Lecture 12

Applications to
Algorithmic Game Theory &
Computational Social Choice
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A little bit of game theory
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Recap: Yao's Minimax Principle

e Let R and D denote randomized and deterministic
algorithms.

e Let ' denote a distribution over instances.

* Let C(+,-) denote the running time of an algorithm
on an input.

* Then Yao’s principle says that:

ming max; ERr[C(R,I)] = maxy minp E;_p |D, ]
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von-Neumann’'s Minimax Theorem

* Generalizes Yao’s minimax principle

* A game between two players
> There is a matrix A.

> The row player (R) selects a row, and the column player
(C) selects a column.

> The result is the value of the chosen cell.

> R wants to maximize the value, while C wants to
minimize the value.

> Each player’s strategy can be a distribution over actions.

> In a Nash equilibrium, each player is playing an optimal
strategy given the strategy of the other player.
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von-Neumann’'s Minimax Theorem

* Let xp and x. denote strategies of the players.

* Let v denote the final value.

* R can guarantee: V' = I/ = max, min,, A(xy, x3).
* C can guarantee: V' < V; = min,, max, A(xy,x;).
* ThenVp <V, (WHY?)

> Thus, we have that:

max, min, A(xy,x;) < min, max, A(xy,x;)

» Canitbethat Vp < V7

CSC2420 - Allan Borodin & Nisarg Shah 5



von-Neumann’'s Minimax Theorem

* Theorem [von Neumann]:
max, min, A(xy,x;) = min, max, A(x,x;)

* Interpretations
> “It does not matter which player goes first.”

> “Playing my safe strategy is optimal if the other player is
also playing his safe strategy.”

> Just a statement that holds for any matrix A

* Yao’s principle:
» Columns = deterministic algorithms
» Rows = problem instances
> Cell values = running times
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Minimax via Regret Learning

* We want to show:
Vg = max, min,, A(xq,X2)
Ve = min, max, A(xq,x2)
Vp =V,

* We know about Randomized Weighted Majority:
M® < (1 +n)-mi" +2- (logn/n)

> Settingn = \/logn/T
MT < mlm +2,/T -logn
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Minimax via Regret Learning

* Scale the values so that they’re in [0,1].

* Suppose for contradiction V, =V, — 6,6 > 0.
> If C commits first, there is a row guaranteeing V> 1.

» If R commits first, there is a column guaranteeing V < Vp.
> WHY?

e Suppose R uses RWM, and C responds optimally to
the current mixed strategy.
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Minimax via Regret Learning

* After T iterations:
> V = best row in hindsight — 2,/T - logn
» Best row in hindsight = T - V.
»V <T-Vq

* Thus: T - Vg =T -V —2,/T -logn
¢ 0T < 2\/T - log n, which false for large enough T.
 QED!
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A little bit of fair division

CSC2420 - Allan Borodin & Nisarg Shah



Cake-Cutting

* A heterogeneous, divisible good

> Heterogeneous: it may be valued
differently by different individuals

> Divisible: we can share/divide
it between individuals

* Represented as [0,1]
> Almost without loss of generality

* Set of players N = {1, ..., n}
* Piece of cake X < [0,1]

> A finite union of disjoint intervals
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Agent Valuations

* Each player i has a valuation V; that is very much
like a probability distribution over [0,1]

e Additive: ForX NnY = @,
ViiX)+ Vi (V) =V (XUY)

* Normalized: V;(]0,1]) = 1

* Divisible: VA € [0,1] and X,
JY € X s.t. V;(YV) = AV;(X)
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Fairness Goals

* An allocation is a disjoint partition A = (44, ..., 4,,)
of the cake

* We desire the following fairness properties from
our allocation A:

» Proportionality (Prop):

1
Vi € N: VL(AL) = %

* Envy-Freeness (EF):
Vl,] EN: Vl(Al) > VL(A])
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Fairness Goals

* Prop: Vi € N:V;(4;) = 1/n
* EF: Vi, j € N:V;(4;) = V;(4))

e Question: What is the relation between
proportionality and EF?

1. Prop = EF

(2 EF= Prop
3. Equivalent

4. Incomparable
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CUT-AND-CHOOSE

e Algorithm for n = 2 players

Vi(X) =V (Y) =1/2

* Player 2 chooses the piece she prefers.

