Lecture 10
Sublinear Time Algorithms (contd)
Recap

• Sublinear time algorithms
 ➢ Deterministic + exact: binary search
 ➢ Deterministic + inexact: estimating diameter in a metric space
 ➢ Randomized + exact: searching in a sorted list
 o Lower bound (thus optimality) using Yao’s principle
 ➢ Randomized + inexact:
 o Estimating average degree in a graph
 o Estimating size of maximal matching in a graph
 o Property testing
 • Testing linearity of a Boolean function
Today

• Continue sublinear time property testing
 ➢ Testing if an array is sorted
 ➢ Testing if a graph is bipartite

• Some comments about sublinear space algorithms

• Begin streaming algorithms
 ➢ Find the missing element(s)
 ➢ Finding very frequent or very rare elements
 ➢ Counting the number of distinct elements
Testing Monotonicity of Array

• **Input:** Array A of length n with $O(1)$ access to $A[i]$

• **Check:** $A[i] < A[i + 1]$ for every $i \in \{1, \ldots, n - 1\}$

• **Definition of “at least ϵ-far”:** You need to change at least ϵn entries to make it monotonic
 - Equivalently, there are at least ϵn entries that are not between their adjacent values.

• **Goal:** 1-sided algorithm with $O \left(\frac{\log n}{\epsilon} \right)$ queries
Testing Monotonicity of Array

• Proposal:
 ➢ Pick t random indices i, and return “no” even if $x_i > x_{i+1}$ for even one of them.

• No!
 ➢ For $1 1 1 \ldots 1 0 0 0 \ldots 0$ ($n/2$ each), we’ll need $t = \Omega(n)$

• Proposal:
 ➢ Pick t random pairs (i, j) with $i < j$, and return “no” if $x_i > x_j$ for even one of them.

• No!
 ➢ $1 0 2 1 3 2 4 3 5 4 6 5 \ldots$ (two interleaved sorted lists)
 ➢ $1/2$-far (WHY?), but need $t \geq \Omega(n)$ (by Birthday Paradox, we also must access $\Omega(\sqrt{n})$ elements) (WHY?)
Testing Monotonicity of Array

• **Algorithm:**
 - Choose $2/\epsilon$ random indices i.
 - For each i, do a binary search for $A[i]$.
 - Return “yes” if all binary searches succeed.

• Assume all elements are distinct w.l.o.g.
 - Can replace $A[i]$ by $(A[i], i)$ and use lexicographic comparison

• Important observation:
 - “searchable” elements form an increasing subsequence!
 (WHY?)
Testing Monotonicity of Array

• Algorithm:
 ➢ Choose $2/\epsilon$ random indices i.
 ➢ For each i, do a binary search for $A[i]$.
 ➢ Return “yes” if all binary searches succeed.

• Thus:
 ➢ If $\alpha \cdot n$ elements searchable \Rightarrow array is at most $(1 - \alpha)$-far from monotonic
 ➢ If array is at least ϵ-far from monotonic \Rightarrow at least $\epsilon \cdot n$ elements must not be searchable
 • Each iteration fails to detect violation w.p. at most $1 - \epsilon$
 • All $2/\epsilon$ iterations fail to detect w.p. at most $(1 - \epsilon)^{2/\epsilon} \leq 1/3$
Graph Property Testing

• It’s an active area of research by itself.
• Let $G = (V, E)$ with $n = |V|$ and $m = |E|$.

• Input models:
 ➢ **Dense**: Represented by adjacency matrix
 o Query if $(i, j) \in E$ in $O(1)$ time
 o ϵ-far from satisfying P if ϵn^2 matrix entries must be changed to satisfy P
 o Change required = ϵ-fraction of the input
Graph Property Testing

• It’s an active area of research by itself.
• Let $G = (V, E)$ with $n = |V|$ and $m = |E|$

• Input models:
 ➢ **Sparse**: Represented by adjacency lists
 • Query if (v, i) to get the i^{th} neighbor of v in $O(1)$ time
 • We only use it for graphs with degrees bounded by d
 • ϵ-far from satisfying P if $\epsilon(dn)$ matrix entries must be changed to satisfy P
 • Change required = ϵ-fraction of the input

