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Lecture 4

Announcements:

Assignment 1 is now complete. I had originally set the due date for
next Wednesday, October 11. I think this is still feasible but will
entertain requests for some class extension if this seems necessary.

Todays agenda:

Different styles of DP algorithms

Some interesting applications of DP not in undergraduate texts.

Begin local search

2 / 45



Different styles of dynamic programming

Let’s consider the single source least cost paths problem which is
efficiently solved by Dijkstra’s greedy algorithm for graphs in which all
edge costs are non-negative.

The least cost paths problem is still well defined as long as there are
no negative cycles; that is, the least cost path is a simple path.

The Bellman-Ford algorithm algorithm correctly computes shortest
paths from a single source assuming no negative cycles.
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Single source least cost paths for graphs with no
negative cycles

Following the DP paradigm, we consider the nature of an optimal
solution and how it is composed of optimal solutions to
“subproblems”.
Consider an optimal simple path P from source s to some node v .

I This path could be just an edge.
I But if the path P has length greater than 1, then there is some node u

which immediately proceeds v in P. If P is an optimal path to v , then
the path leading to u must also be an optimal path.

s v

u

P
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Single source least cost paths for graphs with no
negative cycles

s v

u

P

This leads to the following semantic array:

C [i , v ] = the minimum cost of a simple path with path length at most i
from source s to v . (If there is no such path then this cost is ∞.)

The desired answer is then the single dimensional array derived by
setting i = n − 1. (Any simple path has path length at most n − 1.)
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How to compute the entries of C

We can construct C [i , v ] from C [i − 1, . . .] as follows:

s v

u

C [i − 1, v ]

C [i − 1, u]

c(u, v)

Let C ′[i , v ] be the minimum value among
I C [i − 1, v ]
I C [i − 1, u] + c(u, v) for all (u, v) ∈ E .
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The computation of the entries of C continued

The computational array is defined as:

C [i , v ] =


0 if i = 0 and v = s

∞ if i = 0 and v 6= s

min{A,B} otherwise

A = C [i − 1, v ]

B = min
{
C [i − 1, u] + c(u, v) : (u, v) ∈ E

}
Why is this slightly different from before?

I Namely, showing the equivalence between the semantic and
computationally defined arrays is not an induction on the indices of the
input items in the solution which is intrinsic to the priority and pBT
models.

I But it is based on some other parameter (i.e. the path length) of the
solution.

Time complexity: n2 entries × O(n) per entry = O(n3) in total.
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Aside: Computing maximum profit path using the
same DP?

To define this problem properly we want to say “maximum cost
simple path” since cycles will add to the cost of a path. Note: It is
more common to refer to profits and not costs in a maximization
problem but for notational consistency lets stay with costs.

(For least cost we did not have to specify that the path is simple once
we assumed no negative cycles.)

Suppose we just replace min by max in the least cost DP. Namely,

M[i , v ] = the maximum cost of a simple path with path length at most i
from

source s to v . (If there is no such path then this cost is −∞.)
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Computing the entries of M

The recursive computation (corresponding to the min cost
computational) would be

M[i , v ] =


0 if i = 0 and v = s

−∞ if i = 0 and v 6= s

max{A,B} otherwise

A = M[i − 1, v ]

B = max
{
M[i − 1, u] + c(u, v) : (u, v) ∈ E

}
Is this correct?
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What goes wrong?

The problem calls for a maximum simple path but the recursion

B = max
{
M ′[i − 1, u] + c(u, v) : (u, v) ∈ E

}
does not guarantee that the path through u will be a simple path as v
might occur in the path to u. Algorithm would work for a DAG.

In fact, determining the maximum cost of a simple path is NP-hard.
I A special case of this problem is the Hamiltonian path problem: does a

graph G = (V ,E ) have a simple path of length |V | − 1?
I The Hamiltonian path problem is a variant of the “notorious”

(NP-hard) traveling salesman problem (TSP).
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The traveling salesman problem (TSP)

Traveling salesman problem (TSP)

Given a graph G = (V ,E ) with a cost function c : E → R≥0 determine if
the cost of a simple cycle containing all the nodes (i.e. cycle length is
n = |V |) assuming the graph has such a Hamiltonian cycle.

