Lecture 11
Streaming Algorithms (contd) + Randomly Sprinkled Topics
Recap

• Streaming algorithms
 - Stream: $A = a_1, \ldots, a_m$, each $a_i \in [n]$
 - Want to compute some property / statistic about the stream using space sublinear in m and n

- Missing elements problem
- Computing frequency moments (F_k)
- Finding the majority element
Today

• Continue streaming algorithms
 ➢ Generalize the majority elements to k-heavy hitters
 ➢ Solving heavy hitters using “count-min” sketch

• Online expert learning and its applications
RECAP: Majority Element

• Input: Stream $A = a_1, ..., a_m$, where $a_i \in [n]$
• Q: Is there a value i that appears more than $m/2$ times?

• Algorithm:
 ➢ Store candidate a^*, and a counter c (initially $c = 0$).
 ➢ For $i = 1 \ldots m$
 o If $c = 0$: Set $a^* = a_i$, and $c = 1$.
 o Else:
 • If $a^* = a_i$, $c \leftarrow c + 1$
 • If $a^* \neq a_i$, $c \leftarrow c - 1$
RECAP: Majority Element

• **Space:** Clearly $O(\log m + \log n)$ bits

• **Claim:** If there exists a value v that appears more than $m/2$ times, then $a^* = v$ at the end.

• **Proof:**

 ➢ Take an occurrence of v (say a_i), and let’s pair it up:

 o If it decreases the counter, pair up with the unique element a_j ($j < i$) that contributed the 1 we just decreased.

 o If it increases the counter:

 • If the added 1 is never taken back, QED!
 • If it is decreased by a_j ($j > i$), pair up with that.

 ➢ Because at least occurrence of v is not paired, the “never taken back” case happens at least once.
RECAP: Majority Element

• **Space:** Clearly $O(\log m + \log n)$ bits

• **Claim:** If there exists a value v that appears more than $m/2$ times, then $a^* = v$ at the end.

• **A simpler proof:**
 - At any step, let $c' = c$ if $a^* = v$, and $c' = -c$ otherwise.
 - Every occurrence of v must increase c' by 1.
 - Every occurrence of a value other than v either increases or decreases c' by 1.
 - Majority \Rightarrow more increments than decrements in c'.
 - Thus, a positive value at the end!
RECAP: Majority Element

• **Note 1:** When a majority element does not exist, the algorithm doesn’t necessarily find the mode.

• **Note 2:** If a majority element exists, it correctly finds that element. However, if there is no majority element, the algorithm does not detect that and still returns a value.
 - It can be trivially checked if the returned value is indeed a majority element if a second pass over the stream is allowed.
 - Surprisingly, we can prove that this cannot be done in 1-pass. (3 slides later!)
\(k \)-Heavy Hitters

• Generalization:

 ➢ Given \(k \), which elements (if any) appear more than \(m/k \) times?

 ➢ Misra and Gries generalized the majority algorithm into a deterministic algorithm that

 o Returns a set \(A \) of at most \(k - 1 \) pairs \((v, \tilde{f}_v)\).

 o For every \((v, \tilde{f}_v) \in A\) where the true frequency of \(v \) is \(f_v \),

 \[
 f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v
 \]

 o Corollary: Every \(k \)-heavy hitter is definitely covered in \(A \). Although, some other elements might be present too.

 • A second pass can be used to eliminate false positives.

 o Space: \(O(k (\log n + \log m)) \)
k-Heavy Hitters

- **Misra & Gries Algorithm:**
 - $A \leftarrow \emptyset$; \hspace{1cm} (A contains up to $k - 1$ pairs (v, \tilde{f}_v))
 - For each i:
 - If a_i is in A: $\tilde{f}_{a_i} \leftarrow \tilde{f}_{a_i} + 1$
 - Else:
 - If $|A| < k - 1$: Add $(a_i, 1)$ to A
 - Else:
 - For each $(v, \tilde{f}_v) \in A$:
 - $\tilde{f}_v \leftarrow \tilde{f}_v - 1$
 - If $\tilde{f}_v = 0$, remove (v, \tilde{f}_v) from A
 - **Output** A
k-Heavy Hitters

• The only non-trivial change is that when our storage is full, and we encounter a new element, we decrease the counter of every stored element.