 ➢ Generally, dense is *easier* than sparse
Testing Bipartiteness

• Dense model:
 ➢ Upper bound: $O(1/\varepsilon^2)$ (independent of n)
 ➢ Lower bound: $\Omega(1/\varepsilon^{1.5})$

• Sparse model (for constant d):
 ➢ Upper bound: $O\left(\sqrt{n} \cdot \text{poly}\left(\frac{\log n}{\varepsilon}\right)\right)$
 ➢ Lower bound: $\Omega(\sqrt{n})$
Testing Bipartiteness

• In the dense model:

• Algorithm [Goldreich, Goldwasser, Ron]
 - Pick a random subset of vertices S, $|S| = \Theta \left(\frac{\log^{1/2}}{\epsilon^2} \right)$
 - Output “bipartite” iff the induced subgraph is bipartite

• Analysis:
 - Easy: If the graph is bipartite, algorithm always accepts.
 - Claim: If the graph is ϵ-far, it rejects w.p. at least $2/3$
 - Running time: trivially constant (i.e., independent of n)
Testing Bipartiteness

• Q: Why doesn’t this work for the sparse model?
 ➢ Take a line graph of \(n \) nodes. Throw \(\epsilon n \) additional edges.
 ➢ In the dense model, we don’t care about this instance because it’s not \(\epsilon \)-far (only \(\epsilon / n \)-far).
 ➢ In the sparse model, we care about it, and the previous algorithm will not work.
Testing Bipartiteness

• In the sparse model:

 • Algorithm [Goldreich, Ron]
 • Repeat $O(1/\epsilon)$ times:
 ➢ Pick a random vertex v
 ➢ Run $OddCycle(v)$, and if it finds an odd cycle, REJECT.
 • If no trial rejected, then ACCEPT.

• OddCycle:
 ➢ Performs $poly(\log n/\epsilon)$ random walks from v, each of length $poly(\log n/\epsilon)$.
 ➢ If a vertex is reachable by an even-length path and an odd-length prefix, an odd cycle is detected.
Limitations of Sublinear Time

• The problems we saw are rather exceptions.
• For most problems, there is not much you can do in sublinear time.
• For instance, these problems require $\Omega(n^2)$ time:
 ➢ Estimating $\min_{i,j} d_{i,j}$ in a metric space d.
 o Contrast this with the sublinear algorithm we saw for estimating $\max_{i,j} d_{i,j}$ (diameter)
 ➢ Estimating the cost of the minimum-cost matching
 ➢ Estimating the cost of k-median for $k = \Omega(n)$
 ➢ ...

Sublinear Space Algorithms

• An important topic in complexity theory

• Fundamental unsolved questions:
 ➢ Is $\text{NSPACE}(S) = \text{DSPACE}(S)$ for $S \geq \log n$?
 ➢ Is $P = L$? ($L = \text{DSPACE}(\log n)$, and we know $L \subseteq P$)
 ➢ What’s the relation between P and $\text{polyL} = \text{DSPACE}\left((\log n)^{O(1)}\right)$?
 o We know $P \neq \text{polyL}$, but don’t know if $P \subset \text{polyL}$, $\text{polyL} \subset P$, or if neither is contained in the other.

• Savitch’s theorem:
 ➢ $\text{DSPACE}(S) \subseteq \text{NSPACE}(S) \subseteq \text{DSPACE}(S^2)$
USTCON vs STCON

• USTCON (resp. STCON) is the problem of checking if a given source node has a path to a given target node in an undirected (resp. directed) graph.
 - USTCON $\in \text{RSPACE}(\log n)$ was shown in 1979 through a random-walk based algorithm
 - After much effort, Reingold [2008] finally showed that USTCON $\in \text{DSPACE}(\log n)$

• Open questions:
 - Is STCON in RSPACE($\log n$), or maybe even in RSPACE($\log n$)?
 - What about $o(\log^2 n)$ instead of $\log n$ space?
 - Is RSPACE(S) = DSPACE(S)?
Streaming Algorithms

