
Lecture 10
Sublinear Time Algorithms (contd)

CSC2420 – Allan Borodin & Nisarg Shah 1

Recap

CSC2420 – Allan Borodin & Nisarg Shah 2

• Sublinear time algorithms
➢ Deterministic + exact: binary search

➢ Deterministic + inexact: estimating diameter in a metric
space

➢ Randomized + exact: searching in a sorted list
o Lower bound (thus optimality) using Yao’s principle

➢ Randomized + inexact:
o Estimating average degree in a graph

o Estimating size of maximal matching in a graph

o Property testing

• Testing linearity of a Boolean function

Today

CSC2420 – Allan Borodin & Nisarg Shah 3

• Continue sublinear time property testing
➢ Testing if an array is sorted

➢ Testing if a graph is bipartite

• Some comments about sublinear space algorithms

• Begin streaming algorithms
➢ Find the missing element(s)

➢ Finding very frequent or very rare elements

➢ Counting the number of distinct elements

Testing Monotonicity of Array

CSC2420 – Allan Borodin & Nisarg Shah 4

• Input: Array 𝐴 of length 𝑛 with 𝑂(1) access to 𝐴[𝑖]

• Check: 𝐴 𝑖 < 𝐴[𝑖 + 1] for every 𝑖 ∈ {1,… , 𝑛 − 1}

• Definition of “at least 𝜖-far”: You need to change at
least 𝜖𝑛 entries to make it monotonic
➢ Equivalently, there are at least 𝜖𝑛 entries that are not

between their adjacent values.

• Goal: 1-sided algorithm with 𝑂
log 𝑛

𝜖
queries

Testing Monotonicity of Array

CSC2420 – Allan Borodin & Nisarg Shah 5

• Proposal:
➢ Pick 𝑡 random indices 𝑖, and return “no” even if 𝑥𝑖 > 𝑥𝑖+1

for even one of them.

• No!
➢ For 1 1 1 … 1 0 0 0 … 0 (𝑛/2 each), we’ll need 𝑡 = Ω(𝑛)

• Proposal:
➢ Pick 𝑡 random pairs (𝑖, 𝑗) with 𝑖 < 𝑗, and return “no” if
𝑥𝑖 > 𝑥𝑗 for even one of them.

• No!
➢ 1 0 2 1 3 2 4 3 5 4 6 5 … (two interleaved sorted lists)
➢½-far (WHY?), but need 𝑡 ≥ Ω(𝑛) (by Birthday Paradox,

we also must access Ω 𝑛 elements) (WHY?)

Testing Monotonicity of Array

CSC2420 – Allan Borodin & Nisarg Shah 6

• Algorithm:
➢ Choose 2/𝜖 random indices 𝑖.

➢ For each 𝑖, do a binary search for 𝐴[𝑖].

➢ Return “yes” if all binary searches succeed.

• Assume all elements are distinct w.l.o.g.
➢ Can replace 𝐴[𝑖] by (𝐴 𝑖 , 𝑖) and use lexicographic

comparison

• Important observation:
➢ “searchable” elements form an increasing subsequence!

(WHY?)

Testing Monotonicity of Array

CSC2420 – Allan Borodin & Nisarg Shah 7

• Algorithm:
➢ Choose 2/𝜖 random indices 𝑖.

➢ For each 𝑖, do a binary search for 𝐴[𝑖].

➢ Return “yes” if all binary searches succeed.

• Thus:
➢ If 𝛼 ⋅ 𝑛 elements searchable ⇒ array is at most 1 − 𝛼 -far

from monotonic

➢ If array is at least 𝜖-far from monotonic ⇒ at least 𝜖 ⋅ 𝑛
elements must not be searchable
o Each iteration fails to detect violation w.p. at most 1 − 𝜖

o All 2/𝜖 iterations fail to detect w.p. at most 1 − 𝜖
2

𝜖 ≤ Τ1 3

Graph Property Testing

CSC2420 – Allan Borodin & Nisarg Shah 8

• It’s an active area of research by itself.

• Let 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉| and 𝑚 = |𝐸|

• Input models:
➢ Dense: Represented by adjacency matrix
o Query if 𝑖, 𝑗 ∈ 𝐸 in 𝑂(1) time

o 𝜖-far from satisfying 𝑃 if 𝜖𝑛2 matrix entries must be changed to
satisfy 𝑃

o Change required = 𝜖-fraction of the input

Graph Property Testing

CSC2420 – Allan Borodin & Nisarg Shah 9

• It’s an active area of research by itself.

