
CSC2420: Algorithm Design, Analysis and Theory
Fall 2017

Allan Borodin and Nisarg Shah

September 27, 2017

1 / 33

Lecture 3

Announcements:

First few questions for assignment 1 have been posted. We will set a
due date after posting remaining questions this week (hopefully).

Todays ambitious agenda:

Finish (at least for now) discussion of greedy and greedy like
algorithms. The priority stack model as in Bar-Noy et al [2001],
Akcoglu et al [2000], Ye and Borodin [2011]. Greedy interval coloring
and coloring of chordal graphs. One machine and m-machine
weighted interval scheduling.
Dynamic programming and some applications
Note: We will start with some standard examples that would be seen
in an undergrad course)

1 Revisiting one machine and m-machine weighted interval scheduling
2 The knapsack problem and an FPTAS
3 DP for the makespan problem for identical maxchines
4 The priority branching tree (pBT) model as a model for simple DP and

parallel greedy algorithms.
2 / 33

Priority Stack Algorithms

For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is to insure the minimality of the
solution; that is, while popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.

3 / 33

Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence is chordal) by ordering the intervals such that
f1 ≤ f2 . . . ≤ fn. Using this ordering we know that there is a greedy (i.e.
priority) algorithm that optimally selects a maximum size set of non
intersecting intervals. The same algorithm (and proof by charging
argument) using a PEO for any chordal graph optimally solves the
unweighted MIS problem. Bar-Noy et al [2001] provide an optimal solution
for weighted interval scheduling which immediately generalizes to chordal
graphs.

4 / 33

The optimal priority stack algorithm for the
weighted max independent set problem (WMIS) in
chordal graphs

Stack := ∅ % Stack is the set of items on stack
Sort nodes as in a PEO
For i = 1..n

Ci := nodes on stack that are adjacent to vi
If w(vi) > w(Ci) then push vi onto stack, else reject

End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure : Priority stack algorithm for chordal WMIS
5 / 33

Sketch of the WMIS chordal graph result

Let ALG (resp. OPT) denote the nodes in the solution of the algorithm
(resp. of an optimal solution). Let S be the contents of the stack at the
end of the push phase and let Si be the contents of the stack as we are
about to consider vi .

Define w̃(vi) = w(vi)−
∑

vj∈Si∩Nbhd(vi)
w̃(vj). Then we push vi on the

stack iff w̃(vi) > 0.

Fact:
∑

vt∈ALG w(vt) =
∑

vt∈S w̃(vt)

Then using the fact that the nodes were considered in the PEO ordering,
we can show

∑
vt∈OPT w(vt) =

∑
vt∈S w̃t

6 / 33

Interval colouring

Interval Colouring Problem

Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

Goal: minimize the number of colours used.

1

Time
0

A

C

F

B

D

G

E

1 2 3 4 5 6 7 8 9 10 11
H

We use 4 colors in this example. Question: Is this optimal?

7 / 33

Interval colouring

Interval Colouring Problem

Given a set of intervals, colour all intervals so that intervals having
the same colour do not intersect

Goal: minimize the number of colours used.

We could simply apply the m-machine ISP for increasing m until we
found the smallest m that is sufficient. But this would not be as
efficient as the greedy algorithm to follow.

8 / 33

Greedy interval colouring algorithm

Consider the EST (earliest starting time) for interval colouring.
I Sort the intervals by non decreasing starting times
I Assign each interval the smallest numbered colour that is feasible given

the intervals already coloured.

Recall that EST is a terrible algorithm for ISP.

Note: this algorithm is equivalent to LFT (latest finishing time first).

Theorem

EST is optimal for interval colouring

Proof idea: When does the algorithm use a new colour? In any graph, the
colouring number is at least as large as the maximum clique size (and
equal for interval and more generally perfect graphs).

9 / 33

Greedy Interval Colouring

Sort intervals so that s1 ≤ s2 ≤ . . . ≤ sn
FOR i = 1 to n

Let k := min{` : ` 6= χ(j) for all j < i such that the
j th interval intersects the i th interval}

σ(i) := k
% The i th interval is greedily coloured by the smallest non conflicting

colour.
ENDFOR

How does this generalize to a greedy algorithm for vertex coloring chordal
graphs?

10 / 33

The m machine weighted interval scheduling
problem and its graph theoretic interpretation

As a graph problem, m machine weighted interval scheduling becomes the
maximum vertex m-colourable problem for interval graphs. Do results for
m machine (weighted or unweighted) interval scheduling carry over to the
maximum vertex m-colourable problem for chordal graphs?

Borodin, Cashman and Magen [2011] show that fixed order priority stack
algorithms cannot optimally solve the m machine weighted interval
scheduling problem. The one-machine stack algorithm extends to yield a
2− 1

m approximation which Bar-Noy et al first obtained by applying the
one machine algorithm, “one machine at a time”.

