
CSC2420: Algorithm Design, Analysis and Theory
Fall 2017

Allan Borodin and Nisarg Shah

September 20, 2017

1 / 31

Lecture 2

Announcements:

I plan to have (tonight?) the first few questions for assignment 1.

Todays agenda:

Continue discussion of greedy algorithms

The priority model (which we briefly introduced in Lecture 1).

A few easy results and a few (perhaps) surprising results

A perspective on algorithm design and analysis

I When an algorithmic approach works for a given problem, we can ask if
that approach still is useful for a generalization of that problem?

I When an approach (provably) does not work for a problem, is there a
way to extend that approach?

2 / 31

Continuing the discussion of priority algorithms

We ended last week with some discussion of the priority framework for
modeling greedy and greedy-like algorithms. In particular, in our last slide
for Lecture 1, we said:

If we do not insist on greediness, then priority algorithms would best
have been called myopic algorithms.

We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).

The key concept is to indicate how the algorithm chooses the order in
which input items are considered. We cannot allow the algorithm to
choose say “an optimal ordering”.

We might be tempted to say that the ordering has to be determined
in polynomial time but that gets us into the “tarpit” of trying to
prove what can and can’t be done in (say) polynomial time.

3 / 31

The priority model definition

We take an information theoretic viewpoint in defining the orderings
we allow.

Lets first consider deterministic fixed order priority algorithms. Since I
am using this framework mainly to argue negative results (e.g. a
priority algorithm for the given problem cannot achieve a stated
approximation ratio), we will view the semantics of the model as a
game between the algorithm and an adversary.

Initially there is some (possibly infinite) set J of potential inputs.
The algorithm chooses a total ordering π on J . Then the adversary
selects a subset I ⊂ J of actual inputs so that I becomes the input
to the priority algorithm. The input items I1, . . . , In are ordered
according to π.

In iteration k for 1 ≤ k ≤ n, the algorithm considers input item Ik
and based on this input and all previous inputs and decisions (i.e.
based on the current state of the computation) the algorithm makes
an irrevocable decision Dk about this input item.

4 / 31

The fixed (order) priority algorithm template

J is the set of all possible input items
Decide on a total ordering π of J
Let I ⊂ J be the input instance
S := ∅ % S is the set of items already seen
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
I := I \ S
Ii := minπ{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}

end

Figure: The template for a fixed priority algorithm

5 / 31

Some comments on the priority model

A special (but usual) case is that π is determined by a function
f : J → < and and then ordering the set of actual input items by
increasing (or decreasing) values f (). (We can break ties by say using
the input identifier of the item to provide a total ordering of the input
set.) N.B. We make no assumption on the complexity or even the
computability of the ordering π or function f .
NOTE: Online algorithms are fixed order priority algorithms where the
ordering is given adversarially; that is, the items are ordered by the
input identifier of the item.
As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time (load) of any input item. (Some
inapproximation results can be easily modified to allow such global
information.)

6 / 31

The adaptive priority model template

J is the set of all possible input items
I is the input instance
S := ∅ % S is the set of items already considered
i := 0 % i = |S |
while I \ S 6= ∅ do

i := i + 1
decide on a total ordering πi of J
I := I \ S
Ii := min≤πi

{I ∈ I}
make an irrevocable decision Di concerning Ii
S := S ∪ {Ii}
J := J \ {I : I ≤πi Ii}
% some items cannot be in input set

end

Figure: The template for an adaptive priority algorithm

7 / 31

Inapproximations with respect to the priority model

Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been established with respect to priority
algorithms for a number of problems but for some problems much better
approximations can be established using extensions of the model.

1 For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportional weights vj = |fj − sj |), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

2 For the knapsack problem, no priority algorithm can achieve a
constant approximation. We note that the maximum of two greedy
algorithms (sort by value, sort by value/size) is a 2-approximation.

3 For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

4 As previously mentioned, for deterministic fixed order priority
algorithms, there is an Ω(logm/ log logm) inapproximation bound for
the makespan problem in the restricted machines model.