• Let 𝐺 = (𝑉, 𝐸) with 𝑛 = |𝑉| and 𝑚 = |𝐸|

• Input models:
➢ Sparse: Represented by adjacency lists
o Query if 𝑣, 𝑖 to get the 𝑖𝑡ℎ neighbor of 𝑣 in 𝑂(1) time

o We only use it for graphs with degrees bounded by 𝑑

o 𝜖-far from satisfying 𝑃 if 𝜖(𝑑𝑛) matrix entries must be changed to
satisfy 𝑃

o Change required = 𝜖-fraction of the input

➢ Generally, dense is easier than sparse

Testing Bipartiteness

CSC2420 – Allan Borodin & Nisarg Shah 10

• Dense model:
➢ Upper bound: 𝑂(Τ1 𝜖2) (independent of 𝑛)

➢ Lower bound: Ω(Τ1 𝜖1.5)

• Sparse model (for constant 𝑑):

➢ Upper bound: 𝑂 𝑛 ⋅ 𝑝𝑜𝑙𝑦
log 𝑛

𝜖

➢ Lower bound: Ω(𝑛)

Testing Bipartiteness

CSC2420 – Allan Borodin & Nisarg Shah 11

• In the dense model:

• Algorithm [Goldreich, Goldwasser, Ron]

➢ Pick a random subset of vertices 𝑆, 𝑆 = Θ
log

1

𝜖

𝜖2

➢ Output “bipartite” iff the induced subgraph is bipartite

• Analysis:
➢ Easy: If the graph is bipartite, algorithm always accepts.

➢ Claim: If the graph is 𝜖-far, it rejects w.p. at least 2/3

➢ Running time: trivially constant (i.e., independent of 𝑛)

Testing Bipartiteness

CSC2420 – Allan Borodin & Nisarg Shah 12

• Q: Why doesn’t this work for the sparse model?
➢ Take a line graph of 𝑛 nodes. Throw 𝜖𝑛 additional edges.

➢ In the dense model, we don’t care about this instance
because it’s not 𝜖-far (only 𝜖/𝑛-far).

➢ In the sparse model, we care about it, and the previous
algorithm will not work.

Testing Bipartiteness

CSC2420 – Allan Borodin & Nisarg Shah 13

• In the sparse model:

• Algorithm [Goldreich, Ron]

• Repeat 𝑂(Τ1 𝜖) times:
➢ Pick a random vertex 𝑣
➢ Run 𝑂𝑑𝑑𝐶𝑦𝑐𝑙𝑒(𝑣), and if it finds an odd cycle, REJECT.

• If no trial rejected, then ACCEPT.

• OddCycle:
➢ Performs 𝑝𝑜𝑙𝑦(Τlog 𝑛 𝜖) random walks from 𝑣, each of

length 𝑝𝑜𝑙𝑦(Τlog 𝑛 𝜖).
➢ If a vertex is reachable by an even-length path and an

odd-length prefix, an odd cycle is detected.

Limitations of Sublinear Time

CSC2420 – Allan Borodin & Nisarg Shah 14

• The problems we saw are rather exceptions.

• For most problems, there is not much you can do
in sublinear time.

• For instance, these problems require Ω(𝑛2) time:
➢ Estimating min

𝑖,𝑗
𝑑𝑖,𝑗 in a metric space 𝑑.

o Contrast this with the sublinear algorithm we saw for estimating
max
𝑖,𝑗

𝑑𝑖,𝑗 (diameter)

➢ Estimating the cost of the minimum-cost matching

➢ Estimating the cost of 𝑘-median for 𝑘 = Ω(𝑛)

➢ …

Sublinear Space Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 15

• An important topic in complexity theory

• Fundamental unsolved questions:
➢ Is 𝑁𝑆𝑃𝐴𝐶𝐸 𝑆 = 𝐷𝑆𝑃𝐴𝐶𝐸(𝑆) for 𝑆 ≥ log𝑛?

