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Abstract—We consider the Unconstrained Submodular
Maximization problem in which we are given a non-negative
submodular function f : 2N → R

+, and the objective is to
find a subset S ⊆ N maximizing f(S). This is one of the
most basic submodular optimization problems, having a wide
range of applications. Some well known problems captured
by Unconstrained Submodular Maximization include Max-
Cut, Max-DiCut, and variants of Max-SAT and maximum
facility location. We present a simple randomized linear time
algorithm achieving a tight approximation guarantee of 1/2,
thus matching the known hardness result of Feige et al.
[11]. Our algorithm is based on an adaptation of the greedy
approach which exploits certain symmetry properties of the
problem. Our method might seem counterintuitive, since it is
known that the greedy algorithm fails to achieve any bounded
approximation factor for the problem.

Keywords-Submodular Functions, Approximation Algo-
rithms

I. INTRODUCTION

The study of combinatorial problems with submodular

objective functions has recently attracted much attention, and

is motivated by the principle of economy of scale, prevalent

in real world applications. Submodular functions are also

commonly used as utility functions in economics and algo-

rithmic game theory. Submodular functions and submodular

maximization play a major role in combinatorial optimiza-

tion, where several well known examples of submodular

functions include cuts in graphs and hypergraphs, rank

functions of matroids, and covering functions. A function

f : 2N → R
+ is called submodular if for every A ⊆ B ⊆ N

and u ∈ N , f(A ∪ {u}) − f(A) ≥ f(B ∪ {u}) − f(B)1.

Submodularity captures the principle of diminishing returns
in economics.

Perhaps the most basic submodular maximization prob-

lem is Unconstrained Submodular Maximization (USM).

Given a non-negative submodular fucntion f , the goal is to
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2010426.

∗Research supported in part by the Google Inter-university center for
Electronic Markets, by ISF grant 954/11, and by BSF grant 2010426.

1An equivalent definition is that for every A,B ⊆ N : f(A) + f(B) ≥
f(A ∪B) + f(A ∩B).

find a subset S ⊆ N maximizing f(S). Note that there is

no restriction on the choice of S, as any subset of N is a

feasible solution. USM captures many well studied problems

such as Max-Cut, Max-DiCut [15], [20], [22], [25], [27],

[36], variants of Max-SAT, and maximum facility location

[1], [7], [8]. Moreover, USM has various applications in

more practical settings such as marketing in social networks

[21], revenue maximization with discrete choice [2], and

algorithmic game theory [10], [34].

USM has been studied starting since the sixties in the

operations research community [2], [6], [16], [17], [18], [26],

[29], [33]. Not surprisingly, as USM captures NP-hard prob-

lems, all these works provide algorithms that either solve

special cases of the problem, or provide exact algorithms

whose time complexity cannot be efficiently bounded, or

provide efficient algorithms whose output has no provable

guarantee.

The first rigorous study of the USM problem was con-

ducted by Feige et al. [11], who provided several constant

approximation factor algorithms. They proved that a subset

S chosen uniformly at random is a (1/4)-approximation.

Additionally, they also described two local search algo-

rithms. The first uses f as the objective function, and pro-

vides an approximation of 1/3. The second uses a noisy ver-

sion of f as the objective function, and achieves an improved

approximation guarantee of 2/5. Gharan and Vondrák [14]

showed that an extension of the last method, known as simu-
lated annealing, can provide an improved approximation of

roughly 0.41. Their algorithm, like that of Feige et al. [11],

uses local search with a noisy objective function. However,

in [14] the noise decreases as the algorithm advances, as

opposed to being constant as in [11]. Feldman et al. [12]

observed that if the simulated annealing algorithm of [14]

outputs a relatively poor solution, then it must generate at

some point a set S which is structurally similar to some

optimal solution. Moreover, they showed that this structural

similarity can be traded for value, providing an overall

improved approximation of roughly 0.42.

It is important to note that for many special cases of USM,

better approximation factors are known. For example, the
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seminal work of Goemans and Williamson [15] provides an

0.878-approximation for Max-Cut based on a semidefinite

programming formulation, and Ageev and Sviridenko [1]

provide an approximation of 0.828 for the maximum facility

location problem.

On the negative side, Feige et al. [11] studied the hardness

of USM assuming the function f is given via a value
oracle2. They proved that for any constant ε > 0, any

algorithm achieving an approximation of (1/2 + ε) requires

an exponential number of oracle queries. This hardness

result holds even if f is symmetric, in which case it is

known to be tight [11]. Recently, Dobzinski and Vondrák [9]

proved that even if f has a compact representation (which

is part of the input), the latter hardness still holds assuming

RP �= NP .

A. Our Results

In this paper we resolve the approximability of the Un-
constrained Submodular Maximization problem. We de-

sign a tight linear time randomized (1/2)-approximation for

the problem. We begin by presenting a simple greedy-based

deterministic algorithm that achieves a (1/3)-approximation

for USM.

Theorem I.1. There exists a deterministic linear time (1/3)-
approximation algorithm for the Unconstrained Submod-
ular Maximization problem.

We show that our analysis of the algorithm is tight by

providing an instance for which the algorithm achieves an

approximation of 1/3 + ε for an arbitrary small ε > 0.

The improvement in the performance is achieved by incor-

porating randomness into the choices of the algorithm. We

obtain a tight bound for USM without increasing the time

complexity of the algorithm.

Theorem I.2. There exists a randomized linear time (1/2)-
approximation algorithm for the Unconstrained Submod-
ular Maximization problem.

