Lecture 10 Sublinear Time Algorithms (contd)

Recap

- Sublinear time algorithms
 - > Deterministic + exact: binary search
 - Deterministic + inexact: estimating diameter in a metric space
 - Randomized + exact: searching in a sorted list
 Lower bound (thus optimality) using Yao's principle
 - Randomized + inexact:
 - $\,\circ\,$ Estimating average degree in a graph
 - \odot Estimating size of maximal matching in a graph
 - Property testing
 - Testing linearity of a Boolean function

Today

- Continue sublinear time property testing
 - > Testing if an array is sorted
 - > Testing if a graph is bipartite
- Some comments about sublinear space algorithms
- Begin streaming algorithms
 - > Find the missing element(s)
 - > Finding very frequent or very rare elements
 - > Counting the number of distinct elements

- Input: Array A of length n with O(1) access to A[i]
- Check: A[i] < A[i + 1] for every $i \in \{1, ..., n 1\}$
- Definition of "at least ϵ -far": You need to change at least ϵn entries to make it monotonic
 - Equivalently, there are at least entries that are not between their adjacent values.
- Goal: 1-sided algorithm with $O\left(\frac{\log n}{\epsilon}\right)$ queries

• Proposal:

> Pick t random indices i, and return "no" even if $x_i > x_{i+1}$ for even one of them.

• No!

> For 1 1 1 ... 1 0 0 0 ... 0 (n/2 each), we'll need $t = \Omega(n)$

• Proposal:

> Pick t random pairs (i, j) with i < j, and return "no" if $x_i > x_j$ for even one of them.

• No!

- 102132435465 ... (two interleaved sorted lists)
- > $\frac{1}{2}$ -far (WHY?), but need $t \ge \Omega(n)$ (by Birthday Paradox, we also must access $\Omega(\sqrt{n})$ elements) (WHY?)

• Algorithm:

- > Choose $2/\epsilon$ random indices *i*.
- > For each *i*, do a binary search for A[i].
- > Return "yes" if all binary searches succeed.
- Assume all elements are distinct w.l.o.g.
 - Can replace A[i] by (A[i], i) and use lexicographic comparison
- Important observation:
 - > "searchable" elements form an increasing subsequence! (WHY?)

• Algorithm:

- > Choose $2/\epsilon$ random indices *i*.
- > For each *i*, do a binary search for A[i].
- > Return "yes" if all binary searches succeed.

• Thus:

- > If $\alpha \cdot n$ elements searchable \Rightarrow array is at most (1α) -far from monotonic
- > If array is at least ϵ -far from monotonic \Rightarrow at least $\epsilon \cdot n$ elements must not be searchable

 $\,\circ\,$ Each iteration fails to detect violation w.p. at most $1-\epsilon$

• All $2/\epsilon$ iterations fail to detect w.p. at most $(1-\epsilon)^{\frac{2}{\epsilon}} \leq 1/3$

Graph Property Testing

- It's an active area of research by itself.
- Let G = (V, E) with n = |V| and m = |E|
- Input models:
 - Dense: Represented by adjacency matrix
 - Query if $(i, j) \in E$ in O(1) time
 - $\circ \epsilon$ -far from satisfying P if ϵn^2 matrix entries must be changed to satisfy P
 - \circ Change required = ϵ -fraction of the input

Graph Property Testing

- It's an active area of research by itself.
- Let G = (V, E) with n = |V| and m = |E|
- Input models:
 - Sparse: Represented by adjacency lists
 - \circ Query if (v, i) to get the i^{th} neighbor of v in O(1) time
 - \circ We only use it for graphs with degrees bounded by d
 - ϵ -far from satisfying P if $\epsilon(dn)$ matrix entries must be changed to satisfy P
 - \circ Change required = ϵ -fraction of the input
 - Generally, dense is *easier* than sparse

- Dense model:
 - > Upper bound: $O(1/\epsilon^2)$ (independent of n) > Lower bound: $\Omega(1/\epsilon^{1.5})$
- Sparse model (for constant d):
 > Upper bound: O (√n · poly (^{log n}/_ϵ))
 > Lower bound: Ω(√n)

- In the dense model:
- Algorithm [Goldreich, Goldwasser, Ron]
 - > Pick a random subset of vertices S, $|S| = \Theta\left(\frac{\log\frac{1}{\epsilon}}{\epsilon^2}\right)$

> Output "bipartite" iff the induced subgraph is bipartite

- Analysis:
 - > Easy: If the graph is bipartite, algorithm always accepts.
 - > Claim: If the graph is ϵ -far, it rejects w.p. at least 2/3
 - > Running time: trivially constant (i.e., independent of n)

- Q: Why doesn't this work for the sparse model?
 - > Take a line graph of n nodes. Throw ϵn additional edges.
 - > In the dense model, we don't care about this instance because it's not ϵ -far (only ϵ/n -far).
 - In the sparse model, we care about it, and the previous algorithm will not work.