.

(o Player 1 divides the cake into two pieces X, Y s.t. A

J

* This is EF and therefore proportional.
> Why?
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Input Model

* How do we measure the “complexity” of a cake-
cutting protocol for n players?

e Typically, running time is a function of the length of
input encoded in binary.

* Our input consists of functions V;, which need
infinite bits of encoding.

 We need an oracle model.
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Robertson-Webb Model

* We restrict access to valuations V;’s through two
types of queries:

> Eval; (x, y) returns V;([x, y])
> Cut;(x, a) returns y such that V;(|x, y]) = «

eval output —— u

I

X y cut output
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Robertson-Webb Model

* Two types of queries:

> Evali(x) y) — Vi([x) y])
» Cut;(x,a) =y s.t. Vi(|x,y]) =«

* Question: How many queries are needed to find an
EF allocation whenn = 27?

e Answer: 2
> Why?
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DUBINS-SPANIER

* Protocol for finding a proportional allocation for n
players

KReferee starts at 0, and continuously moves knife\
to the right.

* Repeat: when piece to the left of knife is worth
1/n to a player, the player shouts “stop”, gets the
piece, and exits.

(I'he last player gets the remaining piece. J
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DUBINS-SPANIER

)
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DUBINS-SPANIER

* Moving knife is not really needed.

* At each stage, we can ask each remaining player a
cut query to mark his 1/n point in the remaining
cake.

* Move the knife to the leftmost mark.
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DUBINS-SPANIER

3 3
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DUBINS-SPANIER
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DUBINS-SPANIER
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DUBINS-SPANIER
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DUBINS-SPANIER

* Question: What is the complexity of the Dubins-
Spanier protocol in the Robertson-Webb model?

1. O(n)

2. O(nlogn)
(3) O(n?)

1. ©(n?logn)
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EVEN-PAZ

ﬁnput: Interval [x, y], number of players n \
> Assume n = 2% for some k

* If n =1, give |x, y] to the single player.

* Otherwise, let each player i mark z; s.t.
1
Vi, ) = 5 Vi, 1)

* Let z* be the n/2 mark from the left.
* Recurse on |x, z"| with the left n/2 players, and on

\[z*,y] with the right n/2 players. J
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EVEN-PAZ
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EVEN-PAZ

* Theorem: EVEN-PAZ returns a Prop allocation.

* Proof:

> Inductive proof. We want to prove that if player i is
allocated piece A; when [x, y] is divided between n

players, V;(4;) = (1/n)V;([x, y])
o Then Prop follows because initially V;([x, y]) = V;([0,1]) =1

> Base case: n = 1 is trivial.
> Suppose it holds for n = 2%~1, We prove for n = 2*.
> Take the 2%~1 |eft players.
o Every left player i has V;([x,z*]) = (1/2) V;([x, y])
o If it gets 4;, by induction, V;(4;) = zk_l—l Vi([x,z*]) = zik V:([x,y])
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EVEN-PAZ

e Question: What is the complexity of the Even-Paz
protocol in the Robertson-Webb model?

1. O(n)
(2) O(nlogn)
3. O(n?)

1. ©(n?logn)
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Complexity of Proportionality

* Theorem [Edmonds and Pruhs, 2006]: Any
proportional protocol needs ((n logn) operations
in the Robertson-Webb model.

* Thus, the EVEN-PAZ protocol is (asymptotically)
provably optimall
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Envy-Freeness?

* “| suppose you are also going to give such cute
algorithms for finding envy-free allocations?”

* Bad luck. For n-player EF cake-cutting:
> [Brams and Taylor, 1995] give an unbounded EF protocol.
> [Procaccia 2009] shows Q(n?) lower bound for EF.
> Last year, the long-standing major open question of
“bounded EF protocol” was resolved!

n
nTL

> [Aziz and Mackenzie, 2016]: O(n™ ) protocol!
o Yes, it’s not a typo. Go figure!
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Indivisible Goods

* Goods cannot be shared / divided among players
> E.g., house, painting, car, jewelry, ...

* Problem: Envy-free allocations may not exist!

