Lecture 10

Sublinear Time Algorithms (contd)

Recap

e Sublinear time algorithms

> Deterministic + exact: binary search

> Deterministic + inexact: estimating diameter in a metric
space

» Randomized + exact: searching in a sorted list
o Lower bound (thus optimality) using Yao’s principle

> Randomized + inexact:
o Estimating average degree in a graph
o Estimating size of maximal matching in a graph

o Property testing
* Testing linearity of a Boolean function

CSC2420 - Allan Borodin & Nisarg Shah

Today

e Continue sublinear time property testing
> Testing if an array is sorted
> Testing if a graph is bipartite

* Some comments about sublinear space algorithms

* Begin streaming algorithms
> Find the missing element(s)
> Finding very frequent or very rare elements
» Counting the number of distinct elements

CSC2420 - Allan Borodin & Nisarg Shah

Testing Monotonicity of Array

* Input: Array A of length n with O(1) access to A|i]
* Check: Ali] < A[i + 1] foreveryi € {1,...,n — 1}

* Definition of “at least e-far”: You need to change at
least en entries to make it monotonic

» Equivalently, there are at least en entries that are not
between their adjacent values.

logn

* Goal: 1-sided algorithm with O () qgueries

€

CSC2420 - Allan Borodin & Nisarg Shah

Testing Monotonicity of Array

* Proposal:

» Pick t random indices i, and return “no” even if x; > x;.4
for even one of them.

* No!
»For111..1000...0(n/2 each), we’llneed t = Q(n)

* Proposal:
» Pick t random pairs (i,j) with i < j, and return “no” if
x; > xj for even one of them.
* No!
»>102132435465... (two interleaved sorted lists)

> Ya-far (WHY?), but need t =)(n) (by Birthday Paradox,
we also must access Q(+/n) elements) (WHY?)

CSC2420 - Allan Borodin & Nisarg Shah

Testing Monotonicity of Array

4 .
* Algorithm:
> Choose 2 /e random indices i.
» For each i, do a binary search for A[i].
\ Return “yes” if all binary searches succeed.

~N

* Assume all elements are distinct w.l.o0.g.

> Can replace A[i] by (A]i], i) and use lexicographic
comparison

* Important observation:

> “searchable” elements form an increasing subsequence!
(WHY?)

CSC2420 - Allan Borodin & Nisarg Shah

Testing Monotonicity of Array

a ,)
* Algorithm:
> Choose 2 /e random indices i.
» For each i, do a binary search for A[i].
\ Return “yes” if all binary searches succeed.)

 Thus:

> If & - n elements searchable = array is at most (1 — a)-far
from monotonic

> If array is at least e-far from monotonic = atleaste - n
elements must not be searchable

o Each iteration fails to detect violation w.p. at most 1 — €

2
o All 2 /€ iterations fail to detect w.p. at most (1 — €)e < 1/;

CSC2420 - Allan Borodin & Nisarg Shah

Graph Property Testing

* It’s an active area of research by itself.
letG = (V,E)withn = |V|andm = |E]

* Input models:

> Dense: Represented by adjacency matrix
o Queryif (i,j) € E'in 0(1) time

o e-far from satisfying P if en? matrix entries must be changed to
satisfy P

o Change required = e-fraction of the input

CSC2420 - Allan Borodin & Nisarg Shah

Graph Property Testing

* It’s an active area of research by itself.
letG = (V,E)withn = |V|andm = |E]

* Input models:

> Sparse: Represented by adjacency lists
o Query if (v, i) to get the i*" neighbor of v in 0(1) time
o We only use it for graphs with degrees bounded by d

o e-far from satisfying P if e(dn) matrix entries must be changed to
satisfy P

o Change required = e-fraction of the input

> Generally, dense is easier than sparse

CSC2420 - Allan Borodin & Nisarg Shah

Testing Bipartiteness

e Dense model:

> Upper bound: 0(1/€?) (independent of n)
> Lower bound: Q(1/€1®)

* Sparse model (for constant d):

> Upper bound: O (\/ﬁ - poly (105 n))
> Lower bound: Q(y/n)

CSC2420 - Allan Borodin & Nisarg Shah

Testing Bipartiteness

* In the dense model:

(o Algorithm [Goldreich, Goldwasser, Ron] A
ool
> Pick a random subset of vertices S, |S| = © (ZEE)
_ > Output “bipartite” iff the induced subgraph is bipartite Y
* Analysis:

> Easy: If the graph is bipartite, algorithm always accepts.
> Claim: If the graph is e-far, it rejects w.p. at least 2/3
> Running time: trivially constant (i.e., independent of n)

CSC2420 - Allan Borodin & Nisarg Shah

Testing Bipartiteness

* Q: Why doesn’t this work for the sparse model?
> Take a line graph of n nodes. Throw en additional edges.