Without loss of generality, we can assume a complete graph (using
c(e) =∞ for any missing edges).

It is is roughly equivalent to consider the least cost Hamiltonian path
problem. Namely, finding a least cost simple path of length exactly (and
NOT at most) length n − 1 from some given starting node u. For the
same reason as in the maximum cost path discussion, the least cost
Hamiltonian path problem cannot be obtained by modifying the least cost
path DP. Namely, we cannot dismiss the possibility of cycles in the path.
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Not all exponentials are equal; using DP to obtain a
better exponential time algorithm

A naive way to compute the least cost Hamiltonian path problem (with
some given initial node u) is to consider all (n− 1)! simple paths of length
n − 1. A good estimate to n! is Sterling’s approximation:

n! ≈
√

2πn(
n

e
)n

.
By using an appropriate DP, we can reduce that time complexity to
O(n22n) which is still of course exponential but grows much slower than
the factorial function (n!).
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The more efficient exponential algorithm

Here is the idea as expressed in the following semantic array: For each
subset S ⊆ V with u ∈ S and v /∈ S
C [S , v ] is the least cost simple path from u to v containing each node in
S exactly once.

If |S | = 1, then C [S , v ] = c(u, v) % S must be {u}
Else if |S | > 1, then C [S , v ] = minx /∈S C [S , x ] + c(x , v)

We note that the least cost Hamiltonian path problem is “NP-hard to
approximate” to any constant whereas there are efficient approximations if
the cost function satisfies the triangle inequality.
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The all pairs least cost problem

We now wish to compute the least cost path for all pairs (u, v) in an
edge weighted directed graph (with no negative cycles).

We can repeat the single source DP for each possible source node:
complexity O(n4)

We can reduce the complexity to O(n3logn) using the DP based on
the semantic array

E [j , u, v ] = cost of shortest path of path length at most 2j from u to v .

Notice that again we would prove correctness by an induction on the
length of a path. This DP is also different from the preceding DPs in
that each entry E [j , u, v ] makes two recursive calls to E [j − 1, u,w ]
and E [j − 1,w , v ] for each vertex w .
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An O(n3) DP for the all pairs problem

Let’s assume (without loss of generality) that V = {1, 2, . . . , n}.
We now define the semantic array

G [k , u, v ] = the least cost of a (simple) path π from u to v such that the
internal nodes in the path π are in the subset {1, 2, . . . , k}.

The recursive computation of G is as follows:

G [0, u, v ] =


0 if u = v

c(u, v) if (u, v) is an edge

∞ otherwise.

G [k + 1, u, v ] = min{A,B}
where A = G [k, u, v ] and B = G [k , u, k + 1] + G ′[k , k + 1, v ].

Like the recursion for the previous array E [j , u, v ], the recursion here
uses two recursive calls for each entry.

Time complexity: n3 entries × O(1) per entry = O(n3) in total.
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Is O(n3) the best we can do for the all pairs shortest
paths problem (APSP)?

Currently there is no O(n3−ε) time algorithm for the APSP.

APSP: given a weighted graph, find the distance 
between every two nodes. 
 

Author  Runtime Year 

Fredman n3 log log1/3 n / log1/3 n 1976 

Takaoka n3 log log1/2 n / log1/2 n 1992 

Dobosiewicz n3 / log1/2 n 1992 

Han n3 log log5/7 n / log5/7 n 2004 

Takaoka n3 log log2 n / log n  2004 

Zwick n3 log log1/2 n / log n  2004 

Chan n3 / log n 2005 

Han n3 log log5/4 n / log5/4 n 2006 

Chan n3 log log3 n / log2 n 2007 

Han, Takaoka n3 log log n / log2 n 2012 

Williams n3 / exp(� log n) 2014 

Classical problem 
Long history 

APSP Conjecture: 
APSP on n nodes 
and O(log n) bit 
weights requires 

n3-o(1) time. 
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What is the “evidence” for the APSP conjecture?

