Lecture 12 Applications to Algorithmic Game Theory & Computational Social Choice

A little bit of game theory

Recap: Yao's Minimax Principle

- Let *R* and *D* denote randomized and deterministic algorithms.
- Let *F* denote a distribution over instances.
- Let C(·,·) denote the running time of an algorithm on an input.
- Then Yao's principle says that: $\min_R \max_I E_R[C(R, I)] = \max_F \min_D E_{I \sim F}[D, I]$

von-Neumann's Minimax Theorem

- Generalizes Yao's minimax principle
- A game between two players
 - \succ There is a matrix A.
 - The row player (R) selects a row, and the column player (C) selects a column.
 - > The result is the value of the chosen cell.
 - R wants to maximize the value, while C wants to minimize the value.
 - > Each player's strategy can be a distribution over actions.
 - In a Nash equilibrium, each player is playing an optimal strategy given the strategy of the other player.

von-Neumann's Minimax Theorem

- Let x_R and x_C denote strategies of the players.
- Let v denote the final value.
- *R* can guarantee: $V \ge V_R = \max_{x_1} \min_{x_2} A(x_1, x_2)$.
- C can guarantee: $V \leq V_C = \min_{x_2} \max_{x_1} A(x_1, x_2)$.
- Then $V_R \leq V_C$ (WHY?)
 - > Thus, we have that:

 $\max_{x_1} \min_{x_2} A(x_1, x_2) \le \min_{x_2} \max_{x_1} A(x_1, x_2)$

> Can it be that $V_R < V_C$?

von-Neumann's Minimax Theorem

• Theorem [von Neumann]:

 $\max_{x_1} \min_{x_2} A(x_1, x_2) = \min_{x_2} \max_{x_1} A(x_1, x_2)$

- Interpretations
 - "It does not matter which player goes first."
 - "Playing my safe strategy is optimal if the other player is also playing his safe strategy."
 - > Just a statement that holds for any matrix A
- Yao's principle:
 - Columns = deterministic algorithms
 - Rows = problem instances
 - Cell values = running times

Minimax via Regret Learning

• We want to show:

$$V_R = \max_{x_1} \min_{x_2} A(x_1, x_2)$$
$$V_C = \min_{x_2} \max_{x_1} A(x_1, x_2)$$
$$V_R = V_C$$

• We know about Randomized Weighted Majority:

$$M^{(T)} \leq (1+\eta) \cdot m_i^{(T)} + 2 \cdot (\log n/\eta)$$

> Setting
$$\eta = \sqrt{\log n/T}$$

$$M^{(T)} \le m_i^{(T)} + 2\sqrt{T \cdot \log n}$$

Minimax via Regret Learning

- Scale the values so that they're in [0,1].
- Suppose for contradiction V_R = V_C − δ, δ > 0.
 > If C commits first, there is a row guaranteeing V ≥ V_C.
 > If R commits first, there is a column guaranteeing V ≤ V_R.
 > WHY?
- Suppose *R* uses RWM, and *C* responds optimally to the current mixed strategy.

Minimax via Regret Learning

- After *T* iterations:
 - ▶ V ≥ best row in hindsight $2\sqrt{T \cdot \log n}$ ▶ Best row in hindsight ≥ $T \cdot V_C$
 - $> V \leq T \cdot V_R$
- Thus: $T \cdot V_R \ge T \cdot V_C 2\sqrt{T \cdot \log n}$
- $\delta T \leq 2\sqrt{T \cdot \log n}$, which false for large enough T.
- QED!

A little bit of fair division

Cake-Cutting

- A heterogeneous, divisible good
 - Heterogeneous: it may be valued differently by different individuals
 - Divisible: we can share/divide it between individuals
- Represented as [0,1]

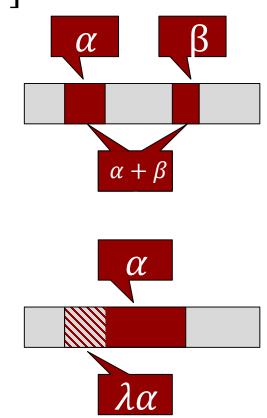
> Almost without loss of generality

- Set of players $N = \{1, ..., n\}$
- Piece of cake $X \subseteq [0,1]$

> A finite union of disjoint intervals

Agent Valuations

- Each player *i* has a valuation V_i that is very much like a probability distribution over [0,1]
- Additive: For $X \cap Y = \emptyset$, $V_i(X) + V_i(Y) = V_i(X \cup Y)$
- Normalized: $V_i([0,1]) = 1$
- Divisible: $\forall \lambda \in [0,1]$ and X, $\exists Y \subseteq X$ s.t. $V_i(Y) = \lambda V_i(X)$