➢ Is 𝑃 = 𝐿? (𝐿 = 𝐷𝑆𝑃𝐴𝐶𝐸(log 𝑛), and we know 𝐿 ⊆ 𝑃)

➢ What’s the relation between 𝑃 and polyL = 𝐷𝑆𝑃𝐴𝐶𝐸 log 𝑛 𝑂 1 ?

o We know 𝑃 ≠ 𝑝𝑜𝑙𝑦𝐿, but don’t know if 𝑃 ⊂ 𝑝𝑜𝑙𝑦𝐿, 𝑝𝑜𝑙𝑦𝐿 ⊂ 𝑃, or if neither is
contained in the other.

• Savitch’s theorem:
➢ 𝐷𝑆𝑃𝐴𝐶𝐸 𝑆 ⊆ 𝑁𝑆𝑃𝐴𝐶𝐸 𝑆 ⊆ 𝐷𝑆𝑃𝐴𝐶𝐸(𝑆2)

USTCON vs STCON

CSC2420 – Allan Borodin & Nisarg Shah 16

• USTCON (resp. STCON) is the problem of checking if a given
source node has a path to a given target node in an
undirected (resp. directed) graph.
➢ USTCON ∈ RSPACE(log 𝑛) was shown in 1979 through a random-walk

based algorithm

➢ After much effort, Reingold [2008] finally showed that USTCON ∈
DSPACE log 𝑛

• Open questions:
➢ Is STCON in RSPACE(log 𝑛), or maybe even in RSPACE(log 𝑛)?

➢ What about 𝑜(log2 𝑛) instead of log 𝑛 space?

➢ Is RSPACE(𝑆) = DSPACE(𝑆)?

Streaming Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 17

• Input data comes as a stream 𝑎1, … , 𝑎𝑚, where,
say, each 𝑎𝑖 ∈ {1, … , 𝑛}.
➢ The stream is typically too large to fit in the memory.

➢ We want to use only 𝑆(𝑚, 𝑛) memory for sublinear 𝑆.
o We can measure this in terms of the number of integers stored, or

the number of actual bits stored (might be log 𝑛 times).

➢ It is also desired that we do not take too much processing
time per element of the strem.
o 𝑂(1) is idea, but 𝑂 log 𝑚 + 𝑛 might be okay!

➢ If we don’t know 𝑚 in advance, this can often act as an
online algorithm.

Streaming Algorithms

CSC2420 – Allan Borodin & Nisarg Shah 18

• Input data comes as a stream 𝑎1, … , 𝑎𝑚, where,
say, each 𝑎𝑖 ∈ {1, … , 𝑛}.
➢ Most questions are about some statistic of the stream.

➢ E.g., “how many distinct elements does it have?”, or
“count the #times the most frequent element appears”

➢ Once again, we will often approximate the answer.

➢ Most algorithms process the stream in one pass, but
sometimes you can achieve more if you can do two or
more passes.

Missing Element Problem

CSC2420 – Allan Borodin & Nisarg Shah 19

• Problem: Given a stream 𝑎1, … , 𝑎𝑛−1 , where
each element is a distinct integer from {1, … , 𝑛},
find the unique missing element.

• An 𝑛-bit algorithm is obvious
➢ Keep a bit for each integer.

➢ At the end, spend 𝑂(𝑛) time to search for the 0 bit.

• We can do 𝑂(log 𝑛) bits by maintaining the sum.

➢ Missing element =
𝑛 𝑛+1

2
− 𝑆𝑈𝑀

• Deterministic + exact.

Missing Elements Problem

CSC2420 – Allan Borodin & Nisarg Shah 20

• Problem: Given a stream 𝑎1, … , 𝑎𝑛−𝑘 , where
each element is a distinct integer from {1, … , 𝑛},
find all 𝑘 missing elements.

• The previous algorithm can be generalized:
➢ Instead of just computing the sum, compute power-sums.

➢ 𝑆𝑗 1≤𝑗≤𝑘
where 𝑆𝑗 = σ𝑖=1

𝑛−𝑘 𝑎𝑖
𝑗

➢ At the end, we have 𝑘 equations, and 𝑘 unknowns.

➢ This uses 𝑂(𝑘2 log 𝑛) space.

➢ Computationally expensive to solve the equations
o Using Newton’s identities followed by finding roots of a

polynomial

Missing Elements Problem

CSC2420 – Allan Borodin & Nisarg Shah 21

• We can design much more efficient algorithms if
we use randomization.
➢ There is a streaming algorithm with space and time/item

that is 𝑂(𝑘 log 𝑘 log 𝑛).

