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A little bit of game theory



Recap: Yao’s Minimax Principle
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• Let 𝑅 and 𝐷 denote randomized and deterministic 
algorithms.

• Let 𝐹 denote a distribution over instances.

• Let 𝐶(⋅,⋅) denote the running time of an algorithm 
on an input.

• Then Yao’s principle says that:

min𝑅 max𝐼 𝐸𝑅[𝐶(𝑅, 𝐼)] = max𝐹 min𝐷 𝐸𝐼~𝐹 [𝐷, 𝐼]



von-Neumann’s Minimax Theorem
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• Generalizes Yao’s minimax principle

• A game between two players
➢ There is a matrix 𝐴.

➢ The row player (𝑅) selects a row, and the column player
(𝐶) selects a column. 

➢ The result is the value of the chosen cell.

➢ 𝑅 wants to maximize the value, while 𝐶 wants to 
minimize the value.

➢ Each player’s strategy can be a distribution over actions.

➢ In a Nash equilibrium, each player is playing an optimal 
strategy given the strategy of the other player.



von-Neumann’s Minimax Theorem
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• Let 𝑥𝑅 and 𝑥𝐶 denote strategies of the players.

• Let 𝑣 denote the final value.

• 𝑅 can guarantee: 𝑉 ≥ 𝑉𝑅 = max𝑥1
min𝑥2

𝐴(𝑥1, 𝑥2).

• 𝐶 can guarantee: 𝑉 ≤ 𝑉𝐶 = min𝑥2
max𝑥1

𝐴(𝑥1, 𝑥2).

• Then 𝑉𝑅 ≤ 𝑉𝐶 (WHY?)

➢ Thus, we have that: 

max𝑥1
min𝑥2

𝐴 𝑥1, 𝑥2 ≤ min𝑥2
max𝑥1

𝐴(𝑥1, 𝑥2)

➢ Can it be that 𝑉𝑅 < 𝑉𝐶?



von-Neumann’s Minimax Theorem
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• Theorem [von Neumann]: 

max𝑥1
min𝑥2

𝐴 𝑥1, 𝑥2 = min𝑥2
max𝑥1

𝐴(𝑥1, 𝑥2)

• Interpretations
➢ “It does not matter which player goes first.”
➢ “Playing my safe strategy is optimal if the other player is 

also playing his safe strategy.”
➢ Just a statement that holds for any matrix 𝐴

• Yao’s principle: 
➢ Columns = deterministic algorithms
➢ Rows = problem instances
➢ Cell values = running times



Minimax via Regret Learning

CSC2420 - Allan Borodin & Nisarg Shah 7

• We want to show:
𝑉𝑅 = max𝑥1

min𝑥2
𝐴(𝑥1, 𝑥2)

𝑉𝐶 = min𝑥2
max𝑥1

𝐴(𝑥1, 𝑥2)

𝑉𝑅 = 𝑉𝐶

• We know about Randomized Weighted Majority:

𝑀(𝑇) ≤ 1 + 𝜂 ⋅ 𝑚𝑖
𝑇

+ 2 ⋅ (log 𝑛/𝜂)

➢ Setting 𝜂 = Τlog 𝑛 𝑇

𝑀(𝑇) ≤ 𝑚𝑖
𝑇

+ 2 𝑇 ⋅ log 𝑛



Minimax via Regret Learning
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• Scale the values so that they’re in [0,1].

• Suppose for contradiction 𝑉𝑅 = 𝑉𝐶 − 𝛿, 𝛿 > 0.
➢ If 𝐶 commits first, there is a row guaranteeing 𝑉 ≥ 𝑉𝐶 .

➢ If 𝑅 commits first, there is a column guaranteeing 𝑉 ≤ 𝑉𝑅.

➢ WHY?

• Suppose 𝑅 uses RWM, and 𝐶 responds optimally to 
the current mixed strategy.



Minimax via Regret Learning
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• After 𝑇 iterations:

➢ 𝑉 ≥ best row in hindsight − 2 𝑇 ⋅ log 𝑛

➢ Best row in hindsight ≥ 𝑇 ⋅ 𝑉𝐶

➢ 𝑉 ≤ 𝑇 ⋅ 𝑉𝑅

• Thus: 𝑇 ⋅ 𝑉𝑅 ≥ 𝑇 ⋅ 𝑉𝐶 − 2 𝑇 ⋅ log 𝑛

• 𝛿𝑇 ≤ 2 𝑇 ⋅ log 𝑛, which false for large enough 𝑇.