8 / 31

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be naturally viewed an
alternating sequence of actions;

The adversary eliminates some possible input items
The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset I of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm. Why?

Unless stated otherwise we usually analyze randomized algorithms (for any
type of algorithm) with respect to an oblivious adversary.

9 / 31

More on provable limitations of the priority model

The above mentioned inapproximations are with respect to deterministic
priority algorithms. For an adaptive algorithm, the game between an
algorithm and an adversary can conceptually be naturally viewed an
alternating sequence of actions;

The adversary eliminates some possible input items
The algorithm makes a decision for the item with highest priority and
chooses a new ordering for all possible remaining input items.

However, we note that for deterministic algorithms, since the adversary
knows precisely what the algorithm will do in each iteation, it could
initially set the input I once the algorithm is known.

For randomized algorithms, there is a difference between an oblivious
adversary that creates an initial subset I of items vs an adaptive adversary
that is playing the game adaptively reacting to each decision by the
algorithm. Why?

Unless stated otherwise we usually analyze randomized algorithms (for any
type of algorithm) with respect to an oblivious adversary.

9 / 31

Interval selection and greedy priority algorithms

To illustrate the limitations of greedy algorithms (as modeled by priority
algorithms), we consider the (weighted) interval selection problem. Here
we are given n intervals I1, . . . , In where intervals are given by Ij = [sj , fj).
Ij and Ik are conflicting if Ij ∩ Ik 6= ∅. (I use half closed, half open
intervals to indicate that we allow intervals to intersect just at an
endpoint.) Each interval Ij has a weight or value vj . The goal is to find a
subset of non-conflicting intervals so as to maximize the sum of the values
of the selected intervals.

It is well known that for the unweighted case (i.e., when vj = 1 for all j)
that the fixed order greedy priority algorithm Earliest Finishing Time
(EFT) is optimal.

10 / 31

Priority algorithms for one machine interval
selection continued

1 For proportional values (i.e., when vj = fj − sj for all j), the Longest
Processing Time (LPT) greedy algorithm achieves a 3-approximation
which can be proven by a charging argument. This is essentially the
best possible for any deterministic priority algorithm as shown onthe
following slide.
Note: Perhaps surprinsingly for m = 2 machines, there is a priority
2-approximation algorithm. This algorithm can be re-stated to
provide a randomized priority 2-approximation.

2 For arbitrary values {vj}, no deterministic priority algorithm can
achieve a constant approximation. More precisely, if we let δj =

vj
fj−sj

and ∆ =
maxj δj
minj δj

, then no deterministic priority algorithm can achieve

ratio better than ∆. The LPT algorithm yield a 3∆ approximation for
arbitrary profits.
Note: If mini δi and maxi δi are known then there is a randomized
priority O(log ∆) approximation.

11 / 31

A simple priority algorithm inapproximation for
proportional profit

The nemisis sequence consists of long and short jobs. The long jobs are
depicted in the figure. There is a small ε overlap between intervals on the
top and bottom. In addition for each long interval of length (= value) vi ,
there are three short intervals of length vi−2ε

3 included in that long
interval. The adversary will be able to create a subset of these intervals to
force a bound arbitrarily close to 3 (for sufficiently small ε and large q).308 A. Borodin, M. N. Nielsen, and C. Rackoff

Fig. 1. The “long jobs” from the worst case sequence for any priority algorithm for m = 1.

other long jobs by ε except for the two jobs at the end, which only overlap one long
job each (also by ε). Additionally, for each job Ji of size pi , the adversary gives three
non-intersecting short jobs of size (pi − 2ε)/3, all included within the interval of job Ji

and not intersecting the adjacent long jobs. The short jobs relating to job Ji will clearly
all fit together on one machine.