N

;
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Indivisible Goods: Setting

\/
Y
ﬁ';‘}‘:

e & oo\
Hon K2l

7/ 20 5

11 12 3

10 18 3

3 6 I

Given such a matrix of numbers, assign each good to a player.
We assume additive values. So, e.g., Va({H ,=}) =8+ 7 =15
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Example Allocation
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Indivisible Goods

* Envy-freeness up to one good (EF1):
Vi,j € N,3g € 4; : V;(4) = V;(4,\{g})

> If A; = @, then we treat this to be true.

> “If i envies j, there must be some good in j’s bundle such
that removing it would make i envy-free of j.”

* Does there always exist an EF1 allocation?
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EF1

* Yes! We can use Round Robin.
> Agents take turns in cyclicorder: 1,2, ...,n,1,2, ..., n, ...

> In her turn, an agent picks the good she likes the most
among the goods still not picked by anyone.

* Observation: This always yields an EF1 allocation.
> Informal proof on the board.
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Efficient?

 Sadly, a round robin allocation can be suboptimal
in the following strong sense:

> It may be possible to redistribute the items to make
everyone happier!

* Pareto optimality (PO):
> We say that an allocation A is Pareto optimal if there
exists no allocation B such that
o V;(B;) = V;(4;) for all i, and
o Vi=(B;+) > Vi«(A;+) for some i”.
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EF1+PO?

* Does there always exist an allocation that is
EF1+PO?

* Theorem [Caragiannis et al. ‘16]:
» The MNW allocation argmax, [1;eny Vi(4;) is EF1 + PO.

> Subtle note: If all allocations have zero Nash welfare:

o Step 1: Call S € N to be “feasible” if there is an allocation under
which every player in S has a positive utility. Let S* be a feasible
set that has the maximum cardinality among all feasible sets.

o Step 2: Choose argmax, [[;cq- Vi(4;)
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MNW Allocation: the maximum product is
20 * (11+8) * 9 =3420
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MNW Allocation

* MNW = PO is trivial (WHY?)

* MNW = EF1 (when S = N):
> Transferring good g € A; to A; should not increase Nash

welfare.
)
vg e, (g) vilg)  _ _ Vi(9)

(,4) Vi(Ad;+9) ~ Vi(A; + g%)
> where g* = argmaxgea, Vi(9)

> Now take sum over g € 4;...
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Computation

* Computing the MNW allocation is strongly NP-hard

* Open Question: Can we compute an EF1+PO
allocation in polynomial time?
» Not sure.

> A recent paper gives a pseudo-polynomial time algorithm.
o Polynomial time if the values are at most polynomial.
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Stronger Fairness

* Open Question: Does there always exist an EFx
allocation?

* EF1:Vi,j € N,3g € 4; : V;(4;) = V;(4;\{g})

> Intuitively, i doesn’t envy j if she gets to remove her most
valued item from j’s bundle.

* EFx: Vi,j € N,Vg € 4; : V;(4) = V;(4,\{g})
> Subtle note: Either we need to assume strictly positive
values, or change this to “Vg € A; s.t. V;({g}) > 0”.

> Intuitively, i should’t envy j even if she removes her least
positively valued item from j’s bundle.
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Stronger Fairness

 To clarify the difference between EF1 and EFx:

> Suppose there are two players and three goods with
values as follows.

. B | c
P1 10
= :

> If you give {A} = P1 and {B,C} — P2, it’s EF1 but not EFx.

o EF1 because if P1 removes C from P2’s bundle, all is fine.
o Not EFx because removing B doesn’t eliminate envy.

> Instead, {A,B} = P1 and {C} = P2 would be EFx.
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Other Fairness Notions

e Maximin Share Guarantee
> MMS; = maxg, . p,) Ming Vi(By)

o “If | divide the items into n bundles, but get the worst bundle, how much
can | guarantee myself?”

> @ —MMS allocation: V;(A4;) = a - MMS; for every i

 Theorem [Procaccia, Wang ‘14]:

> There exists an instance on which no MMS allocation exists.
2/, —MMS always exists.

o It can be computed in polynomial time [Amanatidis et al. ‘15]

* Theorem [Ghodsi et al. ‘17]:
> 3/, —MMS always exists, and can be computed in polytime.

* MNW gives exactly 1+\/% —MMS.
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CSC2556 : Algorithms for
Group Decision Making
(a.k.a. Computational Social Choice)
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