Lecture 11

Streaming Algorithms (contd)
+ Randomly Sprinkled Topics
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Recap

e Streaming algorithms
> Stream: A = a4, ..., a,,, €ach a; € [n]

> Want to compute some property / statistic about the
stream using space sublinear in m and n

» Missing elements problem
> Computing frequency moments (F)
> Finding the majority element
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Today

* Continue streaming algorithms
> Generalize the majority elements to k-heavy hitters
> Solving heavy hitters using “count-min” sketch

* Online expert learning and its applications

CSC2420 - Allan Borodin & Nisarg Shah




RECAP: Majority Element

* Input: Stream A = a4, ..., a,;, where a; € [n]

* Q: Is there a value i that appears more than m/2
times?

(Algorithm:

> Store candidate a”, and a counter c (initially c = 0).
>Fori=1..m
olfc=0:Seta” =a;,andc = 1.
o Else:
e lIfa*"=aqa;,c—c+1

\ e fa*#a;,cc—1

~
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RECAP: Majority Element

* Space: Clearly O(logm + logn) bits

e Claim: If there exists a value v that appears more
than m/2 times, then a™ = v at the end.

* Proof:

> Take an occurrence of v (say a;), and let’s pair it up:

o If it decreases the counter, pair up with the unique element q;
(j < i) that contributed the 1 we just decreased.

o If it increases the counter:
e |f the added 1 is never taken back, QED!

* Ifitis decreased by a; (j > i), pair up with that.

> Because at least occurrence of v is not paired, the “never
taken back” case happens at least once.
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RECAP: Majority Element

* Space: Clearly O(logm + logn) bits

e Claim: If there exists a value v that appears more
than m/2 times, then a™ = v at the end.

* A simpler proof:
> At any step, let ¢’ = cifa* = v, and ¢’ = —c otherwise.
> Every occurrence of v must increase ¢’ by 1.

> Every occurrence of a value other than v either increases
or decreases ¢’ by 1.

> Majority = more increments than decrements in c'.
» Thus, a positive value at the end!
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RECAP: Majority Element

* Note 1: When a majority element does not exist,
the algorithm doesn’t necessarily find the mode.

* Note 2: If a majority element exists, it correctly
finds that element. However, if there is no majority
element, the algorithm does not detect that and
still returns a value.

> It can be trivially checked if the returned value is indeed a
majority element if a second pass over the stream is
allowed.

> Surprisingly, we can prove that this cannot be done in 1-
pass. (3 slides later!)

CSC2420 - Allan Borodin & Nisarg Shah



k-Heavy Hitters

* Generalization:

> Given k, which elements (if any) appear more than m/k
times?

> Misra and Gries generalized the majority algorithm into a
deterministic algorithm that
o Returns a set A of at most k — 1 pairs (v, f,,).
o For every (v,fv) € A where the true frequency of v is f,,,

m ~
fv _ E = fv < fv

o Corollary: Every k-heavy hitter is definitely covered in A. Although,
some other elements might be present too.

* A second pass can be used to eliminate false positives.
o Space: O(k(logn + logm))
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k-Heavy Hitters

/Misra & Gries Algorithm: \

* A< @; (A-containsuptok — 1 pairs (v, f,,))

* For each i:
> If a; isinA:fai <—fal. + 1
> Else:
o If |4] < k — 1: Add (a;,1) to A
o Else:
* For each (v,ﬁ,) € A:

e fom1

* Iff, =0, remove (v, f,) from 4
\Output A /
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k-Heavy Hitters

* The only non-trivial change is that when our
storage is full, and we encounter a new element,
we decrease the counter of every stored element.

* Claim: For every (v,ﬁ,) €A, [, —% < ﬁ, </

* Proof:

> Similar to majority proof. Call an occurrence of v
“wasted” if it either decreases counts of k — 1 values
stored, or it increases count of v which is decreased later.

> Every wasted occurrence of v causes k — 1 other unique
wasted occurrences. (WHY?)

» At most m/k wasted occurrences.
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k-Heavy Hitters

* Claim: “Find an element that appears more than
m/k times, or say that none does” cannot be
solved in sublinear space in a single pass.

* Proof:

> I'll prove for k > m/2 (i.e., “appear at least twice”). |
leave it to you to extend this to other values of k.

> Let ay, ..., ay/, be a sequence that contains distinct
members of {1, ..., n}.

» On the next value, the algo acts as a membership test.

> Thus, it must be able to distinguish between all possible
(n%) subsets.
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¢-Heavy Hitters

* Problem: Given a stream of length m, find all
values that appear at least ¢m times.

e c-approximate version: Return a set that
» Contains every value which appears at least ¢pm times,

> And does not contain any value that appears less than
(¢p — €)m times.
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¢-Heavy Hitters

* In the Misra-Gries algorithm...