> In the dense model, we don’t care about this instance
because it’s not e-far (only € /n-far).

> In the sparse model, we care about it, and the previous
algorithm will not work.

CSC2420 - Allan Borodin & Nisarg Shah

Testing Bipartiteness

* In the sparse model:

(Algorithm [Goldreich, Ron])
* Repeat O(1/€) times:

» Pick a random vertex v
> Run OddCycle(v), and if it finds an odd cycle, REJECT.

(If no trial rejected, then ACCEPT. Y

* OddCycle:
> Performs poly(logn/e) random walks from v, each of
length poly(logn/e).
> If a vertex is reachable by an even-length path and an
odd-length prefix, an odd cycle is detected.

CSC2420 - Allan Borodin & Nisarg Shah

Limitations of Sublinear Time

* The problems we saw are rather exceptions.

* For most problems, there is not much you can do
in sublinear time.

* For instance, these problems require Q(n?) time:

> Estimating min d; ; in a metric space d.
L,J
o Contrast this with the sublinear algorithm we saw for estimating
max d; ; (diameter)
L]
> Estimating the cost of the minimum-cost matching
» Estimating the cost of k-median for k = Q(n)

> ...

CSC2420 - Allan Borodin & Nisarg Shah

Sublinear Space Algorithms

* An important topic in complexity theory

 Fundamental unsolved questions:
> Is NSPACE(S) = DSPACE(S) for S = logn?
> IsP =L?(L =DSPACE(logn), and we know L € P)

> What’s the relation between P and polyL. = DSPACE ((log n)o(l))?

o We know P # polyL, but don’t know if P € polyL, polyL c P, or if neither is
contained in the other.

e Savitch’s theorem:
> DSPACE(S) € NSPACE(S) < DSPACE(SZ)

CSC2420 - Allan Borodin & Nisarg Shah

USTCON vs STCON

* USTCON (resp. STCON) is the problem of checking if a given
source node has a path to a given target node in an
undirected (resp. directed) graph.

» USTCON € RSPACE(logn) was shown in 1979 through a random-walk
based algorithm

» After much effort, Reingold [2008] finally showed that USTCON €
DSPACE(logn)

* Open questions:
> Is STCON in RSPACE(logn), or maybe even in RSPACE(logn)?
> What about o(log? n) instead of logn space?
> 1s RSPACE(S) = DSPACE(S)?

CSC2420 - Allan Borodin & Nisarg Shah

Streaming Algorithms

* Input data comes as a stream aq, ..., a,,, where,
say, each a; € {1, ...,n}.
> The stream is typically too large to fit in the memory.

> We want to use only S(m, n) memory for sublinear S.

o We can measure this in terms of the number of integers stored, or
the number of actual bits stored (might be log n times).

> It is also desired that we do not take too much processing
time per element of the strem.
o 0(1) isidea, but O(log(im + n)) might be okay!

> If we don’t know m in advance, this can often act as an
online algorithm.

CSC2420 - Allan Borodin & Nisarg Shah

Streaming Algorithms

* Input data comes as a stream aq, ..., a,,, where,
say, each a; € {1, ...,n}.
> Most questions are about some statistic of the stream.

> E.g., “how many distinct elements does it have?”, or
“count the #times the most frequent element appears”

» Once again, we will often approximate the answer.

» Most algorithms process the stream in one pass, but
sometimes you can achieve more if you can do two or
more passes.

CSC2420 - Allan Borodin & Nisarg Shah

Missing Element Problem

* Problem: Given a stream {a4, ..., a,,_1}, where
each element is a distinct integer from {1, ..., n},
find the unique missing element.

* An n-bit algorithm is obvious

> Keep a bit for each integer.
> At the end, spend O (n) time to search for the 0 bit.

* We can do O(logn) bits by maintaining the sum.
n(n+1) _SUM

» Missing element =

e Deterministic + exact.

CSC2420 - Allan Borodin & Nisarg Shah

Missing Elements Problem

* Problem: Given a stream {aq, ..., a,,_;}, Where
each element is a distinct integer from {1, ..., n},
find all k missing elements.

* The previous algorithm can be generalized:
> Instead of just computing the sum, compute power-sums.