- In the sparse model:
- Algorithm [Goldreich, Ron]
- Repeat $O(1/\epsilon)$ times:
 - \succ Pick a random vertex v
 - > Run OddCycle(v), and if it finds an odd cycle, REJECT.
- If no trial rejected, then ACCEPT.
- OddCycle:
 - > Performs $poly(\log n/\epsilon)$ random walks from v, each of length $poly(\log n/\epsilon)$.
 - If a vertex is reachable by an even-length path and an odd-length prefix, an odd cycle is detected.

Limitations of Sublinear Time

- The problems we saw are rather exceptions.
- For most problems, there is not much you can do in sublinear time.
- For instance, these problems require $\Omega(n^2)$ time:
 - > Estimating $\min_{i,j} d_{i,j}$ in a metric space d.
 - \circ Contrast this with the sublinear algorithm we saw for estimating $\max_{i,j} d_{i,j}$ (diameter)
 - > Estimating the cost of the minimum-cost matching
 - > Estimating the cost of k-median for $k = \Omega(n)$

≻ ...

Sublinear Space Algorithms

- An important topic in complexity theory
- Fundamental unsolved questions:
 - > Is NSPACE(S) = DSPACE(S) for $S \ge \log n$?
 - > Is P = L? ($L = DSPACE(\log n)$, and we know $L \subseteq P$)
 - > What's the relation between P and polyL = $DSPACE((\log n)^{O(1)})$?
 - We know $P \neq polyL$, but don't know if $P \subset polyL$, $polyL \subset P$, or if neither is contained in the other.
- Savitch's theorem:
 - $\succ DSPACE(S) \subseteq NSPACE(S) \subseteq DSPACE(S^2)$

USTCON vs STCON

- USTCON (resp. STCON) is the problem of checking if a given source node has a path to a given target node in an undirected (resp. directed) graph.
 - > USTCON \in RSPACE(log n) was shown in 1979 through a random-walk based algorithm
 - ➤ After much effort, Reingold [2008] finally showed that USTCON ∈ DSPACE(log n)
- Open questions:
 - > Is STCON in RSPACE($\log n$), or maybe even in RSPACE($\log n$)?
 - > What about $o(\log^2 n)$ instead of $\log n$ space?
 - > Is RSPACE(S) = DSPACE(S)?

Streaming Algorithms

- Input data comes as a stream a_1, \dots, a_m , where, say, each $a_i \in \{1, \dots, n\}$.
 - > The stream is typically too large to fit in the memory.
 - > We want to use only S(m, n) memory for sublinear S.
 - \circ We can measure this in terms of the number of integers stored, or the number of actual bits stored (might be $\log n$ times).
 - It is also desired that we do not take too much processing time per element of the strem.

 $\circ O(1)$ is idea, but $O(\log(m + n))$ might be okay!

If we don't know m in advance, this can often act as an online algorithm.

Streaming Algorithms

- Input data comes as a stream a_1, \dots, a_m , where, say, each $a_i \in \{1, \dots, n\}$.
 - > Most questions are about some statistic of the stream.
 - E.g., "how many distinct elements does it have?", or "count the #times the most frequent element appears"
 - > Once again, we will often approximate the answer.
 - Most algorithms process the stream in one pass, but sometimes you can achieve more if you can do two or more passes.

Missing Element Problem

- Problem: Given a stream {a₁, ..., a_{n-1}}, where each element is a distinct integer from {1, ..., n}, find the unique missing element.
- An *n*-bit algorithm is obvious
 - > Keep a bit for each integer.
 - > At the end, spend O(n) time to search for the 0 bit.
- We can do O(log n) bits by maintaining the sum.
 ➤ Missing element = ⁿ⁽ⁿ⁺¹⁾/₂ SUM
- Deterministic + exact.

Missing Elements Problem

- Problem: Given a stream {a₁, ..., a_{n-k}}, where each element is a distinct integer from {1, ..., n}, find all k missing elements.
- The previous algorithm can be generalized:
 > Instead of just computing the sum, compute power-sums.
 > {S_j}_{1≤j≤k} where S_j = ∑^{n-k}_{i=1}(a_i)^j
 - > At the end, we have k equations, and k unknowns.
 - > This uses $O(k^2 \log n)$ space.
 - Computationally expensive to solve the equations
 - Using Newton's identities followed by finding roots of a polynomial

Missing Elements Problem

- We can design much more efficient algorithms if we use randomization.
 - There is a streaming algorithm with space and time/item that is O(k log k log n).
 - > It can also be shown that $\Omega\left(k\log\left(\frac{n}{k}\right)\right)$ space is necessary.