• QED!
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A little bit of fair division



Cake-Cutting
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• A heterogeneous, divisible good
➢ Heterogeneous: it may be valued 

differently by different individuals

➢ Divisible: we can share/divide 
it between individuals

• Represented as [0,1]
➢ Almost without loss of generality

• Set of players 𝑁 = {1, … , 𝑛}

• Piece of cake 𝑋 ⊆ [0,1]
➢ A finite union of disjoint intervals 



Agent Valuations
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• Each player 𝑖 has a valuation 𝑉𝑖 that is very much 
like a probability distribution over [0,1]

• Additive: For 𝑋 ∩ 𝑌 = ∅,
𝑉𝑖 𝑋 + 𝑉𝑖 𝑌 = 𝑉𝑖 𝑋 ∪ 𝑌

• Normalized: 𝑉𝑖 0,1 = 1

• Divisible: ∀𝜆 ∈ [0,1] and 𝑋,
∃𝑌 ⊆ 𝑋 s.t. 𝑉𝑖 𝑌 = 𝜆𝑉𝑖(𝑋)

𝛼

𝜆𝛼

𝛼 β

β𝛼 + 𝛽



Fairness Goals
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• An allocation is a disjoint partition 𝐴 = (𝐴1, … , 𝐴𝑛)
of the cake

• We desire the following fairness properties from 
our allocation 𝐴:

• Proportionality (Prop):

∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥
1

𝑛
• Envy-Freeness (EF):

∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖(𝐴𝑗)



Fairness Goals
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• Prop: ∀𝑖 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛

• EF: ∀𝑖, 𝑗 ∈ 𝑁: 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗

• Question: What is the relation between 
proportionality and EF?
1. Prop ⇒ EF

2. EF ⇒ Prop

3. Equivalent

4. Incomparable



CUT-AND-CHOOSE
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• Algorithm for 𝑛 = 2 players

• Player 1 divides the cake into two pieces 𝑋, 𝑌 s.t.
𝑉1 𝑋 = 𝑉1 𝑌 = Τ1 2

• Player 2 chooses the piece she prefers.

• This is EF and therefore proportional.
➢ Why?



Input Model
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• How do we measure the “complexity” of a cake-
cutting protocol for 𝑛 players?

• Typically, running time is a function of the length of 
input encoded in binary.

• Our input consists of functions 𝑉𝑖, which need 
infinite bits of encoding.

• We need an oracle model.



Robertson-Webb Model
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• We restrict access to valuations 𝑉𝑖’s through two 
types of queries:
➢ Eval𝑖(𝑥, 𝑦) returns 𝑉𝑖 𝑥, 𝑦

➢ Cut𝑖(𝑥, 𝛼) returns 𝑦 such that 𝑉𝑖 𝑥, 𝑦 = 𝛼

𝑥 𝑦

𝛼eval output

cut output



Robertson-Webb Model
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• Two types of queries:
➢ Eval𝑖 𝑥, 𝑦 = 𝑉𝑖 𝑥, 𝑦

➢ Cut𝑖 𝑥, 𝛼 = 𝑦 s.t. 𝑉𝑖 𝑥, 𝑦 = 𝛼

• Question: How many queries are needed to find an 
EF allocation when 𝑛 = 2?

• Answer: 2
➢ Why?



DUBINS-SPANIER
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• Protocol for finding a proportional allocation for 𝑛
players

• Referee starts at 0, and continuously moves knife 
to the right.

• Repeat: when piece to the left of knife is worth 
1/𝑛 to a player, the player shouts “stop”, gets the 
piece, and exits.

• The last player gets the remaining piece.



DUBINS-SPANIER
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1/3 1/3 ≥ 1/3



DUBINS-SPANIER
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• Moving knife is not really needed.

• At each stage, we can ask each remaining player a 
cut query to mark his 1/𝑛 point in the remaining 
cake.

• Move the knife to the leftmost mark.



DUBINS-SPANIER
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DUBINS-SPANIER

CSC2420 - Allan Borodin & Nisarg Shah 23

Τ1 3



DUBINS-SPANIER
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Τ1 3 Τ1 3



DUBINS-SPANIER
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Τ1 3 Τ1 3 ≥ Τ1 3



DUBINS-SPANIER

CSC2420 - Allan Borodin & Nisarg Shah 26

• Question: What is the complexity of the Dubins-
Spanier protocol in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log 𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛



EVEN-PAZ
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• Input: Interval [𝑥, 𝑦], number of players 𝑛
➢ Assume 𝑛 = 2𝑘 for some 𝑘

• If 𝑛 = 1, give [𝑥, 𝑦] to the single player.

• Otherwise, let each player 𝑖 mark 𝑧𝑖 s.t.