The algorithm assigns priorities to the jobs, and we claim that the job with the highest
priority, say J1, must be scheduled even though the algorithm is not greedy. If the first
job is not scheduled the algorithm will not be competitive on the sequence consisting
of J1 alone. The adversary changes the sequence such that all jobs not intersecting J1

are removed. The optimal algorithm will reject J1 and schedule all remaining jobs.
Depending on the size of job J1 there are four cases to consider:

• Case 1: J1 is a short job.
• Case 2: J1 has size = profit 1.
• Case 3: J1 has size j , for 1 < j < q .
• Case 4: J1 has size q.

If Case 1 occurs and the algorithm accepts a small job of profit = size (pi − 2ε)/3,
OPT will get a job of profit pi , and the ratio is at least pi/((pi − 2ε)/3).

If Case 2 occurs, OPT will get one long job of profit 2 and three small jobs with a
total profit 1− ε. The ratio is (2 + (1− ε))/1.

If Case 3 occurs, OPT will get two long jobs of profits j − 1 and j + 1 and three
small jobs with a total profit j − 2ε. The ratio is ((j − 1) + (j + 1) + (j − 2ε))/j .

If Case 4 occurs, OPT will get two jobs of profit q − 1 and small jobs with a total
profit q − 2ε. The ratio is (2(q − 1) + (q − 2ε))/q .

In all cases the ratio is arbitrarily close to 3 by making ε sufficiently small and q
sufficiently large.

COROLLARY 1. The lower bound of Theorem 3 holds even if the algorithm knows n in
advance. That is, the ordering and decision function of the algorithm can also depend
on n.

PROOF. The simplest idea would be to augment the set S used in the basic argument to
include sufficiently many copies of some small interval. This would essentially suffice
for greedy algorithms since we need only consider what the algorithm does on S, safely
ignoring the rather worthless small jobs. However, for non-greedy algorithms, the algo-
rithm can use the presence of these small jobs (giving them the highest priority) to infer
the true size of the input set and adjust its behavior accordingly. We take the following
approach. In the basic framework for Theorem 3, we have a 3-approximation lower
bound using a set S of potential inputs and the adversary uses at most six jobs (intervals)
in deriving this lower bound. In the lower bound for the new model, the adversary will

Figure: The long jobs in the nemesis input

The first interval (which must be selected) considered by the priority
algorithm will allow the adversary to remove enough items to force the
bound. There are four cases: I1 is a short interval, I1 has length 1, I1 has
length ` for 1 < ` < q, and I1 has length q.

12 / 31

Extensions of the priority order model

In discussing more general online frameworks, we already implicitly
suggested some extensions of the basic priority model (that is, the basic
model where we have one-pass and one irrevocable decision). The
following online or priority algorithm extensions can be made precise:

Decisions can be revocable to some limited extent or at some cost.
For example, we know that in the basic priority model we cannot
achieve a constant approximation for weighted interval scheduling.
However, if we are allowed to permanently discard previously accepted
intervals (while always maintaining a feasible solution), then we can
achieve a 4-approximation. (but provably not optimality).
While the knapsack problem cannot be approximated to within any
constant, we can achieve a 2-approximation by taking the maximum
of 2 greedy algorithms. More generally we can consider some “small”
number k of priority (or online) algorithms and take the best result
amongst these k algorithms. The partial enumeration greedy
algorithm for the makespan and knapsack problems are an example of
this type of extension.

13 / 31

Extensions of the priority order model continued

Closely related to the “best of k online” model is the concept of
online algoitthms with “advice”. (One could also study priority
algorithms with advice but that has not been done to my knowledge.)
There are two advice models, a model where one measures the
maximum number of advice bits per input item, and a model where
we are given some number ` of advice bits at the start of the
computation. The latter model is what I will mean by “online with
advice.” Online (resp. priority) with ` advice bits is equivalent to the
max of k = 2` online (resp. priority) model.

NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.
There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT model to be discussed later).

