
Lecture 11
Streaming Algorithms (contd)
+ Randomly Sprinkled Topics

CSC2420 – Allan Borodin & Nisarg Shah 1

Recap

CSC2420 – Allan Borodin & Nisarg Shah 2

• Streaming algorithms
➢ Stream: 𝐴 = 𝑎1, … , 𝑎𝑚, each 𝑎𝑖 ∈ [𝑛]

➢ Want to compute some property / statistic about the
stream using space sublinear in 𝑚 and 𝑛

➢ Missing elements problem

➢ Computing frequency moments (𝐹𝑘)

➢ Finding the majority element

Today

CSC2420 – Allan Borodin & Nisarg Shah 3

• Continue streaming algorithms
➢ Generalize the majority elements to 𝑘-heavy hitters

➢ Solving heavy hitters using “count-min” sketch

• Online expert learning and its applications

RECAP: Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 4

• Input: Stream 𝐴 = 𝑎1, … , 𝑎𝑚, where 𝑎𝑖 ∈ [𝑛]

• Q: Is there a value 𝑖 that appears more than 𝑚/2
times?

• Algorithm:
➢ Store candidate 𝑎∗, and a counter 𝑐 (initially 𝑐 = 0).

➢ For 𝑖 = 1…𝑚
o If 𝑐 = 0: Set 𝑎∗ = 𝑎𝑖, and 𝑐 = 1.

o Else:

• If 𝑎∗ = 𝑎𝑖 , 𝑐 ← 𝑐 + 1

• If 𝑎∗ ≠ 𝑎𝑖, 𝑐 ← 𝑐 − 1

RECAP: Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 5

• Space: Clearly 𝑂(log𝑚 + log 𝑛) bits

• Claim: If there exists a value 𝑣 that appears more
than 𝑚/2 times, then 𝑎∗ = 𝑣 at the end.

• Proof:
➢ Take an occurrence of 𝑣 (say 𝑎𝑖), and let’s pair it up:
o If it decreases the counter, pair up with the unique element 𝑎𝑗

(𝑗 < 𝑖) that contributed the 1 we just decreased.

o If it increases the counter:

• If the added 1 is never taken back, QED!

• If it is decreased by 𝑎𝑗 (𝑗 > 𝑖), pair up with that.

➢ Because at least occurrence of 𝑣 is not paired, the “never
taken back” case happens at least once.

RECAP: Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 6

• Space: Clearly 𝑂(log𝑚 + log 𝑛) bits

• Claim: If there exists a value 𝑣 that appears more
than 𝑚/2 times, then 𝑎∗ = 𝑣 at the end.

• A simpler proof:
➢ At any step, let 𝑐′ = 𝑐 if 𝑎∗ = 𝑣, and 𝑐′ = −𝑐 otherwise.

➢ Every occurrence of 𝑣 must increase 𝑐′ by 1.

➢ Every occurrence of a value other than 𝑣 either increases
or decreases 𝑐′ by 1.

➢ Majority ⇒ more increments than decrements in 𝑐′.

➢ Thus, a positive value at the end!

RECAP: Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 7

• Note 1: When a majority element does not exist,
the algorithm doesn’t necessarily find the mode.

• Note 2: If a majority element exists, it correctly
finds that element. However, if there is no majority
element, the algorithm does not detect that and
still returns a value.
➢ It can be trivially checked if the returned value is indeed a

majority element if a second pass over the stream is
allowed.

➢ Surprisingly, we can prove that this cannot be done in 1-
pass. (3 slides later!)

𝑘-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 8

• Generalization:
➢ Given 𝑘, which elements (if any) appear more than 𝑚/𝑘

times?

➢ Misra and Gries generalized the majority algorithm into a
deterministic algorithm that
o Returns a set 𝐴 of at most 𝑘 − 1 pairs (𝑣, ሚ𝑓𝑣).

o For every 𝑣, ሚ𝑓𝑣 ∈ 𝐴 where the true frequency of 𝑣 is 𝑓𝑣,

𝑓𝑣 −
𝑚

𝑘
≤ ሚ𝑓𝑣 ≤ 𝑓𝑣

o Corollary: Every 𝑘-heavy hitter is definitely covered in 𝐴. Although,
some other elements might be present too.