Fairness Goals

- An allocation is a disjoint partition $A = (A_1, ..., A_n)$ of the cake
- We desire the following fairness properties from our allocation *A*:
- Proportionality (Prop):

$$\forall i \in N \colon V_i(A_i) \ge \frac{1}{n}$$

• Envy-Freeness (EF):

$$\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$$

Fairness Goals

- Prop: $\forall i \in N: V_i(A_i) \ge 1/n$
- EF: $\forall i, j \in N: V_i(A_i) \ge V_i(A_j)$
- Question: What is the relation between proportionality and EF?
 - 1. **Prop** \Rightarrow EF
 - 2.) EF \Rightarrow Prop
 - 3. Equivalent
 - 4. Incomparable

CUT-AND-CHOOSE

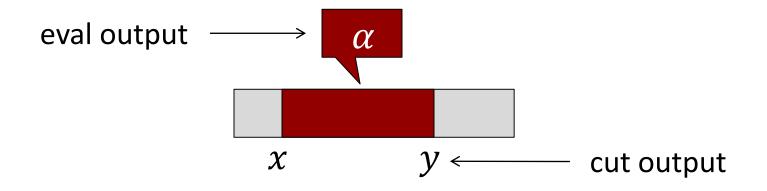
- Algorithm for n = 2 players
- Player 1 divides the cake into two pieces X, Y s.t. $V_1(X) = V_1(Y) = 1/2$
- Player 2 chooses the piece she prefers.
- This is EF and therefore proportional.
 > Why?

Input Model

- How do we measure the "complexity" of a cakecutting protocol for *n* players?
- Typically, running time is a function of the length of input encoded in binary.
- Our input consists of functions V_i , which need infinite bits of encoding.
- We need an oracle model.

Robertson-Webb Model

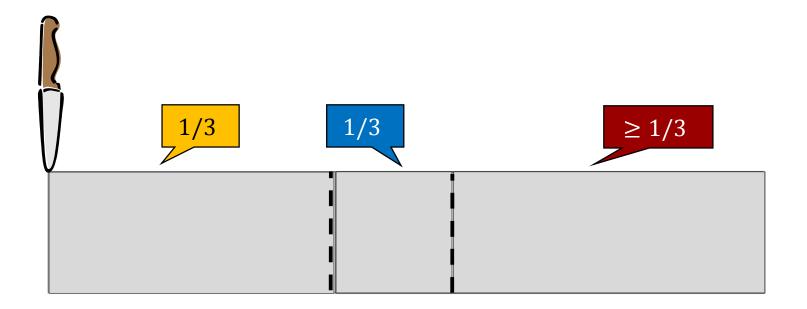
- We restrict access to valuations V_i's through two types of queries:
 - > $Eval_i(x, y)$ returns $V_i([x, y])$
 - > $\operatorname{Cut}_i(x, \alpha)$ returns y such that $V_i([x, y]) = \alpha$



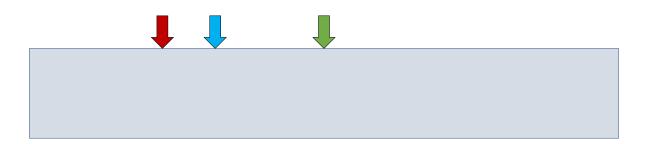
Robertson-Webb Model

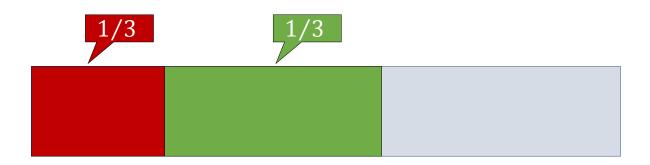
- Two types of queries:
 - > $\operatorname{Eval}_i(x, y) = V_i([x, y])$ > $\operatorname{Cut}_i(x, \alpha) = y$ s.t. $V_i([x, y]) = \alpha$
- Question: How many queries are needed to find an EF allocation when n = 2?
- Answer: 2
 - ≻ Why?

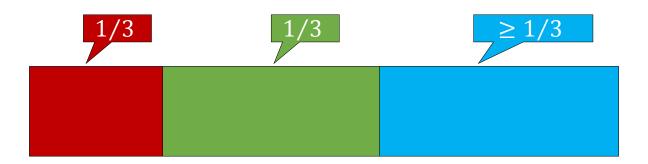
- Protocol for finding a proportional allocation for n players
- Referee starts at 0, and continuously moves knife to the right.
- Repeat: when piece to the left of knife is worth 1/n to a player, the player shouts "stop", gets the piece, and exits.
- The last player gets the remaining piece.