• Input data comes as a stream a_1, \ldots, a_m, where, say, each $a_i \in \{1, \ldots, n\}$.
 ➢ The stream is typically too large to fit in the memory.
 ➢ We want to use only $S(m, n)$ memory for sublinear S.
 o We can measure this in terms of the number of integers stored, or the number of actual bits stored (might be $\log n$ times).
 ➢ It is also desired that we do not take too much processing time per element of the stream.
 o $O(1)$ is idea, but $O(\log(m + n))$ might be okay!
 ➢ If we don’t know m in advance, this can often act as an online algorithm.
Streaming Algorithms

- Input data comes as a stream a_1, \ldots, a_m, where, say, each $a_i \in \{1, \ldots, n\}$.
 - Most questions are about some statistic of the stream.
 - E.g., “how many distinct elements does it have?” or “count the #times the most frequent element appears”
 - Once again, we will often approximate the answer.
 - Most algorithms process the stream in one pass, but sometimes you can achieve more if you can do two or more passes.
Missing Element Problem

• **Problem:** Given a stream \(\{a_1, \ldots, a_{n-1}\} \), where each element is a distinct integer from \(\{1, \ldots, n\} \), find the unique missing element.

• An \(n \)-bit algorithm is obvious
 - Keep a bit for each integer.
 - At the end, spend \(O(n) \) time to search for the 0 bit.

• We can do \(O(\log n) \) bits by maintaining the sum.
 - Missing element = \(\frac{n(n+1)}{2} - SUM \)

• Deterministic + exact.
Missing Elements Problem

• **Problem:** Given a stream \(\{a_1, \ldots, a_{n-k}\} \), where each element is a distinct integer from \(\{1, \ldots, n\} \), find all \(k \) missing elements.

• The previous algorithm can be generalized:
 - Instead of just computing the sum, compute power-sums.
 - \(\{S_j\}_{1 \leq j \leq k} \) where \(S_j = \sum_{i=1}^{n-k} (a_i)^j \)
 - At the end, we have \(k \) equations, and \(k \) unknowns.
 - This uses \(O(k^2 \log n) \) space.
 - Computationally expensive to solve the equations
 - Using Newton’s identities followed by finding roots of a polynomial
Missing Elements Problem

• We can design much more efficient algorithms if we use randomization.
 ➢ There is a streaming algorithm with space and time/item that is $O(k \log k \log n)$.
 ➢ It can also be shown that $\Omega\left(k \log \left(\frac{n}{k}\right)\right)$ space is necessary.
Frequency Moments

• Another classic problem is that of computing frequency moments.

➢ Let $A = a_1, ..., a_m$ be a data stream with $a_i \in \{1, ..., n\}$.
➢ Let m_i denote the number of occurrences of value i.
➢ Then for $k \geq 0$, the k^{th} frequency moment is defined as

$$F_k = \sum_{i \in [n]} (m_i)^k$$

➢ $F_0 = \#$ distinct elements
➢ $F_1 = m$
➢ $F_2 = \text{Gini’s homogeneity index}$
 • The greater the value of F_2, the greater the homogeneity in A
Frequency Moments

• Goal: Given ϵ, δ, find F'_k s.t.
 \[\Pr[|F_k - F'_k| > \epsilon F_k] \leq \delta \]

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
 ➢ $k = 0$: For every $c > 2$, $O(\log n)$ space algorithm s.t.
 \[\Pr[(1/c)F_0 \leq F'_0 \leq cF_0] \geq 1 - 2/c \]
 ➢ $k = 2$: $O \left((\log n + \log m) \log(1/\delta)/\epsilon \right) = \tilde{O}(1)$ space
 ➢ $k \geq 3$: $\tilde{O} \left(m^{1-1/k} \text{poly}(1/\epsilon) \text{polylog}(m,n,1/\delta) \right)$ space
 ➢ $k > 5$: Lower bound of $\Omega(m^{1-5/k})$
Frequency Moments

• Goal: Given ϵ, δ, find F'_k s.t.
 \[
 \Pr[|F_k - F'_k| > \epsilon F_k] \leq \delta
 \]