• A second pass can be used to eliminate false positives.

o Space: 𝑂 𝑘 log 𝑛 + log𝑚

𝑘-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 9

• Misra & Gries Algorithm:

• 𝐴 ← ∅; (𝐴 contains up to 𝑘 − 1 pairs 𝑣, ሚ𝑓𝑣)

• For each 𝑖:
➢ If 𝑎𝑖 is in 𝐴: ሚ𝑓𝑎𝑖 ←

ሚ𝑓𝑎𝑖 + 1

➢ Else:
o If 𝐴 < 𝑘 − 1: Add (𝑎𝑖 , 1) to 𝐴

o Else:

• For each 𝑣, ሚ𝑓𝑣 ∈ 𝐴:

• ሚ𝑓𝑣 ← ሚ𝑓𝑣 − 1

• If ሚ𝑓𝑣 = 0, remove (𝑣, ሚ𝑓𝑣) from 𝐴

• Output 𝐴

𝑘-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 10

• The only non-trivial change is that when our
storage is full, and we encounter a new element,
we decrease the counter of every stored element.

• Claim: For every 𝑣, ሚ𝑓𝑣 ∈ 𝐴, 𝑓𝑣 −
𝑚

𝑘
≤ ሚ𝑓𝑣 ≤ 𝑓𝑣

• Proof:
➢ Similar to majority proof. Call an occurrence of 𝑣

“wasted” if it either decreases counts of 𝑘 − 1 values
stored, or it increases count of 𝑣 which is decreased later.

➢ Every wasted occurrence of 𝑣 causes 𝑘 − 1 other unique
wasted occurrences. (WHY?)

➢ At most 𝑚/𝑘 wasted occurrences.

𝑘-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 11

• Claim: “Find an element that appears more than
𝑚/𝑘 times, or say that none does” cannot be
solved in sublinear space in a single pass.

• Proof:
➢ I’ll prove for 𝑘 > 𝑚/2 (i.e., “appear at least twice”). I

leave it to you to extend this to other values of 𝑘.

➢ Let 𝑎1, … , 𝑎 Τ𝑛 2 be a sequence that contains distinct
members of {1,… , 𝑛}.

➢ On the next value, the algo acts as a membership test.

➢ Thus, it must be able to distinguish between all possible
𝑛
Τ𝑛 2 subsets.

𝜙-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 12

• Problem: Given a stream of length 𝑚, find all
values that appear at least 𝜙𝑚 times.

• 𝜖-approximate version: Return a set that
➢ Contains every value which appears at least 𝜙𝑚 times,

➢ And does not contain any value that appears less than
𝜙 − 𝜖 𝑚 times.

𝜙-Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 13

• In the Misra-Gries algorithm…
➢ Suppose we can set 𝑘 = 1/𝜖, and guarantee that for

every (𝑣, ሚ𝑓𝑣) included in the final set 𝐴,

𝑓𝑣 − 𝜖𝑚 ≤ ሚ𝑓𝑣 ≤ 𝑓𝑣

➢ Then, return all 𝑣 ∈ 𝐴 such that ሚ𝑓𝑣 ≥ 𝜙 − 𝜖 𝑚.

➢ This guarantees that every 𝑣 with 𝑓𝑣 ≥ 𝜙𝑚 is included,
and every 𝑣 included satisfies 𝑓𝑣 ≥ 𝜙 − 𝜖 𝑚.

➢ This uses space 𝑂
1

𝜖
log𝑚 + log 𝑛 and does not use

randomization.

Sketching for Heavy Hitters

CSC2420 – Allan Borodin & Nisarg Shah 14

• A generic method that provides an alternative
approach to heavy hitters (with some pros/cons
over Misra-Gries algorithm) and applies to many
other streaming problems.

• A sketch 𝑠𝑘 is a function for which there exists a
space-efficient combining algorithm 𝐶𝑂𝑀𝐵:

𝐶𝑂𝑀𝐵 𝑠𝑘 𝐴1 , 𝑠𝑘 𝐴2 = 𝑠𝑘(𝐴1𝐴2)

• Frequency counting through sketching

Simple Hash Count Sketch

CSC2420 – Allan Borodin & Nisarg Shah 15

• Set 𝑘 = 2/𝜖.