➢ It can also be shown that Ω 𝑘 log
𝑛

𝑘
space is

necessary.

Frequency Moments

CSC2420 – Allan Borodin & Nisarg Shah 22

• Another classic problem is that of computing
frequency moments.
➢ Let 𝐴 = 𝑎1, … , 𝑎𝑚 be a data stream with 𝑎𝑖 ∈ {1,… , 𝑛}.

➢ Let 𝑚𝑖 denote the number of occurrences of value 𝑖.

➢ Then for 𝑘 ≥ 0, the 𝑘𝑡ℎ frequency moment is defined as

𝐹𝑘 =
𝑖∈ 𝑛

𝑚𝑖
𝑘

➢ 𝐹0 = # distinct elements

➢ 𝐹1 = 𝑚

➢ 𝐹2 = Gini’s homogeneity index
o The greater the value of 𝐹2, the greater the homogeneity in 𝐴

Frequency Moments

CSC2420 – Allan Borodin & Nisarg Shah 23

• Goal: Given 𝜖, 𝛿, find 𝐹𝑘
′ s.t.

Pr 𝐹𝑘 − 𝐹𝑘
′ > 𝜖𝐹𝑘 ≤ 𝛿

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
➢ 𝑘 = 0: For every 𝑐 > 2, 𝑂(log 𝑛) space algorithm s.t.

Pr ൗ1 𝑐 𝐹0 ≤ 𝐹0
′ ≤ 𝑐𝐹0 ≥ 1 − Τ2 𝑐

➢ 𝑘 = 2: 𝑂 log 𝑛 + log𝑚 Τlog Τ1 𝛿 𝜖 = ෨𝑂(1) space

➢ 𝑘 ≥ 3: ෨𝑂 𝑚1− Τ1 𝑘 𝑝𝑜𝑙𝑦 Τ1 𝜖 𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑚, 𝑛, Τ1 𝛿 space

➢ 𝑘 > 5: Lower bound of Ω 𝑚1− Τ5 𝑘

Frequency Moments

CSC2420 – Allan Borodin & Nisarg Shah 24

• Goal: Given 𝜖, 𝛿, find 𝐹𝑘
′ s.t.

Pr 𝐹𝑘 − 𝐹𝑘
′ > 𝜖𝐹𝑘 ≤ 𝛿

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
➢ 𝑘 = 0: For every 𝑐 > 2, 𝑂(log 𝑛) space algorithm s.t.

Pr ൗ1 𝑐 𝐹0 ≤ 𝐹0
′ ≤ 𝑐𝐹0 ≥ 1 − 2/𝑐

➢ Exactly counting 𝐹0 requires Ω(𝑛) space:
o Once the stream is processed, the algorithm acts as a membership

tester. On new element 𝑥, the count increases by 1 iff 𝑥 was not
part of the stream.

o Algorithm must have enough memory to distinguish between all
possible 2𝑛 states

Frequency Moments

CSC2420 – Allan Borodin & Nisarg Shah 25

• Goal: Given 𝜖, 𝛿, find 𝐹𝑘
′ s.t.

Pr 𝐹𝑘 − 𝐹𝑘
′ > 𝜖𝐹𝑘 ≤ 𝛿

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
➢ 𝑘 = 0: For every 𝑐 > 2, 𝑂(log 𝑛) space algorithm s.t.

Pr ൗ1 𝑐 𝐹0 ≤ 𝐹0
′ ≤ 𝑐𝐹0 ≥ 1 − 2/𝑐

➢ State-of-the-art is “HyperLogLog Algorithm”
o Uses hash functions

o Widely used, theoretically near-optimal, practically quite fast

o Uses 𝑂 𝜖−2 log log 𝑛 + log𝑛 space

o It can estimate > 109 distinct elements with 98% accuracy using
only 1.5kB memory!

Frequency Moments

CSC2420 – Allan Borodin & Nisarg Shah 26

• Goal: Given 𝜖, 𝛿, find 𝐹𝑘
′ s.t.