Analogous to the theory of NP completeness and polynomial time
reductions, there is a relatively newer area of complexity theory-algorithm
design call fine grained complexity.

The APSP is stated for a RAM model (with O(log n) bit words), for n
node graphs with edge weights in {1, . . . , nc} for some constant c .

Some structure within P 

 

Orthog. 
vectors 

3SUM APSP 

Sparse graph diameter [RV’13], local alignment, 
longest common substring* [AVW’14], Frechet 

distance [Br’14], Edit distance [BI’15], LCS 
[ABV’15, BrK’15]… 

N2- H 

N2- H’ 

In dense graphs: 
radius, median, 
betweenness 

[AGV’15], negative 
triangle, second 

shortest path, 
shortest cycle … 

[VW’10], … 

N1.5-H 

n3- H 

N1.5- H’ n3- H 

Huge literature in comp. 
geom. [GO’95, BH-P98, …]: 

Geombase, 3PointsLine, 
3LinesPoint, Polygonal 

Containment … 
 

String problems: Sequence 
local alignment [AVW’14], 

jumbled indexing [ACLL’14] 

N2- H 

N2- H’ 

STUCK 
on all 3! 

k-SAT 
2(1 - G)n 

[W’04] 

Dynamic 
problems 

[P’10],[AV’14],
[HKNS‘15], 

[RZ’04] 
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A similar DP (using 2 recursive calls)

The chain matrix product problem

We are given n matrices (say over some field) M1, . . . ,Mn with Mi

having dimension di−1 × di .

Goal: compute the matrix product

M1 ·M2 · . . . ·Mn

using a given subroutine for computing a single matrix product A · B.

We recall that matrix multiplication is associative; that is,

(A · B) · C = A · (B · C ).

But the number of operations for computing A · B · C generally
depends on the order in which the pairwise multiplications are carried
out.
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The matrix chain product problem continued

Let us assume that we are using classical matrix multiplication and
say that the scalar complexity for a (p × q) times (q × r) matrix
multiplication is pqr .

For example say the dimensions of A, B and C are (respectively)
5× 10, 10× 100 and 100× 50.

Then using (A · B) · C costs 5000 + 25000 = 30000 scalar operations
whereas A · (B · C ) costs 50000 + 2500 = 52500 scalar ops.

Note: For this problem the input is these dimensions and not the
actual matrix entries.
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Parse tree for the product chain

The matrix product problem then is to determine the parse tree that
describes the order of pairwise products.

At the leaves of this parse tree are the individual matrices and each
internal node represents a pairwise matrix multiplication.

Once we think of this parse tree, the DP is reasonably suggestive:

The root of the optimal tree is the last pairwise multiplication and the
subtrees are subproblems that must must be computed optimally.
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The DP array for the matrix chain product problem

C [i , j ] = the cost of an optimal parse of Mi · . . . ·Mj for 1 ≤ i ≤ j ≤ n.

The recursive computation is :

C [i , j ] =

{
0 if i = j

min
{
C [i , k] + C [k + 1, j ] + di−1dkdj : i ≤ k < j

}
if i < j

Essentially in all these cases we are computing an optimal parse tree.
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Some DPs not occurring in texts

Dynamic programming by itself or when combined with scaling and other
techniques can yield interesting optimal and approximation algorithms.
The following problems provide additional more involved DP examples.

