈E

w(u, v) · d((λ(u), λ(v))

For example, the nodes might represent documents, the labels are
topics, and the edges are links between documents weighted by the
importance of the link.
When there are 3 or more labels, the problem is NP-hard even for the
case of the {0,1} metric d where d(ai , aj) = 1 for ai 6= aj .

4 / 36

The {0,1} metric labelling problem.

We consider one more application of max flow-min cut, the {0,1} metric
labelliing problem, discussed in 7.10 and 12.6 of the Kleinberg-Tardos text.
This problem is a special case of the following more general metric
labelling problem defined as follows:

The input is an edge weighted graph G = (V ,E), a set of labels
L = {a1, . . . , ar} in a metric space with distance metric d , and
functions w : E → R≥0 and β : V × L→ R≥0.
β(u, aj) is the benefit of giving label aj to node u.
Goal: Find a labelling λ : V → L of the nodes so as to maximize∑

u

β(u, λ(u))−
∑

(u,v)∈E

w(u, v) · d((λ(u), λ(v))

For example, the nodes might represent documents, the labels are
topics, and the edges are links between documents weighted by the
importance of the link.
When there are 3 or more labels, the problem is NP-hard even for the
case of the {0,1} metric d where d(ai , aj) = 1 for ai 6= aj .

4 / 36

The labelling problem with 2 labels

When there are only 2 labels, the only metric is the {0,1} metric.
While the labelling problem is NP-hard for 3 or more labels (even for
the {0,1} metric), it is solvable in polynomial time for 2 labels by
reducing the problem to the min cut problem. This is what is being
done in Section 7.10 of the KT text for a special graph relating to
pixels in an image.
In section 12.6 of the KT text, there an approximation algorithm for
the {0,1} metric with 3 or more labels that uses local search while
using a min cut so as to do the local search of a neighbourhood.
Informally, the idea is that we will reframe the problem as a
minimization problem. We then construct a flow network such that
the nodes on the side of the source node s will correspond to (say)
nodes labled a and the nodes on the side of the terminal node t will
correspond to the nodes labeled b.
We will place capacities between the source s and other nodes to
reflect the cost of a “mislabel” and similarly for the terminal t.
The min cut will then correspond to a min cost labelling.

5 / 36

The reduction for the two label case

For the two label case (labels {a,b}), we can let au = β(u, a) and
bu = β(u, b).
The goal is to maximize

∑
u∈A au +

∑
v∈B bv −

∑
(u,v)∈A×B w(u, v)

Leting Q =
∑

u∈V au + bu, the goal is then equivalent to maximizing
Q −

∑
u∈A bu −

∑
v∈B av −

∑
(u,v)∈A×B w(u, v)

Equivalently, to minimizing∑
u∈A bu +

∑
v∈B av +

∑
(u,v)∈A×B w(u, v)

We transform this problem to a min cut problem as follows: construct
the flow network F = (G ′, s, t, c) such that G ′ = (V ′,E ′)

V ′ = V ∪ {s, t}
E ′ = {(u, v) ∈ E} ∪ {(s, u)|u ∈ V } ∪ {(u, t)|u ∈ V }
c(u, v) = c(v , u) = w(u, v); c(s, u) = au; c(u, t) = bu

Claim:

For any partition V = A ∪ B, the capacity of the cut
c(A,B) =

∑
u∈A bu +

∑
v∈B av +

∑
(u,v)∈A×B w(u, v).

6 / 36

Makespan for the unrelated and restricted machine
models: a more sophisticated rounding

In the vertex cover example I used the terms “(input) independent
rounding” and “oblivious” rounding.)

We now return to the makespan problem with respect to the unrelated
machines model and the special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.

7 / 36

The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.

8 / 36

Adapting the natural IP

As in the PTAS for the identical machine makespan PTAS, we use
binary search to find an appropriate approximation T for the optimal
makespan.