14 / 31

Extensions of the priority order model continued

Closely related to the “best of k online” model is the concept of
online algoitthms with “advice”. (One could also study priority
algorithms with advice but that has not been done to my knowledge.)
There are two advice models, a model where one measures the
maximum number of advice bits per input item, and a model where
we are given some number ` of advice bits at the start of the
computation. The latter model is what I will mean by “online with
advice.” Online (resp. priority) with ` advice bits is equivalent to the
max of k = 2` online (resp. priority) model.
NOTE: This model is a very permissive in that the advice bits can be
a function of the entire input. Of course, in practice we want these
advice bits to be “easily determined” (e.g., the number of input
items, or the ratio of the largest to smallest weight/value) but in
keeping with the information theoretic perspective of onine and
priority algorithms, one doesn’t impose any such restriction.
There are more general parallel priority based models than “best of k”
algorithms. Namely, parallel algorithms could be spawning or aborting
threads (as in the pBT model to be discussed later).

14 / 31

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.
Note: Poloczek and Williamson use this algorithm to produce excellent
results on realistic benchmarks.

2 There is a 3
5 approximation for bipartitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why?

What information should we allow to convey between passes?

15 / 31

Multipass algorithms

Another model that provides improved results is to allow multiple
passes (over the input items) rather than just one pass.

This is not a well studied model but there are two relatively new
noteworthy results that we will be discussing:

1 There is deterministic 3/4 approximation for weighted Max-Sat that is
achieved by two “online passes” (i.e., the input sequence is determined
by an adversary) over the input sequence whereas there is evidence
that no one pass deterministic online or priority algorithm can acheive
this ratio.
Note: Poloczek and Williamson use this algorithm to produce excellent
results on realistic benchmarks.

2 There is a 3
5 approximation for bipartitie matching that is achieved by

two online passes whereas no deterministic online or priority algorithm
can do asymptotically better than a 1

2 approximation.

It is not clear how best to formalize these multi-pass algorithms.
Why? What information should we allow to convey between passes?

15 / 31

Greedy algorithms for the set packing problem

One of the new areas in theoretical computer science is algorithmic game
theory and mechanism design and, in particular, auctions including what
are known as combinatorial auctions. The underlying combinatorial
problem in such auctions is the set packing problem.

The set packing problem

We are given n subsets S1, . . . ,Sn from a universe U of size m. In the
weighted case, each subset Si has a weight wi . The goal is to choose a
disjoint subcollection S of the subsets so as to maximize

∑
Si∈S wi . In the

s-set packing problem we have |Si | ≤ s for all i .

This is a well studied problem and by reduction from the max clique

problem, there is an m
1
2
−ε hardness of approximation assuming

NP 6= ZPP. For s-set packing with constant s ≥ 3, there is an
Ω(s/ log s) hardness of approximation assuming P 6= NP.
We will consider two “natural” greedy algorithms for the s-set
packing problem and a non obvious greedy algorithm for the set
packing problem. These greedy algorithms are all fixed order priority.16 / 31

The first natural greedy algorithm for set packing

Greedy-by-weight (Greedywt)

Sort the sets so that w1 ≥ w2 . . . ≥ wn.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the unweighted case (i.e. ∀i ,wi = 1), this is an online algorithm.

In the weighted (and hence also unweighted) case, greedy-by-weight
provides an s-approximation for the s-set packing problem.

The approximation bound can be shown by a charging argument
where the weight of every set in an optimal solution is charged to the
first set in the greedy solution with which it intersects.

17 / 31

The second natural greedy algorithm for set packing

Greedy-by-weight-per-size

Sort the sets so that w1/|S1| ≥ w2/|S2| . . . ≥ wn/|Sn|.
S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

In the weighted case, greedy-by-weight provides an s-approximation
for the s-set packing problem.
For both greedy algorithms, the approximation ratio is tight; that is,
there are examples where this is essentially the approximation. In
particular, these algorithms only provide an m-approximation where
m = |U|.
We usually assume n >> m and note that by just selecting the set of
largest weight, we obtain an n-approximation. So the goal is to do
better than min{m, n}.

18 / 31

Improving the approximation for set packing

In the unweighted case, greedy-by-weight-per-size can be restated as
sorting so that |S1| ≤ |S2| . . . ≤ |Sn| and it can be shown to provide
an
√
m-approximation for unweighted set packing.