- Another classic problem is that of computing frequency moments.
 - > Let $A = a_1, \dots, a_m$ be a data stream with $a_i \in \{1, \dots, n\}$.
 - > Let m_i denote the number of occurrences of value i.
 - > Then for $k \ge 0$, the k^{th} frequency moment is defined as $F_k = \sum_{i \in [n]} (m_i)^k$
 - $> F_0 = #$ distinct elements
 - $> F_1 = m$
 - > F_2 = Gini's homogeneity index

 \circ The greater the value of F_2 , the greater the homogeneity in A

• Goal: Given ϵ, δ , find F'_k s.t.

$$\Pr[|F_k - F'_k| > \epsilon F_k] \le \delta$$

• Seminal paper by Alon, Matias, Szegedy [AMS'99] > k = 0: For every c > 2, $O(\log n)$ space algorithm s.t. $\Pr[(1/c)F_0 \le F'_0 \le cF_0] \ge 1 - 2/c$ > k = 2: $O((\log n + \log m)\log(1/\delta)/\epsilon) = \tilde{O}(1)$ space > $k \ge 3$: $\tilde{O}(m^{1-1/k} \operatorname{poly}(1/\epsilon) \operatorname{polylog}(m, n, 1/\delta))$ space > k > 5: Lower bound of $\Omega(m^{1-5/k})$

• Goal: Given ϵ , δ , find F'_k s.t.

$$\Pr[|F_k - F'_k| > \epsilon F_k] \le \delta$$

• Seminal paper by Alon, Matias, Szegedy [AMS'99]

> k = 0: For every c > 2, $O(\log n)$ space algorithm s.t. $\Pr[(1/c)F_0 \le F'_0 \le cF_0] \ge 1 - 2/c$

- > Exactly counting F_0 requires $\Omega(n)$ space:
 - Once the stream is processed, the algorithm acts as a membership tester. On new element x, the count increases by 1 iff x was not part of the stream.
 - \circ Algorithm must have enough memory to distinguish between all possible 2^n states

• Goal: Given ϵ , δ , find F'_k s.t.

$$\Pr[|F_k - F'_k| > \epsilon F_k] \le \delta$$

• Seminal paper by Alon, Matias, Szegedy [AMS'99]

> k = 0: For every c > 2, $O(\log n)$ space algorithm s.t. $\Pr[(1/c)F_0 \le F'_0 \le cF_0] \ge 1 - 2/c$

> State-of-the-art is "HyperLogLog Algorithm"

Uses hash functions

- Widely used, theoretically near-optimal, practically quite fast
- \circ Uses $O(\epsilon^{-2} \log \log n + \log n)$ space
- \circ It can estimate > 10⁹ distinct elements with 98% accuracy using only 1.5kB memory!

• Goal: Given ϵ , δ , find F'_k s.t.

$$\Pr[|F_k - F'_k| > \epsilon F_k] \le \delta$$

- Seminal paper by Alon, Matias, Szegedy [AMS'99]
 - > k > 2: The $\Omega(m^{1-5/k})$ bound was improved to $\Omega(m^{1-2/k})$ by Bar Yossef et al.

 \circ Their bound also works for real-valued k.

> Indyk and Woodruff [2005] gave an algorithm that works for real-valued k > 2 with a matching upper bound of $\tilde{O}(m^{1-2/k})$.

- The basic idea is to define a random variable Y whose expected value is close to F_k and variance is sufficiently small such that it can be calculated under the space constraint.
- We will present the AMS algorithm for computing F_k , and sketch the proof for $k \ge 3$ as well as the improved proof for k = 2.

Algorithm:

> Let
$$s_1 = 8\epsilon^{-2}k m^{1-1/k}$$
 and $s_2 = 2\log^{1/\delta}$.

> Let
$$Y = median(Y_1, \dots, Y_{s_2})$$
, where

>
$$Y_i = mean(X_{i,1}, ..., X_{i,s_1})$$
, where

- $\circ X_{i,j}$ are i.i.d. random variables that are calculated as follows:
- For each $X_{i,j}$, choose a random $p \in [1, ..., m]$ in advance.
- \circ When a_p arrives, note down this value.

○ In the remaining stream, maintain $r = |\{q | q \ge p \text{ and } a_q = a_p\}|$.

o
$$X_{i,j} = m(r^k - (r-1)^k).$$

• Space:

- > For $s_1 \cdot s_2$ variables X, $\log n$ space to store a_p , $\log m$ space to store r.
- Note: This assumes we know *m*. But it can be estimated as the stream unfolds.

• We want to show: $E[X] = F_k$, and Var[X] is small.