𝑉𝑖 𝑥, 𝑧𝑖 =
1

2
𝑉𝑖 𝑥, 𝑦

• Let 𝑧∗ be the 𝑛/2 mark from the left.

• Recurse on [𝑥, 𝑧∗] with the left 𝑛/2 players, and on 
[𝑧∗, 𝑦] with the right 𝑛/2 players.



EVEN-PAZ
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EVEN-PAZ

CSC2420 - Allan Borodin & Nisarg Shah 29

• Theorem: EVEN-PAZ returns a Prop allocation.

• Proof:
➢ Inductive proof. We want to prove that if player 𝑖 is 

allocated piece 𝐴𝑖 when [𝑥, 𝑦] is divided between 𝑛
players, 𝑉𝑖 𝐴𝑖 ≥ Τ1 𝑛 𝑉𝑖 𝑥, 𝑦
o Then Prop follows because initially 𝑉𝑖 𝑥, 𝑦 = 𝑉𝑖 0,1 = 1

➢ Base case: 𝑛 = 1 is trivial.

➢ Suppose it holds for 𝑛 = 2𝑘−1. We prove for 𝑛 = 2𝑘.

➢ Take the 2𝑘−1 left players. 
o Every left player 𝑖 has 𝑉𝑖 𝑥, 𝑧∗ ≥ Τ1 2 𝑉𝑖 𝑥, 𝑦

o If it gets 𝐴𝑖, by induction, 𝑉𝑖 𝐴𝑖 ≥
1

2𝑘−1 𝑉𝑖 𝑥, 𝑧∗ ≥
1

2𝑘 𝑉𝑖 𝑥, 𝑦



EVEN-PAZ
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• Question: What is the complexity of the Even-Paz 
protocol in the Robertson-Webb model?

1. Θ 𝑛

2. Θ 𝑛 log 𝑛

3. Θ 𝑛2

4. Θ 𝑛2 log 𝑛



Complexity of Proportionality
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• Theorem [Edmonds and Pruhs, 2006]: Any 
proportional protocol needs Ω(𝑛 log 𝑛) operations 
in the Robertson-Webb model.

• Thus, the EVEN-PAZ protocol is (asymptotically) 
provably optimal!



Envy-Freeness?
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• “I suppose you are also going to give such cute 
algorithms for finding envy-free allocations?”

• Bad luck. For 𝑛-player EF cake-cutting:
➢ [Brams and Taylor, 1995] give an unbounded EF protocol.

➢ [Procaccia 2009] shows Ω 𝑛2 lower bound for EF.

➢ Last year, the long-standing major open question of 
“bounded EF protocol” was resolved!

➢ [Aziz and Mackenzie, 2016]: 𝑂(𝑛𝑛𝑛𝑛𝑛𝑛

) protocol!
o Yes, it’s not a typo. Go figure!



Indivisible Goods
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• Goods cannot be shared / divided among players
➢ E.g., house, painting, car, jewelry, …

• Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting
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8 7 20 5

9 11 12 8

9 10 18 3

We assume additive values. So, e.g., 𝑉 , = 8 + 7 = 15

Given such a matrix of numbers, assign each good to a player.



8 7 20 5

9 11 12 8

9 10 18 3

Example Allocation
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Indivisible Goods
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• Envy-freeness up to one good (EF1): 

∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}

➢ If 𝐴𝑗 = ∅, then we treat this to be true.

➢ “If 𝑖 envies 𝑗, there must be some good in 𝑗’s bundle such 
that removing it would make 𝑖 envy-free of 𝑗.”

• Does there always exist an EF1 allocation?



EF1
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• Yes! We can use Round Robin.

➢ Agents take turns in cyclic order: 1,2, … , 𝑛, 1,2, … , 𝑛, …

➢ In her turn, an agent picks the good she likes the most 
among the goods still not picked by anyone.

• Observation: This always yields an EF1 allocation.
➢ Informal proof on the board.



Efficient?
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• Sadly, a round robin allocation can be suboptimal 
in the following strong sense:
➢ It may be possible to redistribute the items to make 

everyone happier!

• Pareto optimality (PO):
➢ We say that an allocation 𝐴 is Pareto optimal if there 

exists no allocation 𝐵 such that 
o 𝑉𝑖 𝐵𝑖 ≥ 𝑉𝑖(𝐴𝑖) for all 𝑖, and 

o 𝑉𝑖∗ 𝐵𝑖∗ > 𝑉𝑖∗(𝐴𝑖∗) for some 𝑖∗.



EF1+PO?
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• Does there always exist an allocation that is 
EF1+PO?