Pr 𝐹𝑘 − 𝐹𝑘
′ > 𝜖𝐹𝑘 ≤ 𝛿

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
➢ 𝑘 > 2: The Ω 𝑚1− Τ5 𝑘 bound was improved to
Ω 𝑚1− Τ2 𝑘 by Bar Yossef et al.
o Their bound also works for real-valued 𝑘.

➢ Indyk and Woodruff [2005] gave an algorithm that works
for real-valued 𝑘 > 2 with a matching upper bound of
෨𝑂 𝑚1− Τ2 𝑘 .

AMS 𝐹𝑘 Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 27

• The basic idea is to define a random variable 𝑌
whose expected value is close to 𝐹𝑘 and variance is
sufficiently small such that it can be calculated
under the space constraint.

• We will present the AMS algorithm for computing
𝐹𝑘, and sketch the proof for 𝑘 ≥ 3 as well as the
improved proof for 𝑘 = 2.

AMS 𝐹𝑘 Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 28

• Algorithm:

➢ Let 𝑠1 = 8𝜖−2𝑘 𝑚1− ൗ1 𝑘 and 𝑠2 = 2 log Τ1 𝛿.

➢ Let 𝑌 = 𝑚𝑒𝑑𝑖𝑎𝑛 𝑌1, … , 𝑌𝑠2 , where

➢ 𝑌𝑖 = 𝑚𝑒𝑎𝑛 𝑋𝑖,1, … , 𝑋𝑖,𝑠1 , where
o 𝑋𝑖,𝑗 are i.i.d. random variables that are calculated as follows:

o For each 𝑋𝑖,𝑗, choose a random 𝑝 ∈ [1,… ,𝑚] in advance.

o When 𝑎𝑝 arrives, note down this value.

o In the remaining stream, maintain 𝑟 = |{𝑞|𝑞 ≥ 𝑝 and 𝑎𝑞 = 𝑎𝑝}|.

o 𝑋𝑖,𝑗 = 𝑚 𝑟𝑘 − 𝑟 − 1 𝑘 .

• Space:
➢ For 𝑠1 ⋅ 𝑠2 variables 𝑋, log 𝑛 space to store 𝑎𝑝, log𝑚 space to store 𝑟.

• Note: This assumes we know 𝑚. But it can be estimated as the
stream unfolds.

AMS 𝐹𝑘 Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 29

• We want to show: 𝐸 𝑋 = 𝐹𝑘, and 𝑉𝑎𝑟[𝑋] is small.

• 𝐸 𝑋 = 𝐸 𝑚 𝑟𝑘 − 𝑟 − 1 𝑘

➢ The 𝑚 different choices of 𝑝 ∈ [𝑚] have probability 1/𝑚.

➢ Thus, 𝐸[𝑋] is just the sum of 𝑟𝑘 − 𝑟 − 1 𝑘 across all
choices of 𝑝.

➢ For each distinct value 𝑖, there will be 𝑚𝑖 terms:
𝑚𝑖

𝑘 − 𝑚𝑖 − 1 𝑘 + 𝑚𝑖 − 1 𝑘 − 𝑚𝑖 − 2 𝑘 +⋯+ 1𝑘 − 0𝑘 = 𝑚𝑖
𝑘

➢ Thus, the overall sum is 𝐹𝑘 = σ𝑖 𝑚𝑖
𝑘.

• Thus, 𝐸 𝑌 = 𝐸 𝑋 = 𝐹𝑘

AMS 𝐹𝑘 Algorithm

CSC2420 – Allan Borodin & Nisarg Shah 30

• To show: Pr 𝑌𝑖 − 𝐹𝑘 > 𝜖𝐹𝑘 ≤ Τ1 8

➢ Median over 2 log Τ1 𝛿 many 𝑌𝑖 will do the rest.

• Chebyshev’s inequality:

➢ Pr 𝑌𝑖 − 𝐸 𝑌𝑖 > 𝜖𝐸 𝑌𝑖 ≤
𝑉𝑎𝑟 𝑌

𝜖2 𝐸 𝑌 2

➢ 𝑉𝑎𝑟 𝑌𝑖 ≤
𝑉𝑎𝑟 𝑋

𝑠1
≤

𝐸 𝑋2

𝑠1
, and 𝐸 𝑌 = 𝐸 𝑋 = 𝐹𝑘.