•
$$E[X] = E\left[m\left(r^k - (r-1)^k\right)\right]$$

- > The *m* different choices of $p \in [m]$ have probability 1/m.
- ➤ Thus, E[X] is just the sum of r^k (r 1)^k across all choices of p.
- > For each distinct value *i*, there will be m_i terms: $((m_i)^k - (m_i - 1)^k) + ((m_i - 1)^k - (m_i - 2)^k) + \dots + (1^k - 0^k) = (m_i)^k$

> Thus, the overall sum is $F_k = \sum_i (m_i)^k$.

• Thus,
$$E[Y] = E[X] = F_k$$

- To show: Pr[|Y_i − F_k| > εF_k] ≤ ¹/₈
 ≻ Median over 2 log 1/δ many Y_i will do the rest.
- Chebyshev's inequality:

$$\begin{split} & \operatorname{Pr} \left[|Y_i - E[Y_i]| > \epsilon E[Y_i] \right] \leq \frac{\operatorname{Var}[Y]}{\epsilon^2 (E[Y])^2} \\ & \operatorname{Var}[Y_i] \leq \frac{\operatorname{Var}[X]}{s_1} \leq \frac{E[X^2]}{s_1}, \text{ and } E[Y] = E[X] = F_k. \\ & \text{Thus, probability bound is:} \\ & \frac{E[X^2]}{s_1 \epsilon^2 (F_k)^2} = \frac{E[X^2]}{8 \epsilon^{-2} \, k m^{1-1/k} \epsilon^2 (F_k)^2} \\ & \text{To show that this is at most } 1/8, \text{ we want to show:} \\ & E[X^2] \leq k m^{1-1/k} (F_k)^2 \\ & \text{Show that:} E[X^2] \leq k F_1 F_{2k-1}, \text{ and } F_1 F_{2k-1} \leq m^{1-\frac{1}{k}} (F_k)^2 \\ \end{split}$$

Sketch of *F*² improvement

- They retain $s_2 = 2 \log 1/\delta$, but decrease s_1 to just a constant $16/\epsilon^2$.
 - The idea is that X will not maintain a count for each value separately, but rather an aggregate.

$$> Z = \sum_{t=1}^{n} b_t m_t$$
, then $X = Z^2$

- > The vector $(b_1, ..., b_n) \in \{-1, 1\}^n$ is chosen at random as follows:
 - Let $V = \{v_1, ..., v_h\}$ be $O(n^2)$ "four-wise independent" vectors ○ Each $v_p = (v_{p,1}, ..., v_{p,n}) \in \{-1,1\}^n$
 - Choose $p \in \{1, ..., h\}$ at random, and set $(b_1, ..., b_n) = v_p$.

- Input: Stream $A = a_1, \dots, a_m$, where $a_i \in [n]$
- Q: Is there a value *i* that appears more than *m*/2 times?

• Algorithm:

> Store candidate a^* , and a counter c (initially c = 0).

> For
$$i = 1 ... m$$

$$\circ$$
 If $c = 0$: Set $a^* = a_i$, and $c = 1$.

\circ Else:

• If
$$a^* = a_i$$
, $c \leftarrow c + 1$

• If
$$a^* \neq a_i$$
, $c \leftarrow c - 1$

- Space: Clearly $O(\log m + \log n)$ bits
- Claim: If there exists a value v that appears more than m/2 times, then $a^* = v$ at the end.
- Proof:
 - > Take an occurrence of v (say a_i), and let's pair it up:
 - If it decreases the counter, pair up with the unique element a_j (j < i) that contributed the 1 we just decreased.
 - $\circ\,$ If it increases the counter:
 - If the added 1 is never taken back, QED!
 - If it is decreased by a_j (j > i), pair up with that.
 - > Because at least occurrence of v is not paired, the "never taken back" case happens at least once.

- Space: Clearly $O(\log m + \log n)$ bits
- Claim: If there exists a value v that appears more than m/2 times, then $a^* = v$ at the end.
- A simpler proof:
 - > At any step, let c' = c if $a^* = v$, and c' = -c otherwise.
 - > Every occurrence of v must increase c' by 1.
 - > Every occurrence of a value other than v either increases or decreases c' by 1.
 - > Majority \Rightarrow more increments than decrements in c'.
 - > Thus, a positive value at the end!

- Note 1: When a majority element does not exist, the algorithm doesn't necessarily find the mode.
- Note 2: If a majority element exists, it correctly finds that element. However, if there is no majority element, the algorithm does not detect that and still returns a value.
 - It can be trivially checked if the returned value is indeed a majority element if a second pass over the stream is allowed.
 - Surprisingly, we can prove that this cannot be done in 1pass. (Next lecture!)