• Claim: For every $(v, \tilde{f}_v) \in A$, $f_v - \frac{m}{k} \leq \tilde{f}_v \leq f_v$

• Proof:
 - Similar to majority proof. Call an occurrence of v “wasted” if it either decreases counts of $k - 1$ values stored, or it increases count of v which is decreased later.
 - Every wasted occurrence of v causes $k - 1$ other unique wasted occurrences. (WHY?)
 - At most m/k wasted occurrences.
k-Heavy Hitters

- **Claim:** “Find an element that appears more than m/k times, or say that none does” cannot be solved in sublinear space in a single pass.

- **Proof:**
 - I’ll prove for $k > m/2$ (i.e., “appear at least twice”). I leave it to you to extend this to other values of k.
 - Let $a_1, \ldots, a_{n/2}$ be a sequence that contains distinct members of $\{1, \ldots, n\}$.
 - On the next value, the algo acts as a membership test.
 - Thus, it must be able to distinguish between all possible $\binom{n}{n/2}$ subsets.
\(\phi \)-Heavy Hitters

- **Problem:** Given a stream of length \(m \), find all values that appear at least \(\phi m \) times.

- **\(\epsilon \)-approximate version:** Return a set that
 - Contains every value which appears at least \(\phi m \) times,
 - And does not contain any value that appears less than \((\phi - \epsilon)m \) times.
\(\phi \)-Heavy Hitters

• In the Misra-Gries algorithm...

 ➢ Suppose we can set \(k = \frac{1}{\epsilon} \), and guarantee that for every \((v, f_v)\) included in the final set \(A \),

 \[
 f_v - \epsilon m \leq \tilde{f}_v \leq f_v
 \]

 ➢ Then, return all \(v \in A \) such that \(\tilde{f}_v \geq (\phi - \epsilon)m \).

 ➢ This guarantees that every \(v \) with \(f_v \geq \phi m \) is included, and every \(v \) included satisfies \(f_v \geq (\phi - \epsilon)m \).

 ➢ This uses space \(O \left(\left(\frac{1}{\epsilon}\right) (\log m + \log n) \right) \) and does not use randomization.
Sketching for Heavy Hitters

• A generic method that provides an alternative approach to heavy hitters (with some pros/cons over Misra-Gries algorithm) and applies to many other streaming problems.

• A sketch sk is a function for which there exists a space-efficient combining algorithm $COMB$: $COMB(sk(A_1), sk(A_2)) = sk(A_1A_2)$

• Frequency counting through sketching
Simple Hash Count Sketch

• Set $k = 2/\epsilon$.
• $C \leftarrow$ length k integer array, initially 0.
• Choose $h: [n] \rightarrow [k]$ from a “2-universal family of hash functions”.
• For each $i = 1, \ldots, m$:
 ➢ $C[h(a_i)] \leftarrow C[h(a_i)] + 1$
• Output: $\tilde{f} \leftarrow (C, h)$
 ➢ $\tilde{f}_v = C[h(v)]$
Simple Hash Count Sketch

• This also uses $O \left(\left(\frac{1}{\epsilon} \right) (\log n + \log m) \right)$ space.

• Let us analyze the relationship between f_v and \tilde{f}_v for any value v.

• Clearly, $C[h(v)]$ is incremented for every occurrence of v, and is never decremented.
 ➢ So $\tilde{f}_v \geq f_v$.

• But it is also incremented every time v' appears where $h(v) = h(v')$.
Choosing a 2-universal hash function ensures that the buckets assigned to every pair of values are perfectly random.

This implies $\Pr[h(v) = h(v')] = 1/k$.

Thus, \tilde{f}_v is incorrectly incremented by $f_{v'}$ for every $v' \neq v$ with probability $1/k$.

Thus, $E[\tilde{f}_v] \leq f_v + m/k$.