• 𝐶 ← length 𝑘 integer array, initially 0.

• Choose ℎ: 𝑛 → [𝑘] from a “2-universal family of
hash functions”.

• For each 𝑖 = 1,… ,𝑚:
➢ 𝐶 ℎ 𝑎𝑖 ← 𝐶[ℎ 𝑎𝑖] + 1

• Output: ሚ𝑓 ← (𝐶, ℎ)
➢
ሚ𝑓𝑣 = 𝐶 ℎ 𝑣

Simple Hash Count Sketch

CSC2420 – Allan Borodin & Nisarg Shah 16

• This also uses 𝑂
1

𝜖
log 𝑛 + log𝑚 space.

• Let us analyze the relationship between 𝑓𝑣 and ሚ𝑓𝑣
for any value 𝑣.

• Clearly, 𝐶[ℎ 𝑣] is incremented for every
occurrence of 𝑣, and is never decremented.
➢ So ሚ𝑓𝑣 ≥ 𝑓𝑣.

• But it is also incremented every time 𝑣′ appears
where ℎ 𝑣 = ℎ(𝑣′).

Simple Hash Count Sketch

CSC2420 – Allan Borodin & Nisarg Shah 17

• Choosing a 2-universal hash function ensures that
the buckets assigned to every pair of values are
perfectly random.
➢ This implies Pr ℎ 𝑣 = ℎ 𝑣′ = 1/𝑘.

• Thus, ሚ𝑓𝑣 is incorrectly incremented by 𝑓𝑣′ for every
𝑣′ ≠ 𝑣 with probability 1/𝑘.
➢ Thus, 𝐸 ሚ𝑓𝑣 ≤ 𝑓𝑣 +𝑚/𝑘.

➢ Using Markov’s inequality, Pr ሚ𝑓𝑣 ≥ 𝑓𝑣 + 𝜖𝑚 ≤ 1/2.

Count-Min Sketch

CSC2420 – Allan Borodin & Nisarg Shah 18

• Count-Min sketch simply diminishes the error

probability by keeping log
1

𝛿
different copies of 𝐶,

each with a random hash function.

• Because ሚ𝑓𝑣 ≥ 𝑓𝑣 in each of them, the best estimate
is obtained by taking the minimum of 𝐶[ℎ 𝑣] over
all counters 𝐶.

• The probability that this is an over-estimate by 𝜖𝑚
is now at most 𝛿.

Misra-Gries vs Count-Min

CSC2420 – Allan Borodin & Nisarg Shah 19

• Two reasons why Misra-Gries is better:

➢ Misra-Gries stores 𝑂
1

𝜖
numbers, while Count-Min

stores 𝑂
log

1

𝛿

𝜖
numbers.

➢ Misra-Gries runs deterministically while Count-Min uses
randomization.

• One reason why they’re incomparable:

➢ Misra-Gries provides a lower bound on frequency, while
Count-Min provides an upper bound.

Misra-Gries vs Count-Min

CSC2420 – Allan Borodin & Nisarg Shah 20

• Reasons to use Count-Min:
➢ Count-Min is extremely fast as we just compute a hash,

and update one value in each of a small number of
counters 𝐶.
o Misra-Gries may need to go over 1/𝜖 values and decrease them.

➢ Using counters for sketching is a general-purpose idea
that is useful for doing many things.

➢ For instance, in Count-Min, you can easily allow
“deletions” in addition to “insertions”.

Random Remarks

CSC2420 – Allan Borodin & Nisarg Shah 21

• Count-Min has applications when working with
large databases.
➢ You can process dataset with entries that go up to a

billion, keep a small number of hash functions that map
every entry to a small value (in thousands), and return a
pretty accurate count.

• For solving such problems, there are two other
popular approaches.
➢ One is to compute “approximate quantiles”. An example

is the approximate median question on A3.

➢ Another is to use random projections, when the input
stream is viewed as a vector in a high dimensional space.