Given a candidate T , we remove all xji such that pj ,i > T and obtain
a “search problem” (i.e. constant or no objective function) for finding
xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, the LST
algorithm then shows how to use a non-independent rounding to
obtain an integral solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an intergral solution.

9 / 36

Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible bounded LP with m + n constraints (not counting the
non-negativity constraints for the variables) then L has an optimal
basic solution such that at most n + m of the variables are non-zero.

It follows (how?) that at most m of the n jobs have fractional
non-integral solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.

10 / 36

The rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a maximum
matching of size y . Note, of course, this is what makes the
“rounding” non-independent .

The existence of this matching requires more LP theory whereby it
can be shown (LST credit Dantzig [1963]) that the connected
components of the bipartite graph are either trees or trees with one
added edge (and therefore causing a unique cycle).

Given the structure of the biprtite graph, one can construct a
matching of all the jobs. How?

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed a makespan at
most T before assigning the fractional jobs.

11 / 36

The restricted machine makespan problem

The restricted machines model is a special case of the unrelated
machines problem where for every job j , pj ,i ∈ {pj ,∞}. Hence the
LST 2-approximation applies.

LST show that it is NP hard to do better than a 1.5 approximation
for the restricted machines (and hence unrelated machines) problem.

There is a somewhat strange result due to Svensson [2011]. He shows
how to approximate the value of the optimum makespan to within a
factor of 33/17 ≈ 1.9413 < 2. This is proven constructively by a local
search algorithm satisfying the approximation. However, the local
search is not shown to terminate in polynomial time.

Note that if we could determine the optimal makespan value in
polynomial time, then we can also find an optimal solution in
polynomial time. However, the same cannot be said when we are only
approximating the makespan value.

12 / 36

The special case of graph orientation

Consider the special case when there are (at most) two allowable
machines for each job. This is called the graph orientation problem.

It turns out easier to reason about the LP rounding applied to the
graph orientation problem for the given IP/LP but still the integrality
gap is 2.

A more refined IP/LP by Eveblendr, Krcal and Sgall [2008] achieves a
1.75 approximation for the graph orientation problem.

Even for the case when each job can only be scheduled on at most 3
machines, beating the 2-approximation remains an open problem.

13 / 36

Some concluding remarks (for now) about LP
rounding

We will return later to more LP applications. There are some nice
notes by Allan Jepson providing some of the geometric concepts
underlying LP solutions. His CSC373 course can be accessed here:
http://www.cs.toronto.edu/ jepson/csc373/

There can be, of course, many different IP/LP formulations for a
given problem. In particular, one often adds additional constraints so
that the polytope of the LP solutions is smaller.

For example, in the vertex cover LP, one could simply add constraints
xi + xj + xk ≥ 2 for every triangle in the graph and more generally,
constraints for every odd length cycle. (These inequalities do not
essentially change the integrality gap.)

Adding such constraints corresponds to one round of what is called
the LS lift and project method.

There are a number of lift and project methods. If you are interested,
then consult our local expert Toni Pitassi.

14 / 36

Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:
I Minimize c · x
I subject to Am×n · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:
I Maximize b · y
I subject to Atr

n×m · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.

15 / 36

An example: set cover

As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj xj ≥ 1 for all i ; that is, ei ∈ U

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem. 16 / 36

Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some cases, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to the so-called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.