Using Markov’s inequality, $\Pr[\tilde{f}_v \geq f_v + \epsilon m] \leq 1/2$.
Count-Min Sketch

• **Count-Min sketch** simply diminishes the error probability by keeping $\log \left(\frac{1}{\delta} \right)$ different copies of C, each with a random hash function.

• Because $\tilde{f}_v \geq f_v$ in each of them, the best estimate is obtained by taking the minimum of $C[h(v)]$ over all counters C.

• The probability that this is an over-estimate by ϵm is now at most δ.
Misra-Gries vs Count-Min

• Two reasons why Misra-Gries is better:

 ➢ Misra-Gries stores $O\left(\frac{1}{\epsilon}\right)$ numbers, while Count-Min stores $O\left(\frac{\log\left(\frac{1}{\delta}\right)}{\epsilon}\right)$ numbers.

 ➢ Misra-Gries runs deterministically while Count-Min uses randomization.

• One reason why they’re incomparable:

 ➢ Misra-Gries provides a lower bound on frequency, while Count-Min provides an upper bound.
Misra-Gries vs Count-Min

• Reasons to use Count-Min:
 ➢ Count-Min is extremely fast as we just compute a hash, and update one value in each of a small number of counters C.
 o Misra-Gries may need to go over $1/\varepsilon$ values and decrease them.

 ➢ Using counters for sketching is a general-purpose idea that is useful for doing many things.

 ➢ For instance, in Count-Min, you can easily allow “deletions” in addition to “insertions”.
Random Remarks

• Count-Min has applications when working with large databases.
 ➢ You can process dataset with entries that go up to a billion, keep a small number of hash functions that map every entry to a small value (in thousands), and return a pretty accurate count.

• For solving such problems, there are two other popular approaches.
 ➢ One is to compute “approximate quantiles”. An example is the approximate median question on A3.
 ➢ Another is to use random projections, when the input stream is viewed as a vector in a high dimensional space.
A semi-streaming model

• Introduced by Feigenbaum et al. in 2005 for graph problems in a streaming model
 ➢ Graph $G = (V, E)$ with $|V| = n$, $|E| = m$
 ➢ Vertices or edges arrive in a stream (two very different models!)
 ➢ We want to compute a graph solution (e.g., matching)
 o Must need $\Omega(n)$ space.
 o Goal: use $\tilde{O}(n)$ space (hides polylog factors), not $O(m)$ space.

• This is studied for single as well as multi-pass algorithms.
Streaming vs Online

• At first glance, it might seem that streaming is less restrictive than online setting.
 ➢ Because you don’t have to make irrevocable decisions.

• But is it obvious that every online algorithm can be simulated as a streaming algorithm?
 ➢ An online algorithm does not have to abide by $\tilde{O}(n)$ space requirement.
 ➢ It might remember all previously seen edges to make a new decision.
 ➢ It’s not clear if an online algorithm can really exploit this additional space allowance.
Revisiting Bipartite Matching

• **Edge-arrival model:**
 - AFAIK, there is no semi-streaming algorithm (even randomized) with worst-case bound better than $\frac{1}{2}$ that is achieved by greedy
 - A slightly better approximation if edges arrive in a random order.

• **Vertex-arrival model:**
 - Ranking (KVV) can be simulated as a randomized semi-streaming algorithm.
 - Surprisingly, Goel et al. [2011] show that there is a deterministic semi-streaming algorithm with the same $1 - \frac{1}{e}$ worst-case bound.
 - Contrast this with the fact that we can’t beat $\frac{1}{2}$ in the online model.
 - That is, if we *make* matching decisions as vertices arrive, we can’t beat $\frac{1}{2}$.
 - But we can store $\tilde{O}(n)$ bit information as we process the stream, and output a $1 - \frac{1}{e}$ approximate matching at the very end.
Streaming vs Online

• For online algorithms, we noticed a significant difference between worst-case arrivals and ROM.
 ➢ This is because we have to make irrevocable decisions as the vertices arrive.