> Suppose we can set k = 1/¢, and guarantee that for
every (v, f,,) included in the final set 4,

fv_Emevva

> Then, return all v € A such that f, > (¢ — e)m.
> This guarantees that every v with f,, = ¢m is included,

and every v included satisfies f,, = (¢p — €)m.

> This uses space 0 ((E) (logm + log n)) and does not use
randomization.
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Sketching for Heavy Hitters

* A generic method that provides an alternative
approach to heavy hitters (with some pros/cons
over Misra-Gries algorithm) and applies to many
other streaming problems.

e A sketch sk is a function for which there exists a
space-efficient combining algorithm COMB:
COMB(sk(Ay), sk(A3)) = sk(A14,)

* Frequency counting through sketching
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Simple Hash Count Sketch

ﬂSetk=2/e. \

e C « length k integer array, initially O.

* Choose h: [n] — [k] from a “2-universal family of
hash functions”.

e Foreachi =1, ..., m:
> Clh(a;)] « Clh(a;)] +1

e Qutput: f « (C, h)

\_ ~ /i = C[h(v)) )
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Simple Hash Count Sketch

* This also uses O (G) (logn + log m)) space.

* Let us analyze the relationship between f,, and ﬁ,
for any value v.

* Clearly, C[h(v)] is incremented for every
occurrence of v, and is never decremented.

>Sof, > f,.

 But it is also incremented every time v’ appears
where h(v) = h(v").
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Simple Hash Count Sketch

* Choosing a 2-universal hash function ensures that
the buckets assignhed to every pair of values are
perfectly random.

> This implies Pr|h(v) = h(v')] = 1/k.

* Thus, ﬂ is incorrectly incremented by f s for every
v’ # v with probability 1/k.
> Thus, E|f,| < f, + m/k.
> Using Markov’s inequality, Pr[fv > f, + em] <1/2.
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Count-Min Sketch

* Count-Min sketch simply diminishes the error
probability by keeping log (%) different copies of C,
each with a random hash function.

e Because f, = f, in each of them, the best estimate

is obtained by taking the minimum of C[h(v)] over
all counters C.

* The probability that this is an over-estimate by em
is now at most o.
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Misra-Gries vs Count-Min

* Two reasons why Misra-Gries is better:

> Misra-Gries stores O (1) numbers, while Count-Min

1

log( =
stores O (L@) numbers.

€

€

> Misra-Gries runs deterministically while Count-Min uses
randomization.

* One reason why they’re incomparable:

» Misra-Gries provides a lower bound on frequency, while
Count-Min provides an upper bound.
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Misra-Gries vs Count-Min

* Reasons to use Count-Min:

> Count-Min is extremely fast as we just compute a hash,
and update one value in each of a small number of
counters C.

o Misra-Gries may need to go over 1/¢€ values and decrease them.

> Using counters for sketching is a general-purpose idea
that is useful for doing many things.

> For instance, in Count-Min, you can easily allow
“deletions” in addition to “insertions”.
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Random Remarks

* Count-Min has applications when working with
large databases.

> You can process dataset with entries that go up to a
billion, keep a small number of hash functions that map
every entry to a small value (in thousands), and return a
pretty accurate count.

* For solving such problems, there are two other
popular approaches.

> One is to compute “approximate quantiles”. An example
is the approximate median question on A3.

> Another is to use random projections, when the input
stream is viewed as a vector in a high dimensional space.
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A semi-streaming model

* Introduced by Feigenbaum et al. in 2005 for graph
problems in a streaming model
> Graph G = (V,E) with |[V]| =n, |E| =m
> Vertices or edges arrive in a stream (two very different
models!)

> We want to compute a graph solution (e.g., matching)
o Must need Q(n) space.
o Goal: use 0(n) space (hides polylog factors), not O (m) space.

* This is studied for single as well as multi-pass
algorithms.
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Streaming vs Online

At first glance, it might seem that streaming is less
restrictive than online setting.

> Because you don’t have to make irrevocable decisions.

e But is it obvious that every online algorithm can be
simulated as a streaming algorithm?

> An online algorithm does not have to abide by 0(n)
space requirement.

> It might remember all previously seen edges to make a
new decision.

> It’s not clear if an online algorithm can really exploit this
additional space allowance.

CSC2420 - Allan Borodin & Nisarg Shah



Revisiting Bipartite Matching

* Edge-arrival model:

> AFAIK, there is no semi-streaming algorithm (even randomized) with
worst-case bound better than 1% that is achieved by greedy

> A slightly better approximation if edges arrive in a random order.