- Moving knife is not really needed.
- At each stage, we can ask each remaining player a cut query to mark his 1/n point in the remaining cake.
- Move the knife to the leftmost mark.



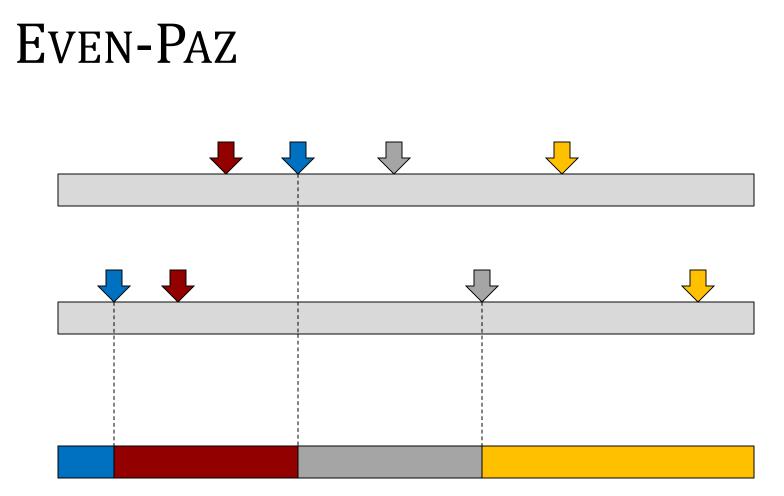




- Question: What is the complexity of the Dubins-Spanier protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$
 - 2. $\Theta(n \log n)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Even-Paz

- Input: Interval [x, y], number of players n
 Assume n = 2^k for some k
- If n = 1, give [x, y] to the single player.
- Otherwise, let each player *i* mark z_i s.t. $V_i([x, z_i]) = \frac{1}{2} V_i([x, y])$
- Let z^* be the n/2 mark from the left.
- Recurse on $[x, z^*]$ with the left n/2 players, and on $[z^*, y]$ with the right n/2 players.



Even-Paz

• Theorem: EVEN-PAZ returns a Prop allocation.

• Proof:

> Inductive proof. We want to prove that if player *i* is allocated piece A_i when [x, y] is divided between *n* players, $V_i(A_i) \ge (1/n)V_i([x, y])$

• Then Prop follows because initially $V_i([x, y]) = V_i([0, 1]) = 1$

> Base case: n = 1 is trivial.

- > Suppose it holds for $n = 2^{k-1}$. We prove for $n = 2^k$.
- > Take the 2^{k-1} left players.

○ Every left player *i* has $V_i([x, z^*]) \ge (1/2) V_i([x, y])$

○ If it gets A_i , by induction, $V_i(A_i) \ge \frac{1}{2^{k-1}} V_i([x, z^*]) \ge \frac{1}{2^k} V_i([x, y])$

Even-Paz

- Question: What is the complexity of the Even-Paz protocol in the Robertson-Webb model?
 - 1. $\Theta(n)$ 2. $\Theta(n \log n)$ $\Theta(n^2)$
 - 3. $\Theta(n^2)$
 - 4. $\Theta(n^2 \log n)$

Complexity of Proportionality

- Theorem [Edmonds and Pruhs, 2006]: Any proportional protocol needs $\Omega(n \log n)$ operations in the Robertson-Webb model.
- Thus, the EVEN-PAZ protocol is (asymptotically) provably optimal!

Envy-Freeness?

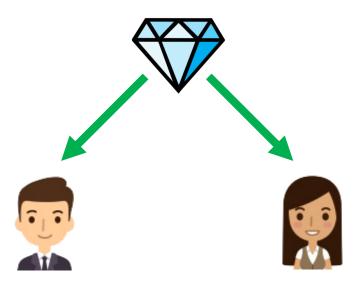
- "I suppose you are also going to give such cute algorithms for finding envy-free allocations?"
- Bad luck. For *n*-player EF cake-cutting:
 - > [Brams and Taylor, 1995] give an unbounded EF protocol.

n

- > [Procaccia 2009] shows $\Omega(n^2)$ lower bound for EF.
- Last year, the long-standing major open question of "bounded EF protocol" was resolved!

Indivisible Goods

- Goods cannot be shared / divided among players
 > E.g., house, painting, car, jewelry, ...
- Problem: Envy-free allocations may not exist!



Indivisible Goods: Setting

8	7	20	5
9	11	12	8
9	10	18	3

Given such a matrix of numbers, assign each good to a player. We assume additive values. So, e.g., $V_{a}(\{\blacksquare, \clubsuit\}) = 8 + 7 = 15$

Example Allocation

			V
8	7	20	5
9	11	12	8
9	10	18	3

Indivisible Goods

• Envy-freeness up to one good (EF1):

 $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

- > If $A_j = \emptyset$, then we treat this to be true.
- "If i envies j, there must be some good in j's bundle such that removing it would make i envy-free of j."
- Does there always exist an EF1 allocation?