• Seminal paper by Alon, Matias, Szegedy [AMS’99]

 ➢ $k = 0$: For every $c > 2$, $O(\log n)$ space algorithm s.t.
 \[
 \Pr[(1/c)F_0 \leq F'_0 \leq cF_0] \geq 1 - 2/c
 \]

 ➢ Exactly counting F_0 requires $\Omega(n)$ space:

 o Once the stream is processed, the algorithm acts as a membership tester. On new element x, the count increases by 1 iff x was not part of the stream.

 o Algorithm must have enough memory to distinguish between all possible 2^n states
Frequency Moments

• Goal: Given ϵ, δ, find F'_k s.t.

$$\Pr[|F_k - F'_k| > \epsilon F_k] \leq \delta$$

• Seminal paper by Alon, Matias, Szegedy [AMS’99]

 - $k = 0$: For every $c > 2$, $O(\log n)$ space algorithm s.t.
 $$\Pr[(\frac{1}{c})F_0 \leq F'_0 \leq cF_0] \geq 1 - \frac{2}{c}$$

 - State-of-the-art is “HyperLogLog Algorithm”
 - Uses hash functions
 - Widely used, theoretically near-optimal, practically quite fast
 - Uses $O(\epsilon^{-2} \log \log n + \log n)$ space
 - It can estimate $> 10^9$ distinct elements with 98% accuracy using only 1.5kB memory!
Frequency Moments

• Goal: Given ϵ, δ, find F'_k s.t.
 $$\Pr[|F_k - F'_k| > \epsilon F_k] \leq \delta$$

• Seminal paper by Alon, Matias, Szegedy [AMS’99]
 - $k > 2$: The $\Omega(m^{1-5/k})$ bound was improved to $\Omega(m^{1-2/k})$ by Bar Yossef et al.
 - Their bound also works for real-valued k.
 - Indyk and Woodruff [2005] gave an algorithm that works for real-valued $k > 2$ with a matching upper bound of $\tilde{O}(m^{1-2/k})$.
AMS F_k Algorithm

• The basic idea is to define a random variable Y whose expected value is close to F_k and variance is sufficiently small such that it can be calculated under the space constraint.

• We will present the AMS algorithm for computing F_k, and sketch the proof for $k \geq 3$ as well as the improved proof for $k = 2$.
AMS F_k Algorithm

• Algorithm:
 ➢ Let $s_1 = 8\varepsilon^{-2}k m^{1-1/k}$ and $s_2 = 2 \log^{1/\delta}$.
 ➢ Let $Y = \text{median}(Y_1, ..., Y_{s_2})$, where
 ➢ $Y_i = \text{mean}(X_{i,1}, ..., X_{i,s_1})$, where
 o $X_{i,j}$ are i.i.d. random variables that are calculated as follows:
 o For each $X_{i,j}$, choose a random $p \in [1, ..., m]$ in advance.
 o When a_p arrives, note down this value.
 o In the remaining stream, maintain $r = |\{q | q \geq p \text{ and } a_q = a_p\}|$.
 o $X_{i,j} = m(r^k - (r-1)^k)$.

• Space:
 ➢ For $s_1 \cdot s_2$ variables X, log n space to store a_p, log m space to store r.

• Note: This assumes we know m. But it can be estimated as the stream unfolds.
AMS F_k Algorithm

• We want to show: $E[X] = F_k$, and $Var[X]$ is small.

• $E[X] = E[m(r^k - (r - 1)^k)]$
 - The m different choices of $p \in [m]$ have probability $1/m$.
 - Thus, $E[X]$ is just the sum of $r^k - (r - 1)^k$ across all choices of p.
 - For each distinct value i, there will be m_i terms:
 $$(m_i^k - (m_i - 1)^k) + ((m_i - 1)^k - (m_i - 2)^k) + \cdots + (1^k - 0^k) = (m_i)^k$$
 - Thus, the overall sum is $F_k = \sum_i (m_i)^k$.