• For streaming algorithms, we can still define ROM
 ➢ But there is less advantage because we still get to “see” the entire input before returning an output.
Online Expert Learning

• Setup:
 ➢ On each day, we want to decide whether to invest in the market.
 ➢ We have, at our disposal, \(n \) experts that give their prediction of 1 (invest) or 0 (don’t) every day.
 ➢ Some experts may be better than some other experts, but we don’t know.
 ➢ We would like to take their advice, and decide to invest or not.
 ➢ Our goal is to do almost as good as the best expert in hindsight!
Online Expert Learning

• Formally, there are n experts and T time steps.
• At each time period t:
 ➢ Every expert i gives his prediction.
 ➢ You look at all the predictions, and make a decision.
 ➢ Then you find out what the right decision for step t was.

• Simplest idea:
 ➢ Keep a weight for each expert.
 ➢ Decrease the weight every time the expert makes a mistake.
 ➢ Use a weighted majority for prediction.
Online Expert Learning

- Weighted Majority:
 - Fix $\eta \leq 1/2$.
 - Start with $w_i^{(1)} = 1$.
 - In time step t, predict 1 if the total weight of experts predicting 1 is larger than the total weight of experts predicting 0, and vice-versa.
 - At the end of time step t, set $w_i^{(t+1)} \leftarrow w_i^{(t)} \cdot (1 - \eta)$ for every expert that made a mistake.
Online Expert Learning

- **Theorem:** Let $m_i^{(t)}$ and $M^{(t)}$ be the number of mistakes made by expert i and the algorithm in the first t rounds. Then for every i and T:

$$M^{(T)} \leq 2(1 + \eta) m_i^{(T)} + \frac{2 \ln n}{\eta}$$

- **Proof:**
 - Consider $\Phi^{(t)} = \sum_i w_i^{(t)}$.
 - If the algorithm makes a mistake in round t, at least half the total weight decreases by a factor of $1 - \eta$. Hence:
 - $\Phi^{t+1} \leq \Phi^t \left(\frac{1}{2} + \frac{1}{2} (1 - \eta)\right) = \Phi^t \left(1 - \frac{\eta}{2}\right)$.
Online Expert Learning

• Theorem: Let $m_i(t)$ and $M(t)$ be the number of mistakes made by expert i and the algorithm in the first t rounds. Then for every i and T:

$$M(T) \leq 2(1 + \eta) m_i(T) + \frac{2 \ln n}{\eta}$$

• Proof:

➢ Thus: $\Phi^{(T+1)} \leq n \left(1 - \frac{\eta}{2}\right)^{M(T)}$.

➢ However, the best expert i has $w_i^{(T+1)} = (1 - \eta)m_i(t)$.

➢ Use $\Phi^{(T+1)} \geq w_i^{(T+1)}$ and $-\ln(1 - \eta) \leq \eta + \eta^2$ (because $\eta \leq 1/2$).
Online Expert Learning

- The beauty of this is that it makes no statistical assumptions about how the experts make mistakes.
- You can have adversarial mistakes, and still the algorithm is guaranteed (i.e., no randomization) to make only about twice as many mistakes as the best expert *in hindsight*.
- It can be shown that this bound is tight for any deterministic algorithm.
Randomized Weighted Majority

• Using randomization, we can eliminate the factor of 2, and do almost as good as the best expert.

• Simple Change:
 ➢ Let $W_1(t)$ be the total weight of experts predicting 1, and $W_0(t)$ be the total weight of experts predicting 0.
 ➢ The deterministic version predicts 1 if $W_1(t) > W_0(t)$, and vice-versa.
 ➢ The randomized version will predict 1 with probability $\frac{W_1(t)}{W_1(t) + W_0(t)}$, and predict 0 with the remaining probability.
Randomized Weighted Majority

• This is equivalent to:
 ➢ “Pick an expert with probability proportional to his weight, and go with his prediction.”
 ➢ Probability of picking expert i in step t is $p_i^{(t)} = \frac{w_i^{(t)}}{\Phi(t)}$.