On the other hand, greedy-by-weight-per-size does not improve the
m-approximation for weighted set packing.

Greedy-by-weight-per-squareroot-size

Sort the sets so that w1/
√
|S1| ≥ w2/

√
|S2| . . . ≥ wn/

√
|Sn|.

S := ∅
For i : 1 . . . n

If SI does not intersect any set in S then
S := S ∪ Si .

End For

Theorem: Greedy-by-weight-per-squareroot-size provides a
2
√
m-approximation for the set packing problem. And as noted earlier, this

is asymptotically the best possible approximation assuming NP 6= ZPP.
19 / 31

Another way to obtain an O(
√
m) approximation

There is another way to obtain the same aysmptototic improvement for
the weighted set packing problem. Namely, we can use the idea of partial
enumeration greedy; that is somehow combining some kind of brute force
(or naive) approach with a greedy algorithm.

Partial Enumeration with Greedy-by-weight (PGreedyk)

Let Maxk be the best solution possible when restricting solutions to those
containing at most k sets. Let G be the solution obtained by Greedywt
applied to sets of cardinality at most

√
m/k . Set PGreedyk to be the best

of Maxk and G .

Theorem: PGreedyk achieves a 2
√

m/k-approximation for the
weighted set packing problem (on a universe of size m)

In particular, for k = 1, we obtain a 2
√
m approximation and this can

be improved by an arbitrary constant factor
√
k at the cost of the

brute force search for the best solution of cardinality k ; that is, at the
cost of say nk .

20 / 31

(k + 1)-claw free graphs: generalizing s-set packing

A graph G = (V ,E) is (k + 1)-claw free if for all v ∈ V , the induced
subgraph of Nbhd(v) has at most k independent vertices (i.e. does not
have a k + 1 claw as an induced subgraph).

(k + 1)-claw free graphs abstract a number of interesting applications.

In particular, we are interested in the (weighted) maximum
independent set problem (W)MIS for (k + 1)-claw free graphs. Note
that it is hard to approximate the MIS for an arbiitrary n node graph
to within a factor n1−ε for any ε > 0.

We can (greedily) k-approximate WMIS for (k + 1)-claw free graphs.

The (weighted) s-set packing problem is an instance of (W)MIS on
s + 1-claw free graphs. What algorithms generalize?

There are many types of graphs that are k + 1 claw free for small k;
in particular, the intersection graph of translates of a convex object in
the two dimensional plane is a 6-claw free graph. For rectangles, the
intersection graph is 5-claw free.

21 / 31

Vertex cover: where (again) the “natural greedy” is
not best

We consider another example (weighted vertex cover) where the
“natural greedy algorithm” does not yield a good approximation.
The vertex cover problem: Given node weighted graph G = (V ,E),
with node weights w(v), v ∈ V .
Goal: Find a subset V ′ ⊂ V that covers the edges (i.e.
∀e = (u, v) ∈ E , either u or v is in V ′) so as to mininize

∑
v∈V ′ w(v).

Even for unweighted graphs, the problem is known to be NP-hard to
obtain a 1.3606 approximation and under another (not so universally
believed) conjecture (UGC) one cannot obtain a 2− ε approximation.
For the unweighted problem, there are simple 2-approximation greedy
algorithms such as just taking V ′ to be any maximal matching.
The set cover problem is as follows: Given a weighted collection of
sets S = {S1, S2, . . . ,Sm} over an n element universe U with set
weights w(Si).
Goal: Find a subcollection S ′ that covers the universe so as to
minimize

∑
Si∈S′ w(Si). 22 / 31

The natural greedy algorithm for weighted set cover

Natural greedy algorithm for set cover

S ′ = ∅
While there are uncovered elements in the universe U

Let j = argmini{w(Si)/|Si ∩ U|
S ′ = S ′ ∪ {Si}
U = U \ {Si}

End While

The set cover problem is one of the first NP-complete problems.

Johnson[1974] and Lovasz[1975] independently showed that this
natural greedy provides a H(n) ≈ ln n approximation for the
unweighted case. This was extended by Chvatal[1979] to the
weighted case.