The Calinescu et al [2011] constant approximation algorithms for the
resource allocation problem. A job is an interval Ij having a profit vi
and a bandwidth or resource requirement bi ≤ B. An optimal DP can
be used for the “big” bandwidth jobs and various algorithms can be
used for the small jobs. Approximation bounds follow by taking the
maximum profit between big and small bandwidths. This problem
generalizes the interval selection and knapsack problems.
An optimal DP algorithm is Baptiste’s [1999] algorithm for
maximizing the weighted profit of scheduling equal processing time
jobs with release times and deadlines. A related result is the Chuzhoy
et al [2006] pseudo polynomial time algorithm for maximizing the
profit of unweighted jobs with release times, deadlines and processing
times such that di − ri ≤ kpi for all i and some fixed k . That is, each
job has some fixed relative “window size” in which to be scheduled.
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Scheduling jobs with integral release times, dealines
and processing times

The Baptiste and Chuzhoy et al problems are sub-cases of the more
general throughput problem where a job Ji is described by (ri , di , pi , vi )
such that ri + pi ≤ di and vi is the weight of value of the i th job if
scheduled so as to complete before its deadline di .
We are assuming all parameters are integral. If we allow different
processing times pi for each job, the problem becomes strongly NP hard
and weakly NP hard if ri = 0 for all i . More precisely, when ri = 0, the
knapsack is a special case and a similar algorithm (DP + scaling) can be
used to achieve a FPTAS.

The problem specializes to the weighted interval selection problem when
ri + pi = di for all i and as we know this can be efficiently optimally
solved. It is also optimally solved by a greedy algorithm when ri = 0 and
pi = p = 1 for all jobs Ji .
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The Baptiste DP

In contrast to the above cases which can be optimally (or nearly optimally)
solved by relatively intuitive algorithms , the Baptiste and Chuzhoy et al
problems seem to require a very non trivial DP. The Baptiste’s time bound
in O(n7).
The Baptiste problem assumes all processing time pi = p for some fixed p.
We will just state the algorithm to get a sense of its complexity.
Define what is the set of allowable starting times AST = {t : t = ri + ` · p
for some ri , ` ∈ {0, . . . , n}
In order to define the appropriate array, we first need the following
definition of jobs with release times in certain time intervals, namely:
Uk(s, e) = {Ji |i ≤ k and s ≤ ri < e} for s ≤ e
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Baptiste DP continued

We define the desired array Wk(s, e) of values; it is the maximum value
that can be achieved in a schedule S of jobs Ji ∈ Uk(s, e) that satisfy the
following properties:

S is idle before time s + p

S is idle after time e

The starting times of jobs in S belong to AST .

The following figure in Baptiste’s paper illustrates his DP solution:

Figure 1. Illustration of Proposition 2

De,nition
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!
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Copyright ! 1999 John Wiley & Sons, Ltd. J. Sched. 2, 245}252 (1999)Wk(s, e) = Wk−1(s, e) if rk /∈ [s, e) or if Jk not used; otherwise
Wk(s, e) =
maxs′∈AST :max(rk ,s+p)≤s′≤min(dk ,e)−p(wk + Wk−1(s, s ′) + Wk−1(s ′, e))
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Local Search: another conceptually simple approach

We now begin a discussion of local search which for me, along with greedy
algorithms, is one of the two conceptually simplest search/optimization
paradigms.

The vanilla local search paradigm

“Initialize” S
While there is a “better” solution S ′ in the “local neighbourhood”
Nbhd(S)
S := S ′

End While

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What constitutes a reasonable definition of a local neighbourhood?
3 What do we mean by “better”?

Answering these questions (especially as to defining a local
neighbourhood) will often be quite problem specific. 26 / 45



Towards a precise definition for local search

We clearly want the initial solution to be efficiently computed and to
be precise we can (for example) say that the initial solution is a
random solution, or a greedy solution or adversarially chosen.
Of course, in practice we can use any efficiently computed solution.
We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some “small” k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched
in at most time |D|k .

3 We can view Ford Fulkerson flow algorithms (to be discussed) as local
search algorithms where the (possibly exponential size but efficiently
search-able) neighbourhood of a flow solution S are flows obtained by
adding an augmenting path flow.
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What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean “closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search. I think it
should be called greedy local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potential function and
this has been termed non-oblivious local search.

In searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we sometimes insist that there is a “sufficiently better”
improvement rather than just better.
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The weighted max cut problem

Our first local search algorithm will be for the (weighted) max cut
problem defined as follows:

The (weighted) max-cut problem

I Given a (undirected) graph G = (V ,E ) and in the weighted case the edges
have non negative weights.

I Goal: Find a partition (A,B) of V so as to maximize the size (or weight) of
the cut E ′ = {(u, v)|u ∈ A, v ∈ B, (u, v) ∈ E}.

We can think of the partition as a characteristic vector χ in {0, 1}n
where n = |V |. Namely, say χi = 1 iff vi ∈ A.

Let Nd(A,B) = {(A′,B ′) | the characteristic vector of (A′) is
Hamming distance at most d from (A)}

So what is a natural local search algorithm for (weighted) max cut?
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A natural oblivious local search for weighted max cut

Single move local search for weighted max cut

Initialize (A,B) arbitrarily
WHILE there is a better partition (A′,B ′) ∈ N1(A,B)

(A,B) := (A′,B ′)
END WHILE

This single move local search algorithm is a 1
2 approximation; that is,

when the algorithm terminates, the value of the computed local
optimum will be at least half of the (global) optimum value.
In fact, if W is the sum of all edge weights, then w(A,B) ≥ 1

2W .
This kind of ratio is sometimes called the absolute ratio or totality
ratio and the approximation ratio must be at least this good.
The worst case (over all instances and all local optima) of a local
optimum to a global optimum is called the locality gap.
It may be possible to obtain a better approximation ratio than the
locality gap (e.g. by a judicious choice of the initial solution) but the
approximation ratio is at least as good as the locality gap.
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Proof of totality gap for the max cut single move
local search

The proof is based on the following property of any local optimum:∑
v∈A

w(u, v) ≤
∑
v∈B

w(u, v) for every u ∈ A

Summing over all u ∈ A, we have:

2
∑
u,v∈A

w(u, v) ≤
∑

u∈A,v∈B
w(u, v) = w(A,B)

Repeating the argument for B we have:

2
∑

u,v∈B
w(u, v) ≤

∑
u∈A,v∈B

w(u, v) = w(A,B)

Adding these two inequalities and dividing by 2, we get:∑
u,v∈A

w(u, v) +
∑

u,v∈B
w(u, v) ≤ w(A,B)

Adding w(A,B) to both sides we get the desired W ≤ 2w(A,B).
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The complexity of the single move local search

Claim: The local search algorithm terminates on every input instance.

I Why?

Although it terminates, the algorithm could run for exponentially
many steps.

It seems to be an open problem if one can find a local optimum
in polynomial time.

However, we can achieve a ratio as close to the state 1
2 totality ratio

by only continuing when we find a solution (A′,B ′) in the local
neighborhood which is “sufficiently better”. Namely, we want

w(A′,B ′) ≥ (1 + ε)w(A,B) for any ε > 0

This results in a totality ratio 1
2(1+ε) with the number of iterations

bounded by n
ε logW .
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Final comment on this local search algorithm

It is not hard to find an instance where the single move local
search approximation ratio is 1

2 .

Furthermore, for any constant d , using the local Hamming
neighbourhood Nd(A,B)
still results in an approximation ratio that is essentially 1

2 .
And this remains the case even for d = o(n).

It is an open problem as to what is the best “combinatorial algorithm”
that one can achieve for max cut.

There is a vector program relaxation of a quadratic program that
leads to a .878 approximation ratio.
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Exact Max-k-Sat

Given: An exact k-CNF formula

F = C1 ∧ C2 ∧ . . . ∧ Cm,

where Ci = (`1i ∨ `2i . . . ∨ `ki ) and `ji ∈ {xk , x̄k | 1 ≤ k ≤ n} .
In the weighted version, each Ci has a weight wi .