• Let $b_i^{(t)} = 1$ if expert i makes a mistake at step t, and 0 otherwise.
 ➢ The algorithm makes a mistake with probability
 $\sum_i p_i^{(t)} b_i^{(t)} = p^{(t)} \cdot b^{(t)}$ (vector notation)
 ➢ $E[\#\text{mistakes after } T \text{ rounds}] = \sum_{t=1}^{T} p^{(t)} \cdot b^{(t)}$
Randomized Weighted Majority

• Let’s now consider the function $\Phi(t)$.

$$\Phi(t+1) = \sum_{i} w_{i}^{(t+1)} = \sum_{i} w_{i}^{(t)} \cdot (1 - \eta b_{i}^{(t)})$$

$$= \Phi(t) - \eta \Phi(t) \sum_{i} p_{i}^{(t)} \cdot b_{i}^{(t)} = \Phi(t) (1 - \eta p^{(t)} \cdot b^{(t)})$$

$$\leq \Phi(t) \exp(-\eta p^{(t)} \cdot b^{(t)})$$

• Apply this iteratively, and you get

$$\Phi(T+1) \leq n \cdot \exp(-\eta \cdot E[#\text{mistakes}])$$

• Also use that the weight of the best expert is at least $(1 - \eta)^{m_{i}^{(T)}}$.
Randomized Weighted Majority

• **Theorem:** If $M^{(T)}$ is the expected number of mistakes made by randomized weighted majority in the first T rounds, then for every i and T:

$$M^{(T)} \leq (1 + \eta)m_i^{(T)} + \frac{2 \ln n}{\eta}$$

• Note that setting $\eta = \sqrt{\frac{\ln n}{T}}$ gives

(best expert’s mistake) + $O\left(\sqrt{T \cdot \ln n}\right)$

• Average regret = per-round additional mistakes =

$O\left(\sqrt{\frac{\ln n}{T}}\right)$ = sublinear (goes to 0 as $T \to \infty$)
Applications

• Generalizations:
 ➢ “Multiplicative Weights Algorithm”, where the cost of selecting expert \(i \) in step \(t \) is \(m_i^{(t)} \in [-1,1] \) (real-valued).
 ➢ “Sleeping experts” variant where we want to do as well as the best expert in the last \(T' \) rounds.

• Fundamental tool that can be used as black-box within other algorithms.
• Let’s see some interesting applications of RWM.
Learning Disjunctions

• Setup:
 - Binary variables $x = (x_1, \ldots, x_n)$, and an unknown disjunction f over a subset of variables, e.g., $f(x) = x_3 \lor x_5 \lor x_9$

• Goal:
 - Given a sequence of variable values, predict the outcome of f.
 - Make the fewest mistakes over time.

• Simple idea:
 - Start with $h(x) = x_1 \lor \cdots \lor x_n$
 - You never predict 0 when the true answer is 1.
 - If you predict 1 when the true answer was 0, take all x_i which were 1 on that example, and throw them out.
 - At most n mistakes, which is optimal to distinguish between 2^n functions (halving argument).
Learning Disjunctions: r-way

• Suppose we know that the target function f is an r-way disjunction (disjunction of r variables).
 ➢ Can we do better?

• In principle, there are $O(n^r)$ functions, so by halving argument, a lower bound is $\Omega(r \log n)$.
 ➢ Can we achieve this, efficiently?

• Yes! Using Winnow algorithm.
Winnow Algorithm

- Algorithm:
 - Maintain $h(x)$ which predicts 1 iff $\sum_i w_i x_i \geq n$
 - Initialize $w_i = 1$ for all i.
 - Mistake on true answer = 1:
 - Make $w_i \leftarrow 2w_i$ for every $x_i = 1$
 - Mistake on true answer = 0:
 - Make $w_i \leftarrow 0$ for every $x_i = 1$

- This gives multiplicatively more weights to positive x_i's that could have helped, but you didn’t pay them enough attention.
Winnow Algorithm

• Mistakes on positives:
 ➢ Each mistake doubles at least one of r relevant weights.
 ➢ Any such weight can be doubled at most $\log n$ times.
 ➢ At most $r \cdot \log n$ mistakes.