17 / 36

Strong and Weak Duality

Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality for a Minimization Problem

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound. 18 / 36

Motivating duality

Consider the motivating example in V. Vazirani’s text:
Primal Dual
minimize 7x1 + x2 + 5x3 maximize 10y1 + 6y2
subject to subject to

(1) x1 − x2 + 3x3 ≥ 10 y1 + 5y2 ≤ 7

(2) 5x1 + 2x2 − x3 ≥ 6 −2y1 + 2y2 ≤ 1
3y1 − y2 ≤ 5

x1, x2, x3 ≥ 0 y1, y2 ≥ 0

Adding (1) and (2) and comparing the coefficient for each xi , we have:
7x1 + x2 + 5x3 ≥ (x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 10 + 6 = 16
Better yet,
7x1 + x2 + 5x3 ≥ 2(x1 − x2 + 3x3) + (5x1 + 2x2 − x3) ≥ 26
For an upper bound, setting (x1, x2, x3) = (7/4, 0, 11/4)
7x1 + x2 + 5x3 = 7 · (7/4) + 1 · 0 + 5 · (11/4) = 26
This proves that the optimal value for the primal and dual (with solution
(y1, y2) = (2, 1) must be 26.

19 / 36

Easy to prove weak duality

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi)yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x

20 / 36

Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.
Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.
As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.
We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.

21 / 36

Primal dual for f -frequency set cover continued

Suggestive lemma for following primal dual algorithm

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variables yi until there is some j :
∑
{k:ei∈Sj} yi = wj

C′ := C′ ∪ {Sj}
Freeze the yi associated with the newly covered ei

End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.

22 / 36

Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

Additionally, what is being shown is that the integraility gap of this
IP/LP formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .

23 / 36

More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality. Bar-Yehuda and Rawitz
argue that this is equivalent to local ratio algorithms. Our priority
stack algorithms are a basic example of such algorithms.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.

24 / 36

Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm

Early in the term, we mentioned the following natural greedy algorithm for
the weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .

25 / 36

The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).

26 / 36

Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei)/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.

27 / 36

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (in the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

28 / 36

Randomized algorithms

Our next theme will be randomized algorithms. For the main part, our
previous themes have been on algorithmic paradigms. Randomization is
not per se an algorithmic paradigm (in the same sense as greedy
algorithms, DP, local search, LP rounding, primal dual algorithms).

Rather, randomization can be thought of as a tool that can be used in
conjuction with any algorithmic paradigm. However, its use is so
prominent and varied in algorithm design and analysis, that it takes on the
sense of an algorithmic way of thinking.

28 / 36

The why of randomized algorithms

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be efficiently derandomized, there is
often conceptual insight to be gained from the initial randomized
algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms is that the probability
of success can be amplified by repreated independent trials of the
algorithm.

29 / 36

Some problems in randomized polynomial time not
known to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

30 / 36

Polynomial identity testing

The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.
Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact
that a univariate polynomial of degree d can have at most d zeros.31 / 36

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm the
determinant can be computed in O(n2.38) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

32 / 36

The naive randomized algorithm for exact
Max-k-Sat

We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.
Since exact Max-k-Sat generalizes the exact k- SAT decision
problem, it is clearly an NP hard problem for k ≥ 3. It is interesting
to note that while 2-SAT is polynomial time computable, Max-2-Sat
is still NP hard.
The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability. 33 / 36

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring against an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

34 / 36

Derandomizing the naive algorithm

We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weighted sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic solution whose weight is at least the overall expected
value of the naive randomized algorithm.
NOTE: The derandomization can be done so as to achieve an online
algorithm. Here the (online) input items are the propostional
variables. What input representation is needed/sufficient?

35 / 36

(Exact) Max-k-Sat

For exact Max-2-Sat (resp. exact Max-3-Sat), the approximation
(and totality) ratio is 3

4 (resp. 7
8).

For k ≥ 3, using PCPs (probabilistically checkable proofs), Hastad

proves that it is NP-hard to improve upon the 2k−1
2k

approximation
ratio for Max-k-Sat.

For Max-2-Sat, the 3
4 ratio can be improved (as we will see) by the

use of semi-definite programming (SDP).

The analysis for exact Max-k-Sat clearly needed the fact that all
clauses have at least k clauses. What bound does the naive online
randomized algorithm or its derandomztion obtain for (not exact)
Max-2-Sat or arbitrary Max-Sat (when there can be unit clauses)?

36 / 36