Goal: Find a truth assignment τ so as to maximize

W (τ) = w(F | τ),

the weighted sum of satisfied clauses w.r.t the truth assignment τ .

It is NP hard to achieve an approximation better than 7
8 for (exact)

Max-3-Sat and hence for the non exact versions of Max-k-Sat for
k ≥ 3.
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The natural oblivious local search

A natural oblivious local search algorithm uses a Hamming distance d
neighbourhood:
Nd(τ) = {τ ′ : τ and τ ′ differ on at most d variables }

Oblivious local search for Exact Max-k-Sat

Choose any initial truth assignment τ
WHILE there exists τ̂ ∈ Nd(τ) such that W (τ̂)>W (τ)

τ := τ̂
END WHILE
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How good is this algorithm?

Note: Following the standard convention for Max-Sat, I am using
approximation ratios < 1.

It can be shown that for d = 1, the approximation ratio for
Exact-Max-2-Sat is 2

3 .

In fact, for every exact 2-Sat formula, the algorithm finds an
assignment τ such that W (τ) ≥ 2

3

∑m
i=1 wi , the weight of all clauses,

and we say that the “totality ratio” is at least 2
3 .

(More generally for Exact Max-k-Sat the ratio is k
k+1). This ratio is

essentially a tight ratio for any d = o(n).

This is in contrast to a naive greedy algorithm derived from a
randomized algorithm that achieves totality ratio (2k − 1)/2k .

“In practice”, the local search algorithm often performs better than
the naive greedy and one could always start with (for example) a
greedy algorithm and then apply local search. 36 / 45



Analysis of the oblivious local search for Exact
Max-2-Sat

Let τ be a local optimum and let
I S0 be those clauses that are not satisfied by τ
I S1 be those clauses that are satisfied by exactly one literal by τ
I S2 be those clauses that are satisfied by two literals by τ

Let W (Si ) be the corresponding weight.

We will say that a clause involves a variable xj if either
xjor x̄j occurs in the clause. Then for each j , let

I Aj be those clauses in S0 involving the variable xj .
I Bj be those clauses C in S1 involving the variable xj

such that it is the literal xj or x̄j that is satisfied in C
by τ .

I Cj be those clauses in S2 involving the variable xj .

Let W (Aj),W (Bj),W (Cj) be the corresponding weights.
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Analysis of the oblivious local search (continued)

Summing over all variables xj , we get

I 2W (S0) =
∑

j W (Aj) noting that each clause in S0 gets counted twice.
I W (S1) =

∑
j W (Bj)

Given that τ is a local optimum, for every j , we have

W (Aj) ≤W (Bj)

or else flipping the truth value of xj would
improve the weight of the clauses being satisfied.

Hence (by summing over all j),

2W0 ≤W1.
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Finishing the analysis

It follows then that the ratio of clause weights not satisfied to the
sum of all clause weights is

W (S0)

W (S0) + W (S1) + W (S2)
≤ W (S0)

3W (S0) + W (S2)
≤ W (S0)

3W (S0)

It is not easy to verify but there are examples showing that this 2
3

bound is essentially tight for any Nd neighbourhood for d = o(n).

It is also claimed that the bound is at best 4
5 whenever d < n/2. For

d = n/2, the algorithm would be optimal.

In the weighted case, as in the max-cut problem, we have to worry
about the number of iterations. And here again we can speed up the
termination by insisting that any improvement has to be sufficiently
better.
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Using the proof to improve the algorithm

We can learn something from this proof to improve the performance.

Note that we are not using anything about W (S2).

If we could guarantee that W (S0) was at most W (S2) then the ratio
of clause weights not satisfied to all clause weights would be 1

4 .

Claim: We can do this by enlarging the neighbourhood to include
τ ′ = the complement of τ .
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The non-oblivious local search

We consider the idea that satisfied clauses in S2 are more valuable
than satisfied clauses in S1 (because they are able to withstand any
single variable change).