• Mistakes on negatives:
 ➢ Initially, total weight is n.
 ➢ Each mistake on positive adds $\leq n$ to the total weight.
 ➢ Each mistake on negative removes $\geq n$.
 ➢ $\#\text{mistakes-on-neg} \leq 1 + \#\text{mistakes-on-pos}$

• Overall: At most $1 + 2r \cdot \log n$ mistakes!
Learning Disjunction: k-of-r

• Suppose we want to learn a k-of-r function.
 ➢ True iff k out of a set of r variables are true.
 ➢ E.g., $f(x) = (x_3 + x_9 + x_{10} + x_{12} \geq 2)$

• Algorithm (Winnow adaptation):
 ➢ Maintain $h(x)$: predict positive iff $\sum_i w_i x_i \geq n$
 ➢ Let $\epsilon = 1/(2k)$.
 ➢ Initialize $w_i \leftarrow 1$ for all i
 o Mistake on pos: $w_i \leftarrow w_i (1 + \epsilon)$ for all $x_i = 1$
 o Mistake on neg: $w_i \leftarrow w_i / (1 + \epsilon)$ for all $x_i = 1$

• Theorem: This makes $O(r \cdot k \log n)$ mistakes.

• Idea: Think of the algo as adding/removing “chips”.
Winnow: Extensions

• Algorithm:
 ➢ Maintain $h(x)$: predict positive iff $\sum_i w_i x_i \geq n$
 ➢ Let $\epsilon = 1/(2k)$.
 ➢ Initialize $w_i \leftarrow 1$ for all i
 ○ Mistake on pos: $w_i \leftarrow w_i (1 + \epsilon)$ for all $x_i = 1$
 ○ Mistake on neg: $w_i \leftarrow w_i / (1 + \epsilon)$ for all $x_i = 1$

• Analysis (chip argument):
 ➢ Each mistake on positive adds $\geq k$ relevant chips.
 ➢ Each mistake on negative removes $\leq k - 1$ relevant chips.
 ➢ At most $r \left(\frac{1}{\epsilon}\right) \log n$ relevant chips in total.
 ➢ $k \cdot M_p - (k - 1) \cdot M_n \leq \left(\frac{r}{\epsilon}\right) \log n$
Winnow: Extensions

• Algorithm:
 ➢ Maintain $h(x)$: predict positive iff $\sum_i w_i x_i \geq n$
 ➢ Let $\epsilon = 1/(2k)$.
 ➢ Initialize $w_i \leftarrow 1$ for all i
 o Mistake on pos: $w_i \leftarrow w_i (1 + \epsilon)$ for all $x_i = 1$
 o Mistake on neg: $w_i \leftarrow w_i / (1 + \epsilon)$ for all $x_i = 1$

• Analysis (weight argument):
 ➢ Each mistake on positive adds at most ϵn weight.
 ➢ Each mistake on negative removes at least $\frac{\epsilon n}{1 + \epsilon}$ weight.
 ➢ $n + \epsilon n \cdot M_p - \frac{\epsilon n}{1 + \epsilon} \cdot M_n \geq 0$
Winnow: Extensions

• Algorithm:
 ➢ Maintain $h(x)$: predict positive iff $\sum_i w_i x_i \geq n$
 ➢ Let $\epsilon = 1/(2k)$.
 ➢ Initialize $w_i \leftarrow 1$ for all i
 o Mistake on pos: $w_i \leftarrow w_i (1 + \epsilon)$ for all $x_i = 1$
 o Mistake on neg: $w_i \leftarrow w_i / (1 + \epsilon)$ for all $x_i = 1$

• Analysis (combined):
 ➢ $k \cdot M_p - (k - 1) \cdot M_n \leq \left(\frac{r}{\epsilon} \right) \log n$
 ➢ $n + \epsilon n \cdot M_p - \frac{\epsilon n}{1 + \epsilon} \cdot M_n \geq 0$
 ➢ Solve to get that M_p and M_n are both $O(r k \log n)$