EF1

- Yes! We can use Round Robin.
 - > Agents take turns in cyclic order: 1,2, ..., n, 1,2, ..., n, ...
 - In her turn, an agent picks the good she likes the most among the goods still not picked by anyone.
- Observation: This always yields an EF1 allocation.
 > Informal proof on the board.

Efficient?

- Sadly, a round robin allocation can be suboptimal in the following strong sense:
 - It may be possible to redistribute the items to make everyone happier!
- Pareto optimality (PO):
 - We say that an allocation A is Pareto optimal if there exists no allocation B such that

○ $V_i(B_i) \ge V_i(A_i)$ for all *i*, and ○ $V_{i^*}(B_{i^*}) > V_{i^*}(A_{i^*})$ for some i^* .

EF1+PO?

- Does there always exist an allocation that is EF1+PO?
- Theorem [Caragiannis et al. '16]:

> The MNW allocation $\operatorname{argmax}_A \prod_{i \in N} V_i(A_i)$ is EF1 + PO.

- Subtle note: If all allocations have zero Nash welfare:
 - Step 1: Call $S \subseteq N$ to be "feasible" if there is an allocation under which every player in S has a positive utility. Let S^* be a feasible set that has the maximum cardinality among all feasible sets.

○ Step 2: Choose $\operatorname{argmax}_A \prod_{i \in S^*} V_i(A_i)$

MNW Allocation: the maximum product is 20 * (11+8) * 9 = 3420

8	7	20	5
9	11	12	8
9	10	18	3

CSC2420 - Allan Borodin & Nisarg Shah

MNW Allocation

- MNW \Rightarrow PO is trivial (WHY?)
- MNW \Rightarrow EF1 (when $S^* = N$):
 - > Transferring good $g \in A_j$ to A_i should not increase Nash welfare.

Computation

- Computing the MNW allocation is strongly NP-hard
- Open Question: Can we compute an EF1+PO allocation in polynomial time?
 - > Not sure.
 - > A recent paper gives a pseudo-polynomial time algorithm.
 - \circ Polynomial time if the values are at most polynomial.

Stronger Fairness

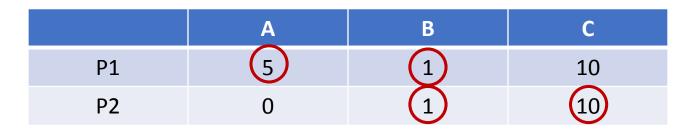
- Open Question: Does there always exist an EFx allocation?
- EF1: $\forall i, j \in N, \exists g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$

Intuitively, i doesn't envy j if she gets to remove her most valued item from j's bundle.

- EFx: $\forall i, j \in N, \forall g \in A_j : V_i(A_i) \ge V_i(A_j \setminus \{g\})$
 - > Subtle note: Either we need to assume strictly positive values, or change this to " $\forall g \in A_i$ s.t. $V_i(\{g\}) > 0$ ".
 - Intuitively, i should't envy j even if she removes her least positively valued item from j's bundle.

Stronger Fairness

- To clarify the difference between EF1 and EFx:
 - Suppose there are two players and three goods with values as follows.



- > If you give {A} → P1 and {B,C} → P2, it's EF1 but not EFx.
 EF1 because if P1 removes C from P2's bundle, all is fine.
 - $\,\circ\,$ Not EFx because removing B doesn't eliminate envy.
- > Instead, $\{A,B\}$ → P1 and $\{C\}$ → P2 would be EFx.

Other Fairness Notions

Maximin Share Guarantee

- $> MMS_i = \max_{(B_1, \dots, B_n)} \min_k V_i(B_k)$
 - "If I divide the items into n bundles, but get the worst bundle, how much can I guarantee myself?"
- > α -MMS allocation: $V_i(A_i) \ge \alpha \cdot MMS_i$ for every *i*

• Theorem [Procaccia, Wang '14]:

- > There exists an instance on which no MMS allocation exists. $^{2}/_{3}$ –MMS always exists.
 - It can be computed in polynomial time [Amanatidis et al. '15]
- Theorem [Ghodsi et al. '17]:

> $^{3}/_{4}$ –MMS always exists, and can be computed in polytime.

• MNW gives exactly $\frac{2}{1+\sqrt{4n-3}}$ –MMS.

CSC2556 : Algorithms for Group Decision Making (a.k.a. Computational Social Choice)