However, for any fixed m, dynamic programming can optimally solve the m
machine weighted interval scheduling problem in polynomial time O(nm).

There is a min cost, max flow algorithm that can solve m (wlg. m ≤ n)
machine weighted interval scheduling in time O(n2 log n).

11 / 33

m machine interval scheduling continued

We previously mentioned Regev’s log m
log log m fixed order priority

inapproximation for the restricted machines makespan problem. It is not
currently known how to obtain an analogous inapproximation for adaptive
priority algorithms.

Similarly, we can derive a (weak) fixed order priority stack inapproximation
for the m machine weighted interval scheduling problem but do not know
how to obtain an inapproximation for the adaptive model.

Curiously, thus far the best inapproximation we have is for 2 machines
(namley, 6√

30
) ≈ 1.095 which can be extended to m

m−1 for m machines (i.e.

the bound gets weaker) in contrast to the 2− 1
m algorithm where the

approximation gets weaker.

And now to answer a question we previously raised, Yannakakis and Gavril
[1987] show how to solve the chordal graph maximum m vertex colourable
problem in polynomal time for any fixed m but show that it is NP-hard
when m is a parameter of the problem. This shows that we cannot expect
to reduce min vertex colouring to the max m colourable problem. 12 / 33

A k-PEO and inductive k-independent graphs

An alternative way to describe a PEO is to say that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number 1.

We can generalize this to a k-PEO by saying that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number at most k .

We will say that a graph is an inductive k-independent graph if it has
a k-PEO.

Inductive k-independent graphs generalize both chordal graphs and
k + 1-claw free graphs.

The intersection graph induced by the JISP problem is an inductive
2-independent graph.

Using a k-PEO, a fixed-order priority algorithm (resp. a priority stack
algorithm) is a k-approximation algorithm for MIS (resp. for WMIS)
wrt inductive k-independent graphs.

There are analogous (and weaker) results for the max m vertex
colourable problem with respect to inductive k-independent graphs.

13 / 33

Dynamic programming and scaling

We now move on to one of the main objects of study in an undergraduate
algorithms course.

We have previously seen that with some use of brute force and
greediness, we can achieve PTAS algorithms for the identical
machines makespan which is polynomial in the number n of jobs but
exponential in the number m of machines and 1

ε where 1 + ε is the
approximation guarantee.

For the knapsack problem we had a PTAS that was polynomial in n
and exponential in 1

ε . .

We briefly mentioned that dynamic programming (DP) and scaling
can be used to achieve an FPTAS for the knapsack problem.
We will show how this idea works for the knapsack problem and also
to improve the results for the makespan problem on identical
machines.

The application and importance of dynamic programming now goes
beyond search and optimzation problems (its original purpose).

14 / 33

What is Dynamic Programming (DP)

We will consider a few more or less “natural” DP algorithms and at
least one not so obvious DP algorithm.

In greedy like algorithms (and also local search, our next major
paradigm) it is often easy to come up with reasonably natural
algorithms (although we have seen some not so obvious examples)
whereas sometimes the analysis can be relatively involved.

In contrast, once we come up with an appropriate DP algorithm, it is
often the case that the analysis is relatively easy.

Here informally is the essense of DP algorithms: define an approriate
generalization of the problem (which we usually give in the form of a
multi-dimensional array) such that

1 the desired result can be easily obtained from the array S [, , ...]
2 each entry of the array can be easily computed given “previous entries”
3 This latter computational statement embodies the optimal substructure

property of a problem. That is, an optimal solution contains within it
optimal solutions to subproblems.

15 / 33

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Open problem: Can there be an optimal polynomal time DP (in any
“reasonable” meaning of what is DP) for the maximum size or weight
bipartite matching problem? Note: There are polynomial time
optimal algorithms for these problem.

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

16 / 33

What more precisely is dynamic programming?

So far, there are only a few attempts to formalize precise mdoels for
(types) of dynamic programming algorithms.

There are some who say this is not a useful question.

I would disagree with the following comment: Whatever can be done
in polynomial time, can be done by a polynomial time DP algorithm.
What is the reasoning behind such a comment?
Open problem: Can there be an optimal polynomal time DP (in any
“reasonable” meaning of what is DP) for the maximum size or weight
bipartite matching problem? Note: There are polynomial time
optimal algorithms for these problem.

And there may be more fundamdental or philosophical reasons for
arguing against such attempts to formalize concepts.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.

16 / 33

Bellman 1957 (in the spirit of Samuel Johnson)

Bellman (who introduced dynamic programming) argued against attempts
to formalize DP.