* Vertex-arrival model:

> Ranking (KVV) can be simulated as a randomized semi-streaming
algorithm.

> Surprisingly, Goel et al. [2011] show that there is a deterministic semi-
streaming algorithm with the same 1 — 1/, worst-case bound.

o Contrast this with the fact that we can’t beat 1% in the online model.
o That s, if we make matching decisions as vertices arrive, we can’t beat 5.

o But we can store O(n) bit information as we process the stream, and output a 1 —
1/, approximate matching at the very end.
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Streaming vs Online

* For online algorithms, we noticed a significant
difference between worst-case arrivals and ROM.

» This is because we have to make irrevocable decisions as
the vertices arrive.

* For streaming algorithms, we can still define ROM

> But there is less advantage because we still get to “see”
the entire input before returning an output.
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Online Expert Learning

* Setup:
> On each day, we want to decide whether to invest in the
market.

> We have, at our disposal, n experts that give their
prediction of 1 (invest) or O (don’t) every day.

> Some experts may be better than some other experts,
but we don’t know.

> We would like to take their advice, and decide to invest or
not.

» Our goal is to do almost as good as the best expert in
hindsight!
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Online Expert Learning

* Formally, there are n experts and T time steps.

* At each time period t:
> Every expert i gives his prediction.
> You look at all the predictions, and make a decision.
> Then you find out what the right decision for step t was.

e Simplest idea:
> Keep a weight for each expert.

> Decrease the weight every time the expert makes a
mistake.

> Use a weighted majority for prediction.
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Online Expert Learning

/° Weighted Majority:
> Fixn < 1/2.

> Start with W(l) = 1.

i
> In time step t, predict 1 if the total weight of experts
predicting 1 is larger than the total weight of experts

predicting 0, and vice-versa.

i

\ every expert that made a mistake.

~

> At the end of time step t, set wlD Wi(t) - (1 —n) for

/
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Online Expert Learning

* Theorem: Let mgt) and M® be the number of

mistakes made by expert i and the algorithm in the
first t rounds. Then for every i and T':

2Inn
M® <21+ ) m!" + — -

* Proof:
> Consider @ =Y. Wi(t)

> If the algorithm makes a mistake in round ¢, at least half
the total weight decreases by a factor of 1 — 1. Hence:

, G+l SCDt(%+%(1—n)) =c1>t(1—ﬂ).

2
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Online Expert Learning

* Theorem: Let mgt) and M® be the number of

mistakes made by expert i and the algorithm in the
first t rounds. Then for every i and T':

2Inn
M® <21+ ) m!" + — -

* Proof:

M)

> Thus: ®(T+1) < n (1 — 2)
2

» However, the best expert i has Wi(T+1) =1 —-n)M

> Use T+ > w Y and —In(1 — 1) < n +17?
(becausen < 1/2)
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Online Expert Learning

* The beauty of this is that it makes no statistical

assumptions about how the experts make
mistakes.

* You can have adversarial mistakes, and still the
algorithm is guaranteed (i.e., no randomization) to
make only about twice as many mistakes as the
best expert in hindsight.

* It can be shown that this bound is tight for any
deterministic algorithm.
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Randomized Weighted Majority

* Using randomization, we can eliminate the factor
of 2, and do almost as good as the best expert.

* Simple Change:

> Let Wl(t) be the total weight of experts predicting 1, and
Wo(t) be the total weight of experts predicting 0.

> The deterministic version predicts 1 if Wl(t) > Wo(t), and

vice-versa.
» The randomized version will predict 1 with probability
(t)
w . : . .
5@ and predict 0 with the remaining probability.
W, +W,
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Randomized Weighted Majority

* This is equivalent to:

> “Pick an expert with probability proportional to his
weight, and go with his prediction.”
© _ w

> Probability of picking expertiinsteptisp,~ = GE

e Let bi(t) = 1 if expert i makes a mistake at step t,
and 0 otherwise.
> The algorithm makes a mistake with probability
Zip-(t)bi(t) = p® . p® (vector notation)

l

> E[#mistakes after T rounds] = Y'1_, p'¥ - bV
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Randomized Weighted Majority

e Let’s now consider the function ®().
t+1 t t
Pt+1) — Ewi( +1) _ zWi( ). (1 — b ))
[ [
— o® _ pp® z p® . p® = O (1 — 5 p® . p®)

< ®® exp(—n p(®) . p®)

* Apply this iteratively, and you get
& T+ < n . exp(—n - E[#mistakes])

* Also use that tl&e) weight of the best expert is at
least (1 —n)™i .
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Randomized Weighted Majority

» Theorem: If M(T) is the expected number of
mistakes made by randomized weighted majority in
the first T rounds, then for every i and T':

2Inn
MD < (1+n)m!" + 0
* Note that settingn = lnTn gives

(best expert’s mistake)+O (VT - Inn)
* Average regret = per-round additional mistakes =

0 ( /lnTn> = sublinear (goesto 0 as T — o)
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Applications

* Generalizations:
> “Multiplicative Weights Algorithm”, where the cost of
selecting expert i in step t is mgt) € [—1,1] (real-valued).