> {Sj}1sj3k where S; = Y721 (a;)!
> At the end, we have k equations, and k unknowns.
> This uses 0(k?logn) space.

> Computationally expensive to solve the equations

o Using Newton’s identities followed by finding roots of a
polynomial

CSC2420 - Allan Borodin & Nisarg Shah

Missing Elements Problem

* We can design much more efficient algorithms if
we use randomization.

> There is a streaming algorithm with space and time/item
thatis O(klogklogn).

> It can also be shown that () (k log (%)) space is
necessary.

CSC2420 - Allan Borodin & Nisarg Shah

Frequency Moments

* Another classic problem is that of computing
frequency moments.
> Let A = a4, ..., a,, be adata stream with aq; € {1, ...,n}.
» Let m; denote the number of occurrences of value i.
> Then for k > 0, the k" frequency moment is defined as
Fr = z (m;)"
i€[n]
» Fy = # distinct elements

> F]_ =m
» F, = Gini’s homogeneity index
o The greater the value of F,, the greater the homogeneity in A

CSC2420 - Allan Borodin & Nisarg Shah

Frequency Moments

* Goal: Given ¢, 6, find Fy, s.t.
Pr[|F, — Fr| > €F] <6
* Seminal paper by Alon, Matias, Szegedy [AMS’99]

> k = 0: For every ¢ > 2, O(logn) space algorithm s.t.
Pr[(1/c)Fy S Fy < cFyl =1-2/c

>k =2:0 ((logn + logm) log(1/5)/e) = 0(1) space

>k >3:0 (ml‘l/k poly(1/¢) polylog(m,n, 1/5)) space
> k > 5: Lower bound of Q(m!~>/k)

CSC2420 - Allan Borodin & Nisarg Shah

Frequency Moments

* Goal: Given ¢, 6, find Fy, s.t.
Pr[|F, — F.| > €F,] < &

* Seminal paper by Alon, Matias, Szegedy [AMS’99]
> k = 0: For every ¢ > 2, O(logn) space algorithm s.t.
Pr[(Y/c)Fs S Fy < cFy]l = 1-2/c

> Exactly counting F, requires {1(n) space:

o Once the stream is processed, the algorithm acts as a membership
tester. On new element x, the count increases by 1 iff x was not
part of the stream.

o Algorithm must have enough memory to distinguish between all
possible 2™ states

CSC2420 - Allan Borodin & Nisarg Shah

Frequency Moments

* Goal: Given ¢, 6, find Fy, s.t.
Pr[|F, — F.| > €F,] < &

* Seminal paper by Alon, Matias, Szegedy [AMS’99]
> k = 0: For every ¢ > 2, O(logn) space algorithm s.t.
Pr[(Y/c)Fs S Fy < cFy]l = 1-2/c

> State-of-the-art is “HyperLoglLog Algorithm”
o Uses hash functions
o Widely used, theoretically near-optimal, practically quite fast
o Uses O(e"?loglogn + logn) space

o It can estimate > 10° distinct elements with 98% accuracy using
only 1.5kB memory!

CSC2420 - Allan Borodin & Nisarg Shah

Frequency Moments

* Goal: Given ¢, 6, find Fy, s.t.
Pr[|F, — F.| > €F,] < &

* Seminal paper by Alon, Matias, Szegedy [AMS’99]

>k > 2:The Q(ml‘S/k) bound was improved to
Q(m'~2/k) by Bar Yossef et al.
o Their bound also works for real-valued k.

> Indyk and Woodruff [2005] gave an algorithm that works
for real-valued k > 2 with a matching upper bound of

0’(m1—2/k).

CSC2420 - Allan Borodin & Nisarg Shah

AMS F;, Algorithm

* The basic idea is to define a random variable Y
whose expected value is close to Fj, and variance is
sufficiently small such that it can be calculated
under the space constraint.

* We will present the AMS algorithm for computing
F,., and sketch the proof for k = 3 as well as the
improved proof for k = 2.

CSC2420 - Allan Borodin & Nisarg Shah

AMS F;, Algorithm
ﬂlgorithm: \

> Lets; = 8¢ 2k m!~/kand s, = 2log1/s.
> LetY = median(Yl, ...,YSZ), where

> Y = mean(Xi,l, ., Xis,), Where

o X;j arei.i.d.random variables that are calculated as follows:

o~

For each X; ;, choose arandom p € [1, ..., m] in advance.

J?
When a,, arrives, note down this value.