A semi-streaming model

CSC2420 – Allan Borodin & Nisarg Shah 22

• Introduced by Feigenbaum et al. in 2005 for graph
problems in a streaming model
➢ Graph 𝐺 = (𝑉, 𝐸) with 𝑉 = 𝑛, 𝐸 = 𝑚

➢ Vertices or edges arrive in a stream (two very different
models!)

➢ We want to compute a graph solution (e.g., matching)
o Must need Ω(𝑛) space.

o Goal: use ෨𝑂(𝑛) space (hides polylog factors), not 𝑂(𝑚) space.

• This is studied for single as well as multi-pass
algorithms.

Streaming vs Online

CSC2420 – Allan Borodin & Nisarg Shah 23

• At first glance, it might seem that streaming is less
restrictive than online setting.
➢ Because you don’t have to make irrevocable decisions.

• But is it obvious that every online algorithm can be
simulated as a streaming algorithm?
➢ An online algorithm does not have to abide by ෨𝑂(𝑛)

space requirement.

➢ It might remember all previously seen edges to make a
new decision.

➢ It’s not clear if an online algorithm can really exploit this
additional space allowance.

Revisiting Bipartite Matching

CSC2420 – Allan Borodin & Nisarg Shah 24

• Edge-arrival model:
➢ AFAIK, there is no semi-streaming algorithm (even randomized) with

worst-case bound better than ½ that is achieved by greedy

➢ A slightly better approximation if edges arrive in a random order.

• Vertex-arrival model:
➢ Ranking (KVV) can be simulated as a randomized semi-streaming

algorithm.

➢ Surprisingly, Goel et al. [2011] show that there is a deterministic semi-
streaming algorithm with the same 1 − Τ1 𝑒 worst-case bound.
o Contrast this with the fact that we can’t beat ½ in the online model.

o That is, if we make matching decisions as vertices arrive, we can’t beat ½.

o But we can store ෨𝑂(𝑛) bit information as we process the stream, and output a 1 −
Τ1 𝑒 approximate matching at the very end.

Streaming vs Online

CSC2420 – Allan Borodin & Nisarg Shah 25

• For online algorithms, we noticed a significant
difference between worst-case arrivals and ROM.
➢ This is because we have to make irrevocable decisions as

the vertices arrive.

• For streaming algorithms, we can still define ROM
➢ But there is less advantage because we still get to “see”

the entire input before returning an output.

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 26

• Setup:
➢ On each day, we want to decide whether to invest in the

market.

➢ We have, at our disposal, 𝑛 experts that give their
prediction of 1 (invest) or 0 (don’t) every day.

➢ Some experts may be better than some other experts,
but we don’t know.

➢ We would like to take their advice, and decide to invest or
not.

➢ Our goal is to do almost as good as the best expert in
hindsight!

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 27

• Formally, there are 𝑛 experts and 𝑇 time steps.

• At each time period 𝑡:
➢ Every expert 𝑖 gives his prediction.

➢ You look at all the predictions, and make a decision.

➢ Then you find out what the right decision for step 𝑡 was.

• Simplest idea:
➢ Keep a weight for each expert.

➢ Decrease the weight every time the expert makes a
mistake.

➢ Use a weighted majority for prediction.

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 28

• Weighted Majority:
➢ Fix 𝜂 ≤ 1/2.

➢ Start with 𝑤𝑖
(1)

= 1.

➢ In time step 𝑡, predict 1 if the total weight of experts
predicting 1 is larger than the total weight of experts
predicting 0, and vice-versa.

➢ At the end of time step 𝑡, set 𝑤𝑖
(𝑡+1)

← 𝑤𝑖
(𝑡)

⋅ (1 − 𝜂) for
every expert that made a mistake.

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 29

• Theorem: Let 𝑚𝑖
(𝑡)

and 𝑀(𝑡) be the number of
mistakes made by expert 𝑖 and the algorithm in the
first 𝑡 rounds. Then for every 𝑖 and 𝑇:

𝑀(𝑇) ≤ 2 1 + 𝜂 𝑚𝑖
(𝑇)

+
2 ln 𝑛

𝜂

• Proof:

➢ Consider Φ(t) = σ𝑖𝑤𝑖
(𝑡)

.