We have purposely left the description a little vague, since it is the spirit
of the approach to these processes that is significant, rather than a letter
of some rigid formulation. It is extremely important to realize that one can
neither axiomatize mathematical formulation nor legislate away ingenuity.
In some problems, the state variables and the transformations are forced
upon us; in others, there is a choice in these matters and the analytic
solution stands or falls upon this choice; in still others, the state variables
and sometimes the transformations must be artificially constructed.
Experience alone, combined with often laborious trial and
error, will yield suitable formulations of involved processes.

17 / 33

Some simple DP algorithms

Let’s begin with an example used in many texts, namely a DP for the
weighted interval scheduling problem WISP.

We have already claimed that no priority algorithm can yield a
constant approximation ratio but that we can obtain a
4-approximation using a revocable accaptance priority algorithm and
an optimal algorithm using a priority stack algorithm.

The optimal DP algorithm for WISP is based on the following
“semantic array”:

I Sort the intervals Ij = [sj , fj) so that f1 ≤ f2 . . . ≤ fn (i.e. the PEO).
I Define π(i) = max j : fj ≤ si (Note; if we do not want intervals to

touch then use fj < si .)
I The definition of π() is specific to this problem and I do not know a

generalization for chordal graphs and hence the DP approach does not
naturally extend.

I For 1 ≤ i ≤ n, Define V [i] = optimal value obtainable from intervals
{I1, . . . Ii}.

18 / 33

The DP for WISP continued

We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1

2 For i > 1, Ṽ [i] = max{A,B} where
F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?

I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly.

19 / 33

The DP for WISP continued

We defined the array V [] just in terms of the optimal value but the
same array element can also contain a solution associated with this
optimal value.
So how would we efficiently compute the entries of V [].

The computation or recursive array (let’s temporarily call it Ṽ [])
associated with V [] is defined as follows:

1 Ṽ [1] = v1

2 For i > 1, Ṽ [i] = max{A,B} where
F A = V [i − 1]
F B = vi + Ṽ [π(i)]

That is, either we use the i th interval or we don’t.

So why am I being so pedantic about this distinction between V []
and Ṽ []?
I am doing this here just to point out that a proof of correctness
would require showing that these two arrays are indeed equal! I will
hereafter not make this distinction with the understanding that one
does have to show that the computational or recursive array does
indeed compute the entries correctly. 19 / 33

Some comments on DP and the WISP DP

We can sort the intervals and compute π() in time O(n log n) and
then sequentially compute the entries of V in time O(1) per iteration.
We can also recursivley compute V , BUT must use memoization to
avoid recomputing entries.
To some extent, the need to use memoization distinguishes dynamic
programming from divide and conquer.
We can extend this DP to optimally solve the weighted interval
scheduling problem when there are m machines; that is, we want to
schedule intervals so that there is no intersection on any machine.
This extension would directly lead to time (and space) complexity
O(nm+1); O(nm) with some more care.
As we will soon discuss, we can model this simple type of DP by a
priority branching tree (pBT) algorithm as formulated by Alekhnovich
et al. Within this model, we can prove that for any fixed m, the width
(and hence the space and thus time) of the algorithm for optimally
scheduling intervals on m machines is Ω(nm). The curse of
dimensionality is necessary within this model.

20 / 33

A pseudo polynomial time “natural DP” for
knapsack

Consider an instance of the (NP-hard) knapsack problem; that is we are
given item {(vk , sk)|1 ≤ k ≤ n} and a knapsack capacity C . Following
along the lines of the WISP DP, the following is a reasonably natural
approach to obtain a “pseudo polynomal space and time” DP:

For 1 ≤ i ≤ n and 0 ≤ c ≤ C , define V [i , c] to be the value of an
optimum solution using items Ii ⊆ {I1, . . . , Ii} and satisfying the size
constraint that

∑
Ij∈Ii sj ≤ c .

A corresponding recursive DP is as follows:
1 V [0, c] = 0 for all c
2 For i > 0, V [i] = max{A,B} where

F A = V [i − 1, c]
F B = vi + V [c − si] if si ≤ c and V [i − 1, c] otherwise.

Note: easy to make mistakes so again have to verify that this recursive
definition is correct.

The space and time complexity is O(nC) which is pseudo polynomial
in the sense that C can be exponential in the encoding of the input.

21 / 33

An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in n and the numeric
value V =

∑
i vi (or maxi vi) (rather than the encoded length of the

maximum possible profit.

Define S [j , v] = the minimum capacity s needed to achieve a profit of at
least v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we give in the form of an array) such
that

1 the desired result can be easily obtained from this array

2 each entry of the array can be easily computed given “previous
entries”

22 / 33

How to compute the array S [j , v] and why is this
sufficient

1 The value of an optimal solution is max{v |S [n, v] ≤ C}.
2 We have the following equivalent recursive definition that shows how

to compute the entries of S [j , v] for 0 ≤ j ≤ n and v ≤
∑n

j=1 vj .
I Basis: S [0, v] =∞ for all v
I Induction: S [j , v] = min{A,B} where A = S [j − 1, v] and

B = S [j − 1,max{v − vj , 0}] + sj .