➢ Thus, probability bound is:
𝐸 𝑋2

𝑠1𝜖
2 𝐹𝑘

2
=

𝐸 𝑋2

8𝜖−2 𝑘𝑚1− ൗ1 𝑘𝜖2 𝐹𝑘
2

➢ To show that this is at most 1/8, we want to show:

𝐸 𝑋2 ≤ 𝑘𝑚1− ൗ1 𝑘 𝐹𝑘
2

➢ Show that: 𝐸 𝑋2 ≤ 𝑘𝐹1𝐹2𝑘−1, and 𝐹1𝐹2𝑘−1 ≤ 𝑚1−
1

𝑘 𝐹𝑘
2

Just more
algebra!

Sketch of 𝐹2 improvement

CSC2420 – Allan Borodin & Nisarg Shah 31

• They retain 𝑠2 = 2 log 1/𝛿, but decrease 𝑠1 to just
a constant 16/𝜖2.
➢ The idea is that 𝑋 will not maintain a count for each value

separately, but rather an aggregate.

➢ 𝑍 = σ𝑡=1
𝑛 𝑏𝑡 𝑚𝑡, then 𝑋 = 𝑍2

➢ The vector 𝑏1, … , 𝑏𝑛 ∈ −1,1 𝑛 is chosen at random as
follows:
o Let 𝑉 = {𝑣1, … , 𝑣ℎ} be 𝑂(𝑛2) “four-wise independent” vectors

o Each 𝑣𝑝 = 𝑣𝑝,1, … , 𝑣𝑝,𝑛 ∈ −1,1 𝑛

o Choose 𝑝 ∈ {1,… , ℎ} at random, and set 𝑏1, … , 𝑏𝑛 = 𝑣𝑝.

Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 32

• Input: Stream 𝐴 = 𝑎1, … , 𝑎𝑚, where 𝑎𝑖 ∈ [𝑛]

• Q: Is there a value 𝑖 that appears more than 𝑚/2
times?

• Algorithm:
➢ Store candidate 𝑎∗, and a counter 𝑐 (initially 𝑐 = 0).

➢ For 𝑖 = 1…𝑚
o If 𝑐 = 0: Set 𝑎∗ = 𝑎𝑖, and 𝑐 = 1.

o Else:

• If 𝑎∗ = 𝑎𝑖 , 𝑐 ← 𝑐 + 1

• If 𝑎∗ ≠ 𝑎𝑖, 𝑐 ← 𝑐 − 1

Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 33

• Space: Clearly 𝑂(log𝑚 + log 𝑛) bits

• Claim: If there exists a value 𝑣 that appears more
than 𝑚/2 times, then 𝑎∗ = 𝑣 at the end.

• Proof:
➢ Take an occurrence of 𝑣 (say 𝑎𝑖), and let’s pair it up:
o If it decreases the counter, pair up with the unique element 𝑎𝑗

(𝑗 < 𝑖) that contributed the 1 we just decreased.

o If it increases the counter:

• If the added 1 is never taken back, QED!

• If it is decreased by 𝑎𝑗 (𝑗 > 𝑖), pair up with that.

➢ Because at least occurrence of 𝑣 is not paired, the “never
taken back” case happens at least once.

Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 34

• Space: Clearly 𝑂(log𝑚 + log 𝑛) bits

• Claim: If there exists a value 𝑣 that appears more
than 𝑚/2 times, then 𝑎∗ = 𝑣 at the end.

• A simpler proof:
➢ At any step, let 𝑐′ = 𝑐 if 𝑎∗ = 𝑣, and 𝑐′ = −𝑐 otherwise.

➢ Every occurrence of 𝑣 must increase 𝑐′ by 1.

➢ Every occurrence of a value other than 𝑣 either increases
or decreases 𝑐′ by 1.

➢ Majority ⇒ more increments than decrements in 𝑐′.

➢ Thus, a positive value at the end!

Majority Element

CSC2420 – Allan Borodin & Nisarg Shah 35

• Note 1: When a majority element does not exist,
the algorithm doesn’t necessarily find the mode.

• Note 2: If a majority element exists, it correctly
finds that element. However, if there is no majority
element, the algorithm does not detect that and
still returns a value.
➢ It can be trivially checked if the returned value is indeed a

majority element if a second pass over the stream is
allowed.

➢ Surprisingly, we can prove that this cannot be done in 1-
pass. (Next lecture!)