➢ If the algorithm makes a mistake in round 𝑡, at least half
the total weight decreases by a factor of 1 − 𝜂. Hence:

➢Φ𝑡+1 ≤ Φ𝑡 1

2
+

1

2
1 − 𝜂 = Φ𝑡 1 −

𝜂

2
.

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 30

• Theorem: Let 𝑚𝑖
(𝑡)

and 𝑀(𝑡) be the number of
mistakes made by expert 𝑖 and the algorithm in the
first 𝑡 rounds. Then for every 𝑖 and 𝑇:

𝑀(𝑇) ≤ 2 1 + 𝜂 𝑚𝑖
(𝑇)

+
2 ln 𝑛

𝜂

• Proof:

➢ Thus: Φ(𝑇+1) ≤ 𝑛 1 −
𝜂

2

𝑀(𝑇)

.

➢ However, the best expert 𝑖 has 𝑤𝑖
(𝑇+1)

= 1 − 𝜂 𝑚𝑖
(𝑡)

➢ Use Φ(𝑇+1) ≥ 𝑤𝑖
𝑇+1

and − ln 1 − 𝜂 ≤ 𝜂 + 𝜂2

(because 𝜂 ≤ 1/2).

Online Expert Learning

CSC2420 – Allan Borodin & Nisarg Shah 31

• The beauty of this is that it makes no statistical
assumptions about how the experts make
mistakes.

• You can have adversarial mistakes, and still the
algorithm is guaranteed (i.e., no randomization) to
make only about twice as many mistakes as the
best expert in hindsight.

• It can be shown that this bound is tight for any
deterministic algorithm.

Randomized Weighted Majority

CSC2420 – Allan Borodin & Nisarg Shah 32

• Using randomization, we can eliminate the factor
of 2, and do almost as good as the best expert.

• Simple Change:

➢ Let 𝑊1
(𝑡)

be the total weight of experts predicting 1, and

𝑊0
𝑡

be the total weight of experts predicting 0.

➢ The deterministic version predicts 1 if 𝑊1
(𝑡)

> 𝑊0
(𝑡)

, and
vice-versa.

➢ The randomized version will predict 1 with probability
𝑊1

𝑡

𝑊1
(𝑡)
+𝑊0

(𝑡), and predict 0 with the remaining probability.

Randomized Weighted Majority

CSC2420 – Allan Borodin & Nisarg Shah 33

• This is equivalent to:
➢ “Pick an expert with probability proportional to his

weight, and go with his prediction.”

➢ Probability of picking expert 𝑖 in step 𝑡 is 𝑝𝑖
𝑡
=

𝑤𝑖
𝑡

Φ 𝑡 .

• Let 𝑏𝑖
𝑡
= 1 if expert 𝑖 makes a mistake at step 𝑡,

and 0 otherwise.
➢ The algorithm makes a mistake with probability

σ𝑖 𝑝𝑖
𝑡
𝑏𝑖

𝑡
= 𝒑 𝑡 ⋅ 𝒃 𝑡 (vector notation)

➢ E[#mistakes after 𝑇 rounds] = σ𝑡=1
𝑇 𝒑 𝑡 ⋅ 𝒃 𝑡

Randomized Weighted Majority

CSC2420 – Allan Borodin & Nisarg Shah 34

• Let’s now consider the function Φ 𝑡 .

Φ 𝑡+1 =

𝑖

𝑤𝑖
𝑡+1

=

𝑖

𝑤𝑖
𝑡
⋅ 1 − 𝜂𝑏𝑖

𝑡

= Φ 𝑡 − 𝜂Φ 𝑡

𝑖

𝑝𝑖
𝑡
⋅ 𝑏𝑖

𝑡
= Φ 𝑡 1 − 𝜂 𝒑 𝑡 ⋅ 𝒃 𝑡

≤ Φ 𝑡 exp −𝜂 𝒑 𝑡 ⋅ 𝒃 𝑡

• Apply this iteratively, and you get
Φ 𝑇+1 ≤ 𝑛 ⋅ exp −𝜂 ⋅ 𝐸 #mistakes

• Also use that the weight of the best expert is at
least 1 − 𝜂 𝑚𝑖

𝑇

.