3 It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.

4 For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.

5 The running time is O(n,V) where V =
∑n

j=1 vj .
6 Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])

is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility.23 / 33

The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2 .

We will need a combinaton of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.

24 / 33

The high level idea of the makespan PTAS

Let T be a candidate for an achievable makespan value. Depending
on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled values of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a soluton that achieves
makespan T .

If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

We use binary search to find a good T .

25 / 33

The optimal DP for makespan on identical machines
when there is a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of size zi .

The array we will use to obtain the desired optimal makespan is as
follows:
M[x1, . . . , xd] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T . (Here we can
assume T ≥ max pi ≥ max zi so that this minimum is finite.)

The n jobs can be scheduled within makespan T iff M[n1, , nd] is at
most m.

26 / 33

The optimal DP for a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of size zi .

M[x1, . . . , xd] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T .

The n jobs can be scheduled within makespan T iff M[n1, , nd] is at
most m.

27 / 33

Computing M[x1, . . . , xd]

Clearly M[0, . . . , 0] = 0 for the base case.

Let V = {(v1, , vd)|
∑

i vizi ≤ T} be the set of configurations that
can complete on one machine within makespan T ; that is, scheduling
vi jobs with size zi on one machine does not exceed the target
makespan T .

M[x1, . . . , xd] = 1 + min(v1,...,vd)∈V :vi≤xi M[x1 − v1, . . . , xd − vd]

There are at most nd array elements and each entry uses
approximately nd time to compute (given previous entries) so that the
total time is O(n2d).

Must any (say DP) algorithm be exponential in d?

28 / 33

Large jobs and scaling (not worrying about any
integrality issues)

A job is large if pi ≥ T/s = T · ε
Scale down large jobs to have size p̃i = largest multiple of T/(s2)

pi − p̃i ≤ T/(s2)

There are at most d = s2 job sizes p̃

There can be at most s large jobs on any machine not exceeding
target makespan T .

29 / 33

Taking care of the small jobs and accounting for the
scaling down

We now wish to add in the small jobs with sizes less than T/s. We
continue to try to add small jobs as long as some machine does not
exceed the target makespan T . If this is not possible, then makespan
T is not possible.

If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T/(s2) so this only increases the makespan to (1 + 1/s)T .

30 / 33

The pBT model

Despite the warnings of Samuel Johnson and Richard Bellman, there are
models of dynamic programming. None of these models have garnered
that much attention but I still believe that formalizing dynamic
programming is worthwhile.

Specific Challenge: Find a convincing DP model with respect to which we
can prove (if true) that no efficient DP algorithm can optimally solve
unweighted or edge weighted bipartite matching.

Alekhnovich et al [2011] proposed a model for a simple class of DP
algorithms. In hindsight, this model could perhaps better serve as a class
of algorithms modeling parallel greedy algorithms, as well as a model for
simple branch and bound algorithms.

The priority branching tree (pBT) model is informally a levelled tree where
each path in the tree is a priority algorithm. At any node on a path, the
algorithm can branch according to different decisions concerning the input
item, can continue the path having made a single decision, or can decide
to terminate this path. 31 / 33

pBT model continued

We can distinguish three cases:

1 Fixed order pBT (with online oBT as a special case). Here the
algorithm chooses an ordering of items I1, . . . , In and then at every
tree node at level k of the tree, item Ik is being considered.

2 Adaptive order pBT. Now as in the fixed order model, at every tree
node at level k of the tree, the algorithm is considering some Iπ(k)

where this item is determined adaptively as in the adaptive priority
model.

3 Strongly adaptive pBT. Now each path in the tree is an adaptive
priority algorithm and the input item being considered at a node
depends on the path taken.

32 / 33

Some pBT results

We will state all results in terms of the required width of pBT algorithms
to obtain optimal solutions (or obtain a solution for a search problem).

For fixed m, any adaptive order pBT for weighted interval scheduling
on m machines requires width Ω(nm) which is a tight bound.

For the knapsack problem, any adaptive order pBT algoroithm

requires Ω(2n/2
√
n

) width (even for the proportional profit version of the

problem where vi = si for all i . The proportional profit knaosack
problem is refered to as the subset sum problem).

And fully adaptive pBT for 3SAT requires width 2Ωn. for problem of
returing a satisfying instance if one exists.

There are more results and other models of DP. These results sometimes
give some useful inapproximation results but mostly weak results.

33 / 33