> “Sleeping experts” variant where we want to do as well as
the best expert in the last T’ rounds.

e Fundamental tool that can be used as black-box
within other algorithms.

* Let’s see some interesting applications of RWM.
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Learning Disjunctions

* Setup:

> Binary variables x = (x4, ..., X;;), and an unknown disjunction
f over a subset of variables, e.g., f(x) = x3 V x5 V Xq

* Goal:
> Given a sequence of variable values, predict the outcome of f.
» Make the fewest mistakes over time.

* Simple idea:
> Start with h(x) = x; V-V x,
> You never predict 0 when the true answer is 1.

> If you predict 1 when the true answer was 0, take all x; which
were 1 on that example, and throw them out.

> At most n mistakes, which is optimal to distinguish between 2™
functions (halving argument).
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Learning Disjunctions: r-way

 Suppose we know that the target function f is an
r-way disjunction (disjunction of r variables).
» Can we do better?

* In principle, there are O(n") functions, so by
halving argument, a lower bound is (7 logn).
> Can we achieve this, efficiently?

* Yes! Using Winnow algorithm.
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Winnow Algorithm
/° Algorithm: \

» Maintain h(x) which predicts 1 iff },; w;x; = n
» Initialize w; = 1 for all i.

> Mistake on true answer = 1:
o Make w; « 2w; forevery x; = 1
» Mistake on true answer = 0:

K o Make w; « 0 forevery x; = 1 /

* This gives multiplicatively more weights to positive
x;’s that could have helped, but you didn’t pay
them enough attention.
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Winnow Algorithm

* Mistakes on positives:
> Each mistakes doubles at least one of r relevant weights.
> Any such weight can be doubled at most log n times.
> At most 1 - log n mistakes.

* Mistakes on negatives:
> Initially, total weight is n.
» Each mistake on positive adds < n to the total weight.
» Each mistake on negative removes = n.
> #mistakes-on-neg < 1 + #mistakes-on-pos

* Overall: At most 1 + 27 - logn mistakes!
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Learning Disjunction: k-of-r

* Suppose we want to learn a k-of-r function.

» True iff k out of a set of  variables are true.
> Eg, f(x) — (xg + Xg + X10 + X12 = 2)

-

\_

e Algorithm (Winnow adaptation):
» Maintain h(x): predict positive iff ), w;x; = n
> Lete = 1/(2k).
> Initialize w; « 1 forall i

o Mistake on pos: w; « w;(1 +¢€) forallx; =1
o Mistake onneg: w; « w; /(1 +¢€) forallx; =1

/

* Theorem: This makes O (r k logn) mistakes.

* |dea: Think of the algo as adding/removing “chips”.
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Winnow: Extensions

* Algorithm:
» Maintain h(x): predict positive iff },; w;x; = n
> Lete = 1/(2k).
> Initialize w; « 1 for all i
o Mistake on pos: w; « w;(1 +¢€) forallx; =1
o Mistake onneg: w; « w; /(1 +¢€) forallx; =1
e Analysis (chip argument):
> Each mistake on positive adds = k relevant chips.

> Each mistake on negative removes < k-1 relevant chips.

1

» At most r (Z) log nn relevant chips in total.

>k-Mp—(k—1)-MnS(£)logn
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Winnow: Extensions

* Algorithm:
» Maintain h(x): predict positive iff },; w;x; = n
> Lete = 1/(2k).
> Initialize w; « 1 for all i
o Mistake on pos: w; « w;(1 +¢€) forallx; =1
o Mistake onneg: w; <« w; /(1 +¢€) forallx; =1
e Analysis (weight argument):
> Each mistake on positive adds at most en weight.
» Each mistake on negative removes at least % weight.

en
>n+en-My, —— M, =0
1+e
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Winnow: Extensions

* Algorithm:
» Maintain h(x): predict positive iff },; w;x; = n
> Lete = 1/(2k).
> Initialize w; « 1 for all i

o Mistake on pos: w; « w;(1 +¢€) forallx; =1
o Mistake onneg: w; <« w; /(1 +¢€) forallx; =1

* Analysis (combined):
>k-M,—(k—1)-M, < (g)logn
>n+en-Mp—ﬂ-Mn20

1+e€

> Solve to get that M,, and M, are both O(r klogn)
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