Randomized Weighted Majority

CSC2420 – Allan Borodin & Nisarg Shah 35

• Theorem: If 𝑀 𝑇 is the expected number of
mistakes made by randomized weighted majority in
the first 𝑇 rounds, then for every 𝑖 and 𝑇:

𝑀 𝑇 ≤ 1 + 𝜂 𝑚𝑖
𝑇
+
2 ln 𝑛

𝜂

• Note that setting 𝜂 =
ln 𝑛

𝑇
gives

(best expert’s mistake)+𝑂 𝑇 ⋅ ln 𝑛

• Average regret = per-round additional mistakes =

𝑂
ln 𝑛

𝑇
= sublinear (goes to 0 as 𝑇 → ∞)

Applications

CSC2420 – Allan Borodin & Nisarg Shah 36

• Generalizations:
➢ “Multiplicative Weights Algorithm”, where the cost of

selecting expert 𝑖 in step 𝑡 is 𝑚𝑖
𝑡
∈ [−1,1] (real-valued).

➢ “Sleeping experts” variant where we want to do as well as
the best expert in the last 𝑇′ rounds.

• Fundamental tool that can be used as black-box
within other algorithms.

• Let’s see some interesting applications of RWM.

Learning Disjunctions

CSC2420 – Allan Borodin & Nisarg Shah 37

• Setup:
➢ Binary variables 𝑥 = (𝑥1, … , 𝑥𝑛), and an unknown disjunction
𝑓 over a subset of variables, e.g., 𝑓 𝑥 = 𝑥3 ∨ 𝑥5 ∨ 𝑥9

• Goal:
➢ Given a sequence of variable values, predict the outcome of 𝑓.
➢ Make the fewest mistakes over time.

• Simple idea:
➢ Start with ℎ 𝑥 = 𝑥1 ∨ ⋯∨ 𝑥𝑛
➢ You never predict 0 when the true answer is 1.
➢ If you predict 1 when the true answer was 0, take all 𝑥𝑖 which

were 1 on that example, and throw them out.
➢ At most 𝑛 mistakes, which is optimal to distinguish between 2𝑛

functions (halving argument).

Learning Disjunctions: 𝑟-way

CSC2420 – Allan Borodin & Nisarg Shah 38

• Suppose we know that the target function 𝑓 is an
𝑟-way disjunction (disjunction of 𝑟 variables).
➢ Can we do better?

• In principle, there are 𝑂(𝑛𝑟) functions, so by
halving argument, a lower bound is Ω(𝑟 log 𝑛).
➢ Can we achieve this, efficiently?

• Yes! Using Winnow algorithm.

Winnow Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 39

• Algorithm:
➢ Maintain ℎ(𝑥) which predicts 1 iff σ𝑖𝑤𝑖𝑥𝑖 ≥ 𝑛

➢ Initialize 𝑤𝑖 = 1 for all 𝑖.

➢ Mistake on true answer = 1:
o Make 𝑤𝑖 ← 2𝑤𝑖 for every 𝑥𝑖 = 1

➢ Mistake on true answer = 0:
o Make 𝑤𝑖 ← 0 for every 𝑥𝑖 = 1

• This gives multiplicatively more weights to positive
𝑥𝑖’s that could have helped, but you didn’t pay
them enough attention.

Winnow Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 40

• Mistakes on positives:
➢ Each mistakes doubles at least one of 𝑟 relevant weights.

➢ Any such weight can be doubled at most log 𝑛 times.

➢ At most 𝑟 ⋅ log 𝑛 mistakes.

• Mistakes on negatives:
➢ Initially, total weight is 𝑛.

➢ Each mistake on positive adds ≤ 𝑛 to the total weight.

➢ Each mistake on negative removes ≥ 𝑛.

➢ #mistakes-on-neg ≤ 1 + #mistakes-on-pos

• Overall: At most 1 + 2𝑟 ⋅ log 𝑛 mistakes!

Learning Disjunction: 𝑘-of-𝑟

CSC2420 – Allan Borodin & Nisarg Shah 41

• Suppose we want to learn a 𝑘-of-𝑟 function.
➢ True iff 𝑘 out of a set of 𝑟 variables are true.