• Theorem [Caragiannis et al. ‘16]:
➢ The MNW allocation argmax𝐴 ς𝑖∈𝑁 𝑉𝑖 𝐴𝑖 is EF1 + PO.

➢ Subtle note: If all allocations have zero Nash welfare:
o Step 1: Call 𝑆 ⊆ 𝑁 to be “feasible” if there is an allocation under 

which every player in 𝑆 has a positive utility. Let 𝑆∗ be a feasible 
set that has the maximum cardinality among all feasible sets.

o Step 2: Choose argmax𝐴 ς𝑖∈𝑆∗ 𝑉𝑖 𝐴𝑖



8 7 20 5

9 11 12 8

9 10 18 3

MNW Allocation: the maximum product is
20 * (11+8) * 9 = 3420
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MNW Allocation
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• MNW ⇒ PO is trivial (WHY?)

• MNW ⇒ EF1 (when 𝑆∗ = 𝑁):
➢ Transferring good 𝑔 ∈ 𝐴𝑗 to 𝐴𝑖 should not increase Nash 

welfare.

∀𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 + 𝑔 ⋅ 𝑉𝑗 𝐴𝑗 − 𝑔 ≤ 𝑉𝑖 𝐴𝑖 ⋅ 𝑉𝑗 𝐴𝑗

∀𝑔 ∈ 𝐴𝑗 ∶
𝑉𝑗 𝑔

𝑉𝑗 𝐴𝑗

≥
𝑉𝑖 𝑔

𝑉𝑖 𝐴𝑖 + 𝑔
≥

𝑉𝑖 𝑔

𝑉𝑖(𝐴𝑖 + 𝑔∗)

➢ where 𝑔∗ = argmax𝑔∈𝐴𝑗
𝑉𝑖(𝑔)

➢ Now take sum over 𝑔 ∈ 𝐴𝑗…

⇔



Computation
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• Computing the MNW allocation is strongly NP-hard

• Open Question: Can we compute an EF1+PO 
allocation in polynomial time? 
➢ Not sure. 

➢ A recent paper gives a pseudo-polynomial time algorithm.
o Polynomial time if the values are at most polynomial.



Stronger Fairness
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• Open Question: Does there always exist an EFx
allocation?

• EF1: ∀𝑖, 𝑗 ∈ 𝑁, ∃𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Intuitively, 𝑖 doesn’t envy 𝑗 if she gets to remove her most 

valued item from 𝑗’s bundle.

• EFx: ∀𝑖, 𝑗 ∈ 𝑁, ∀𝑔 ∈ 𝐴𝑗 ∶ 𝑉𝑖 𝐴𝑖 ≥ 𝑉𝑖 𝐴𝑗\{𝑔}
➢ Subtle note: Either we need to assume strictly positive 

values, or change this to “∀𝑔 ∈ 𝐴𝑗 s.t. 𝑉𝑖 𝑔 > 0”.

➢ Intuitively, 𝑖 should’t envy 𝑗 even if she removes her least 
positively valued item from 𝑗’s bundle.



Stronger Fairness
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• To clarify the difference between EF1 and EFx:
➢ Suppose there are two players and three goods with 

values as follows.

➢ If you give {A} → P1 and {B,C} → P2, it’s EF1 but not EFx.
o EF1 because if P1 removes C from P2’s bundle, all is fine.

o Not EFx because removing B doesn’t eliminate envy.

➢ Instead, {A,B} → P1 and {C} → P2 would be EFx.

A B C

P1 5 1 10

P2 0 1 10



Other Fairness Notions
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• Maximin Share Guarantee
➢ 𝑀𝑀𝑆𝑖 = max 𝐵1,…,𝐵𝑛

min𝑘 𝑉𝑖(𝐵𝑘)
o “If I divide the items into 𝑛 bundles, but get the worst bundle, how much 

can I guarantee myself?”

➢ 𝛼 −MMS allocation: 𝑉𝑖 𝐴𝑖 ≥ 𝛼 ⋅ 𝑀𝑀𝑆𝑖 for every 𝑖

• Theorem [Procaccia, Wang ‘14]: 
➢ There exists an instance on which no MMS allocation exists. 

Τ2
3 −MMS always exists.

o It can be computed in polynomial time [Amanatidis et al. ‘15]

• Theorem [Ghodsi et al. ‘17]:
➢ Τ3

4 −MMS always exists, and can be computed in polytime.

• MNW gives exactly 
2

1+ 4𝑛−3
−MMS.
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CSC2556 : Algorithms for 
Group Decision Making

(a.k.a. Computational Social Choice)