In the remaining stream, maintainr = |[{q|q = pand a; = a,}|.

K Xij= m(rk —(r— 1)"). /

* Space:
> Fors; - s, variables X, logn space to store a,, logm space to store r.

O
O
@)
O

e Note: This assumes we know m. But it can be estimated as the
stream unfolds.

CSC2420 - Allan Borodin & Nisarg Shah

AMS F;, Algorithm

* We want to show: E|X]| = Fj, and Var[X] is small.

* E[X] = E|m(r* — (r — 1)¥)]
> The m different choices of p € [m] have probability 1/m.

> Thus, E[X] is just the sum of 7* — (r — 1)* across all
choices of p.

» For each distinct value i, there will be m; terms:
() = (m; = 1F) + ((m; = DF = (my = 2)%) + -+ (1% = 0F) = ()
> Thus, the overall sumis F,, = Y.;(m;)¥.

* Thus, E[Y] = E|X] = F;,

CSC2420 - Allan Borodin & Nisarg Shah

AMS F;, Algorithm

* To show: Pr[|Y; — F | > €F,] < /g
> Median over 2log 1/6 many Y; will do the rest.

* Chebyshev’s inequality'

> PrllY; — E[Y]| > eE[v]] < 5o
> Var[y)] < V“;[X < E[XZ] and E[Y] = E[X] = F,.
> Thus, probability bound is: Just more
E[X?] _ E[X?] algebral
51€2(Fr)? ge-2 kml_l/kEZ(F}rc)2
> To show that this is at most 1/8, we want to show: O
E[X?] < km'~ /k(F,)? O

> Show that: E[X?] < kF;Fyj_q, and F{Fpp_1 < m' Tk (F,)?

CSC2420 - Allan Borodin & Nisarg Shah

Sketch of F, improvement

* They retain s, = 2log1/4, but decrease s; to just
a constant 16 /€.

> The idea is that X will not maintain a count for each value
separately, but rather an aggregate.

>7Z =Y1" b mg, thenX = Z?
> The vector (bq, ..., b,;) € {—1,1}" is chosen at random as
follows:
o LetV = {vy, ..., v3} be 0(n?) “four-wise independent” vectors
o Each v, = (vp,l, ...,vp)n) e{—1,1}"
o Choosep € {1, ..., h} at random, and set (by, ..., by) = .

CSC2420 - Allan Borodin & Nisarg Shah

Majority Element

* Input: Stream A = a4, ..., a,;, where a; € [n]

* Q: Is there a value i that appears more than m/2
times?

(Algorithm: \

> Store candidate a”, and a counter c (initially c = 0).

»Fori=1..m
olfc=0:Seta” =a;,andc = 1.
o Else:

 Ifa”"=a;,c<c+1

\ e fa*#a;,cc—1 /

CSC2420 - Allan Borodin & Nisarg Shah

Majority Element

* Space: Clearly O(logm + logn) bits

e Claim: If there exists a value v that appears more
than m/2 times, then a™ = v at the end.

* Proof:

> Take an occurrence of v (say a;), and let’s pair it up:

o If it decreases the counter, pair up with the unique element q;
(j < i) that contributed the 1 we just decreased.

o If it increases the counter:
e |f the added 1 is never taken back, QED!

* Ifitis decreased by a; (j > i), pair up with that.

> Because at least occurrence of v is not paired, the “never
taken back” case happens at least once.

CSC2420 - Allan Borodin & Nisarg Shah

Majority Element

* Space: Clearly O(logm + logn) bits

e Claim: If there exists a value v that appears more
than m/2 times, then a™ = v at the end.

* A simpler proof:
> At any step, let ¢’ = cifa* = v, and ¢’ = —c otherwise.
> Every occurrence of v must increase ¢’ by 1.

> Every occurrence of a value other than v either increases
or decreases ¢’ by 1.

> Majority = more increments than decrements in c'.
» Thus, a positive value at the end!

CSC2420 - Allan Borodin & Nisarg Shah

Majority Element

* Note 1: When a majority element does not exist,
the algorithm doesn’t necessarily find the mode.

* Note 2: If a majority element exists, it correctly
finds that element. However, if there is no majority
element, the algorithm does not detect that and
still returns a value.

> It can be trivially checked if the returned value is indeed a
majority element if a second pass over the stream is
allowed.

> Surprisingly, we can prove that this cannot be done in 1-
pass. (Next lecture!)

CSC2420 - Allan Borodin & Nisarg Shah