➢ E.g., 𝑓 𝑥 = (𝑥3 + 𝑥9 + 𝑥10 + 𝑥12 ≥ 2)

• Algorithm (Winnow adaptation):
➢ Maintain ℎ(𝑥): predict positive iff σ𝑖𝑤𝑖𝑥𝑖 ≥ 𝑛

➢ Let 𝜖 = 1/(2𝑘).

➢ Initialize 𝑤𝑖 ← 1 for all 𝑖
o Mistake on pos: 𝑤𝑖 ← 𝑤𝑖(1 + 𝜖) for all 𝑥𝑖 = 1

o Mistake on neg: 𝑤𝑖 ← 𝑤𝑖/(1 + 𝜖) for all 𝑥𝑖 = 1

• Theorem: This makes 𝑂(𝑟 𝑘 log 𝑛) mistakes.

• Idea: Think of the algo as adding/removing “chips”.

Winnow: Extensions

CSC2420 – Allan Borodin & Nisarg Shah 42

• Algorithm:
➢ Maintain ℎ(𝑥): predict positive iff σ𝑖𝑤𝑖𝑥𝑖 ≥ 𝑛
➢ Let 𝜖 = 1/(2𝑘).
➢ Initialize 𝑤𝑖 ← 1 for all 𝑖
o Mistake on pos: 𝑤𝑖 ← 𝑤𝑖(1 + 𝜖) for all 𝑥𝑖 = 1
o Mistake on neg: 𝑤𝑖 ← 𝑤𝑖/(1 + 𝜖) for all 𝑥𝑖 = 1

• Analysis (chip argument):
➢ Each mistake on positive adds ≥ 𝑘 relevant chips.
➢ Each mistake on negative removes ≤ 𝑘-1 relevant chips.

➢ At most 𝑟
1

𝜖
log 𝑛 relevant chips in total.

➢ 𝑘 ⋅ 𝑀𝑝 − 𝑘 − 1 ⋅ 𝑀𝑛 ≤
𝑟

𝜖
log 𝑛

Winnow: Extensions

CSC2420 – Allan Borodin & Nisarg Shah 43

• Algorithm:
➢ Maintain ℎ(𝑥): predict positive iff σ𝑖𝑤𝑖𝑥𝑖 ≥ 𝑛

➢ Let 𝜖 = 1/(2𝑘).

➢ Initialize 𝑤𝑖 ← 1 for all 𝑖
o Mistake on pos: 𝑤𝑖 ← 𝑤𝑖(1 + 𝜖) for all 𝑥𝑖 = 1

o Mistake on neg: 𝑤𝑖 ← 𝑤𝑖/(1 + 𝜖) for all 𝑥𝑖 = 1

• Analysis (weight argument):
➢ Each mistake on positive adds at most 𝜖𝑛 weight.

➢ Each mistake on negative removes at least
𝜖𝑛

1+𝜖
weight.

➢ 𝑛 + 𝜖𝑛 ⋅ 𝑀𝑝 −
𝜖𝑛

1+𝜖
⋅ 𝑀𝑛 ≥ 0

Winnow: Extensions

CSC2420 – Allan Borodin & Nisarg Shah 44

• Algorithm:
➢ Maintain ℎ(𝑥): predict positive iff σ𝑖𝑤𝑖𝑥𝑖 ≥ 𝑛

➢ Let 𝜖 = 1/(2𝑘).

➢ Initialize 𝑤𝑖 ← 1 for all 𝑖
o Mistake on pos: 𝑤𝑖 ← 𝑤𝑖(1 + 𝜖) for all 𝑥𝑖 = 1

o Mistake on neg: 𝑤𝑖 ← 𝑤𝑖/(1 + 𝜖) for all 𝑥𝑖 = 1

• Analysis (combined):

➢ 𝑘 ⋅ 𝑀𝑝 − 𝑘 − 1 ⋅ 𝑀𝑛 ≤
𝑟

𝜖
log 𝑛

➢ 𝑛 + 𝜖𝑛 ⋅ 𝑀𝑝 −
𝜖𝑛

1+𝜖
⋅ 𝑀𝑛 ≥ 0

➢ Solve to get that 𝑀𝑝 and 𝑀𝑛 are both 𝑂(𝑟 𝑘 log 𝑛)