Under a reasonable complexity assumption, Feige[1979] showed that
it was not possile to acheive a (1− ε) ln n approximation even for the
unweighted case.

23 / 31

The natural greedy algorithm for weighted vertex
cover (WVC)

If we consider vertex cover as a special case of set cover (how?), then the
natural greedy (which is essentially optimal for set cover) becomes the
following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure: Natural greedy algorithm for weighted vertex cover. Approximation ratio
Hn ≈ ln n where n = |V |.

24 / 31

Clarkson’s [1983] modified greedy for WVC

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

w ′(v) := w(v) for all v ∈ V
% w ′(v) will be the residual weight of a node

While there are uncovered edges
Let v be the node minimizing w ′(v)/d ′(v)
w :=w ′(v)/d ′(v)
w ′(u) :=w ′(u)− w for all u ∈ Nbhd(v)

% For analysis only, set we(u, v) = w
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd(v)

End While

Figure: Clarkson’s greedy algorithm for weighted vertex cover. Approximation
ratio 2. Invariant: w(v) = w ′(v) + sume∈Ewe(e)

25 / 31

Extending problems and extending the priority
paradigm

Now that we know that for arbitrary profits priority algorithms cannot
achieve a constant approximation for the weighted interval selection
problem (WISP), lets return to ways to extend the model and the problem.

The interval selection problem is a packng problem so that any subset of a
feasible solution is a feasible solution.

We already mentioned priority algorithms with revocable acceptances
which can be used for any packing problem and in particular yields a
constant approximation of WISP and also to the following NP-hard
generalization of the WISP problem.

The (weighted) job interval selection problem WJISP

A job is a set of intervals. In addition to the start and finishing times of
each interval, we will say that intervals belong to exactly one job. A
feasible set of intervals are non-intersecting (as in WISP) and there is at
most one interval per job.

26 / 31

The Greedyα algorithm for WJISP

The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S s.t. (S/Ci) ∪ {Ii} feasible
if v(Ci) ≤ α · v(Ii) then

S := (S/Ci) ∪ {Ii}
end if

END FOR

Figure: Priority algorithm with revocable acceptances for WJISP

The Greedyα algorithm (which is not greedy by my definition) has a tight
approximation ratio of 1

α(1−α) for WISP and 2
α(1−α) for WJISP.

27 / 31

Priority Stack Algorithms

For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is insure the minimality of the
solution; that is, while popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.

28 / 31

Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence is chordal) by ordering the intervals such that
f1 ≤ f2 . . . ≤ fn. Using this ordering we know that there is a greedy (i.e.
priority) algorithm that optimally selects a maximum size set of non
intersecting intervals. The same algorithm (and proof by charging
argument) using a PEO for any chordal graph optimally solves the
unweighted MIS problem. The following priority stack algorithm provides
an optimal solution for the WMIS problem on chordal graphs.

29 / 31

The optimal priority stack algorithm for the
weighted max independent set problem (WMIS) in
chordal graphs

Stack := ∅ % Stack is the set of items on stack
Sort nodes as in a PEO.
For i = 1..n

Ci := nodes on stack that are adjacent to vi
If w(vi) > w(Ci) then push vi onto stack, else reject

End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure: Priority stack algorithm for chordal WMIS
30 / 31

A k-PEO and inductive k-independent graphs

An alternative way to describe a PEO is to say that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number 1.

We can generalize this to a k-PEO by saying that
Nbhd(vi) ∩ vi+1, . . . , vn} has independence number at most k .

We will say that a graph is an inductive k-independent graph if it has
a k-PEO.

Inductive k-independent graphs generalize both chordal graphs and
k + 1-claw free graphs.

The intersection graph induced by the JISP problem is an inductive
2-independent graph.

Using a k-PEO, a fixed-order priority algorithm (resp. a priority stack
algorithm) is a k-approximation algorithm for MIS (resp. for WMIS)
wrt inductive k-independent graphs.

31 / 31