The idea then is to weight S2 clauses more heavily.

Specifically, in each iteration we attempt to find a τ ′ ∈ N1(τ) that
improves the potential function

3

2
W (S1) + 2W (S2)

instead of the oblivious W (S1) + W (S2).

More generally, for all k, there is a setting of scaling coefficients
c1, . . . , ck , such that the non-oblivious local search using the
potential function c1W (S1) + c2W (S2 + . . .+ ckW (Sk) results

in approximation ratio 2k−1
2k

for exact Max-k-Sat.
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Sketch of 3
4 totality bound for the non oblivious local

search for Exact Max-2-Sat

Let Pi ,j be the weight of all clauses in Si containing xj .

Let Ni ,j be the weight of all clauses in Si containing x̄j .

Here is the key observation for a local optimum τ wrt the stated
potential:

−1

2
P2,j −

3

2
P1,j +

1

2
N1,j +

3

2
N0,j ≤ 0

Summing over variables P1 = N1 = W (S1), P2 = 2W (S2) and
N0 = 2W (S0) and using the above inequality we obtain

3W (S0) ≤W (S1) + W (S2)
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Some comparative experimental results for local
search based Max-Sat algorithms
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Fig. 1. Average performance when executing on random instances of exact MAX-3-
SAT.

Figure 1 presents the performance results for random MAX-3-SAT instances.
All the techniques are clearly separated from each other in terms of their perfor-
mance. The behavior of non-oblivious local search and its oblivious counterpart
matches their relative standings in the worst-case scenario. However, in spite of
a weaker worst-case guarantee, tabu search beats non-oblivious local search very
comfortably. In addition, if tabu search is initialized with a truth assignment
found by non-oblivious local search, the resulting hybrid method outperforms
plain tabu search. Simulated annealing and MaxWalkSat are the overall leaders
and they get very close (on average) to the optimal 0 unsat ratio. The fact that
for SA and MSW the unsat ratio is highest for small n is due to the relatively
small number of total clauses. For n ≥ 150, the unsat ratio for MWS is at most
.00082. As we will see in Figures 2 and 3 the better performance of the SA and
MSW algorithms comes at a greater computational cost.

It is not suprising that techniques giving better results tend to require more
time. An exception to this rule is the hybrid of non-oblivious local search with
tabu search, which finds better truth assignments than regular tabu search and
for large enough formulas uses somewhat fewer computations. The running time
for all the determinstic techniques scale quite reasonably with an increase in
the size of the formula. The running time of simulated annealing (for the given
temperature schedule) blows up dramatcally and MaxWalkSat was given a fixed
stopping time of 100,000 flips. The fact that the average running time of MWS
is less than 100,000 flips for a small number of variables indicates that the
method obtains a satisfying assignment for many instances. Figure 3 depicts the
normalized performance of algorithms relative to the four deterministic methods.
That is, we measure the normalized performance “A/B” of algorithm A relative
to algorithm B by terminating A at the point that it uses the number of flips
used by B. The normalized performance indicates that the non-oblivious local

[From Pankratov and Borodin 2010]
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More experiments for benchmark Max-Sat

OLS NOLS TS NOLS+TS SA MWS

OLS 0 457 741 744 730 567

NOLS 160 0 720 750 705 504

TS 0 21 0 246 316 205

NOLS+TS 8 0 152 0 259 179

SA 30 50 189 219 0 185

MWS 205 261 453 478 455 0
Table 2. MAX-SAT 2007 benchmark results. Total number of instances is 815. The
tallies in the table show for how many instances a technique from the column improves
over the corresponding technique from the row.