• Thus, $E[Y] = E[X] = F_k$
AMS F_k Algorithm

• To show: $\Pr[|Y_i - F_k| > \epsilon F_k] \leq \frac{1}{8}$
 ➢ Median over $2 \log \frac{1}{\delta}$ many Y_i will do the rest.

• Chebyshev’s inequality:
 ➢ $\Pr[|Y_i - E[Y_i]| > \epsilon E[Y_i]] \leq \frac{\text{Var}[Y]}{\epsilon^2 (E[Y])^2}$
 ➢ $\text{Var}[Y_i] \leq \frac{\text{Var}[X]}{s_1} \leq \frac{E[X^2]}{s_1}$, and $E[Y] = E[X] = F_k$.
 ➢ Thus, probability bound is:
 $$\frac{E[X^2]}{s_1 \epsilon^2 (F_k)^2} \leq \frac{E[X^2]}{8\epsilon^{-2} km^{1-1/k} \epsilon^2 (F_k)^2}$$
 ➢ To show that this is at most $1/8$, we want to show:
 $$E[X^2] \leq km^{1-1/k} (F_k)^2$$
 ➢ Show that: $E[X^2] \leq kF_1F_{2k-1}$, and $F_1F_{2k-1} \leq m^{1-\frac{1}{k}} (F_k)^2$
Sketch of F_2 improvement

• They retain $s_2 = 2 \log 1/\delta$, but decrease s_1 to just a constant $16/\varepsilon^2$.

 ➢ The idea is that X will not maintain a count for each value separately, but rather an aggregate.

 ➢ $Z = \sum_{t=1}^{n} b_t m_t$, then $X = Z^2$

 ➢ The vector $(b_1, ..., b_n) \in \{-1,1\}^n$ is chosen at random as follows:
 o Let $V = \{v_1, ..., v_h\}$ be $O(n^2)$ “four-wise independent” vectors
 o Each $v_p = (v_{p,1}, ..., v_{p,n}) \in \{-1,1\}^n$
 o Choose $p \in \{1, ..., h\}$ at random, and set $(b_1, ..., b_n) = v_p$.
Majority Element

• Input: Stream $A = a_1, \ldots, a_m$, where $a_i \in [n]$
• Q: Is there a value i that appears more than $m/2$ times?

• Algorithm:
 ➢ Store candidate a^*, and a counter c (initially $c = 0$).
 ➢ For $i = 1 \ldots m$
 o If $c = 0$: Set $a^* = a_i$, and $c = 1$.
 o Else:
 • If $a^* = a_i$, $c \leftarrow c + 1$
 • If $a^* \neq a_i$, $c \leftarrow c - 1$
Majority Element

- **Space:** Clearly $O(\log m + \log n)$ bits
- **Claim:** If there exists a value v that appears more than $m/2$ times, then $a^* = v$ at the end.
- **Proof:**
 - Take an occurrence of v (say a_i), and let’s pair it up:
 - If it decreases the counter, pair up with the unique element a_j ($j < i$) that contributed the 1 we just decreased.
 - If it increases the counter:
 - If the added 1 is never taken back, QED!
 - If it is decreased by a_j ($j > i$), pair up with that.
 - Because at least occurrence of v is not paired, the “never taken back” case happens at least once.
Majority Element

• **Space:** Clearly $O(\log m + \log n)$ bits

• **Claim:** If there exists a value v that appears more than $m/2$ times, then $a^* = v$ at the end.

• **A simpler proof:**
 - At any step, let $c' = c$ if $a^* = v$, and $c' = -c$ otherwise.
 - Every occurrence of v must increase c' by 1.
 - Every occurrence of a value other than v either increases or decreases c' by 1.
 - Majority \Rightarrow more increments than decrements in c'.
 - Thus, a positive value at the end!
Majority Element

• **Note 1:** When a majority element does not exist, the algorithm doesn’t necessarily find the mode.

• **Note 2:** If a majority element exists, it correctly finds that element. However, if there is no majority element, the algorithm does not detect that and still returns a value.
 - It can be trivially checked if the returned value is indeed a majority element if a second pass over the stream is allowed.
 - Surprisingly, we can prove that this cannot be done in 1-pass. (Next lecture!)