6 Future work

We conclude with several open questions suggested by this work. A tight bound
on the approximation or totality ratio of tabu search still requires closure. For
all local search methods, rather than worst case approximation (totality) ratios,
it would be more insightful to be able to computer expected ratios where the
expectation is taken over random initial assignments. A more challenging di-
rection is to provide theoretical results corresponding to the experiments from
the second part of the paper. For example, what is the expected approximation
ratio achieved by any of the deterministic local search based methods under a
uniform random model of k SAT formulas with clause densities near the hypoth-
esized threshold? In particular, for densities above the known algorithmic lower
bound [12] can anything be said about the expected MAXSAT approximation?
If the length of the taboo list is infinite, tabu search enters a cycle. What is the
expected number of steps that tabu search makes before entering a cycle and
what is the expected length of a cycle? Is there a theoretical explanation for
why non-oblivious local search seems to provide such a subtantial improvement
when used to initialize tabu search but does not seem to help (for example)
MaxWalkSat.
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More experiments for benchmark Max-Sat

Table 2. The Performance of Local Search Methods

NOLS+TS 2Pass+NOLS SA WalkSat
% sat ? time % sat ? time % sat ? time % sat ? time

sc-app 90.53 93.59s 99.54 45.14s 99.77 104.88s 96.50 2.16s
ms-app 83.60 120.14s 98.24 82.68s 99.39 120.36s 89.90 0.48s

sc-crafted 92.56 61.07s 99.07 22.65s 99.72 70.07s 98.37 0.66s
ms-crafted 84.18 0.65s 83.47 0.01s 85.12 0.47s 82.56 0.06s
sc-random 97.68 41.51s 99.25 40.68s 99.81 52.14s 98.77 0.94s
ms-random 88.24 0.49s 88.18 0.00s 88.96 0.02s 87.35 0.06s

4 A Hybrid Algorithm that Achieves Excellent
Performance at Low Cost

Among the algorithms considered so far, Spears’ simulated annealing produced
the best solutions. But given that the greedy algorithms were not far o� in terms
of satisfied clauses and only needed a fraction of the running time, the question
is if it is possible to improve their solutions while preserving their speed.

Therefore, we combine the deterministic 2-pass algorithm with ten rounds of
simulated annealing (ShortSA); in particular, we utilize the last ten rounds of
Spears’ algorithm, during which the temperature is low and hence the random
walk is very goal-oriented. Here it is advantageous that below the hood both
algorithms are very similar, in particular they consider the variables one-by-one
and iterate for each variable over its set of clauses. Thus, the implementation
of our hybrid variant requires very little additional e�ort. To the best of our
knowledge, the combination of a greedy algorithm with only a few steps of
simulated annealing is novel; in particular, the rationale and characteristics di�er
from using a greedy algorithm to produce a starting solution for local search, as
it is common for example for TSP [14]. Moreover, our experiments demonstrate
that using the 2-pass algorithm to provide an initial solution in standard local
search for MAX SAT does not achieve both goals simultaneously (cp. Sect. 3.2).

The empirical running time of our linear-time algorithm scales even better
than expected, averaging at 4.7s for sc-app and 3.9s for ms-app. Therefore its
speed is comparable to the greedy algorithms and much faster than NOLS or SA;
the latter took 104.88s and 120.38s respectively on average for these sets.

In terms of satisfied clauses our hybrid algorithm achieves the excellent
performance of SA: for the sc-app category 2Pass+ShortSA satisfies 97.75% of
the clauses, and hence the di�erence to SA is only marginal (0.02%). Also for the
other categories the additional local search stage essentially closes the gap, the
maximum di�erence being 0.4% for ms-crafted. Like SA, it dominates strictly
the other algorithms on the overwhelming majority of the instances.

In order to study the e�ect of the initial assignment provided by 2Pass, we
contrasted the performance of our hybrid algorithm by starting ShortSA from
the all-zero assignment. It turns out that the 2Pass assignment bridges about
half of the gap between ShortSA and SA, which reveals ShortSA to be another
practical algorithm with excellent performance; typically, it is slightly worse

10

Figure: Table from Poloczek and Williamson 2017
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