In both Theorems I.1 and I.2 we assume that a single

query to the value oracle takes O(1) time. Thus, a linear

time algorithm is an algorithm which makes O(n) oracle

queries plus O(n) other operations, where n is the size of

the ground set N .

Building on the above two theorems, we provide two

additional approximation algorithms for Submodular Max-
SAT and Submodular Welfare with 2 players (for the exact

definition of these problems please refer to Section IV). Both

problems are already known to have a tight approximation

[13]. However, our algorithms run in linear time, thus,

2The explicit representation of a submodular function might be expo-
nential in the size of its ground set. Thus, it is standard to assume that
the function is accessed via a value oracle. For a submodular function
f : 2N → R

+, given a set S ⊆ N , the value oracle returns the value of
f(S).

significantly improving the time complexity, while achieving

the same performance guarantee.

Theorem I.3. There exists a randomized linear time (3/4)-
approximation algorithm for the Submodular Max-SAT
problem.

Theorem I.4. There exists a randomized linear time (3/4)-
approximation algorithm for the Submodular Welfare
problem with 2 players .

B. Techniques

The algorithms we present are based on a greedy ap-

proach. It is known that a straightforward greedy approach

fails for USM. In contrast, Feldman et al. [13] recently

showed that a continuous greedy approach does provide

a (1/e)-approximation for maximizing any non-monotone

submodular function over a matroid. Recall that better

bounds than 1/e are already known for USM.

To understand the main ideas of our algorithm, consider

a non-negative submodular function f . Let us examine

the complement of f , denoted by f̄ , defined as f̄(S) �
f(N \S), for any S ⊆ N . Note that since f is submodular,

f̄ is also submodular. Additionally, given an optimal solution

OPT ⊆ N for USM with input f , N \ OPT is an

optimal solution for f̄ , and both solutions have the exact

same value. Consider, for example, the greedy algorithm.

For f , it starts from an empty solution and iteratively adds

elements to it in a greedy fashion. However, when applying

the greedy algorithm to f̄ , one gets an algorithm for f that

effectively starts with the solution N and iteratively removes

elements from it. Both algorithms are equally reasonable,

but, unfortunately, both fail.

Despite the failure of the greedy algorithm when applied

separately to either f or f̄ , we show that a correlated

execution on both f and f̄ provides a much better result.

That is, we start with two solutions ∅ and N . The algorithm

considers the elements (in arbitrary order) one at a time.

For each element it determines whether it should be added

to the first solution or removed from the second solution.

Thus, after a single pass over the ground set N , both

solutions completely coincide. This is the solution that the

algorithm outputs. We show that a greedy choice in each

step obtains an approximation guarantee of 1/3, hence

proving Theorem I.1. To get Theorem I.2, we use a natural

extension of the greedy rule, together with randomization,

thus improving the approximation guarantee to 1/2.

C. Related Work

Many works consider the problem of maximizing a non-

negative submodular function subject to various combina-

torial constraints defining the feasible solutions [13], [19],

[30], [31], [39], or minimizing a submodular function subject

to such constraints [23], [24], [35]. Interestingly, the problem
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of unconstrained submodular minimization can be solved in

polynomial time [32].

Another line of work deals with maximizing normalized

monotone submodular functions, again, subject to various

combinatorial constraints. A continuous greedy algorithm

was given by Calinescu et al. [3] for maximizing a nor-

malized monotone submodular function subject to a matroid

constraint. Later, Lee et al. [31] gave a local search algo-

rithm achieving 1/p−ε approximation for maximizing such

functions subject to the intersection of p matroids. Kulik

et al. [28] showed a 1 − 1/e − ε approximation algorithm

for maximizing a normalized monotone submodular function

subject to multiple knapsack constraints. Recently, Chekuri

et al. [5] and Feldman et al. [13] gave non-monotone

counterparts of the continuous greedy algorithm of [3], [38].

These results improve several non-monotone submodular

optimization problems. Some of the above results were

generalized by Chekuri et al. [4], who provide a dependent

rounding technique for various polytopes, including matroid

and matroid-intersection polytops. The advantage of this

rounding technique is that it guarantees strong concentration

bounds for submodular functions. Additionally, Chekuri et

al. [5] define a contention resolution rounding scheme which

allows one to obtain approximations for different combina-

tions of constraints.

II. A DETERMINISTIC (1/3)-APPROXIMATION

ALGORITHM

In this section we present a deterministic linear time

algorithm for USM. The algorithm proceeds in n iterations

that correspond to some arbitrary order u1, . . . , un of the

ground set N . The algorithm maintains two solutions X and

Y . Initially, we set the solutions to X0 = ∅ and Y0 = N .

In the ith iteration the algorithm either adds ui to Xi−1

or removes ui from Yi−1. This decision is done greedily

based on the marginal gain of each of the two options.

Eventually, after n iterations both solutions coincide, and

we get Xn = Yn; this is the output of the algorithm. A

formal description of the algorithm appears as Algorithm 1.

Algorithm 1: DeterministicUSM(f,N )

1 X0 ← ∅, Y0 ← N .

2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 if ai ≥ bi then Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.

6 else Xi ← Xi−1, Yi ← Yi−1 \ {ui}.
7 return Xn (or equivalently Yn).

The rest of this section is devoted for proving Theo-

rem I.1, i.e., we prove that the approximation guarantee

of Algorithm 1 is 1/3. Denote by ai the change in value

of the first solution if element ui is added to it in the

ith iteration, i.e., f(Xi−1 ∪ {ui}) − f(Xi−1). Similarly,

denote by bi the change in value of the second solution

if element ui is removed from it in the ith iteration, i.e.,
f(Yi−1\{ui})−f(Yi−1). We start with the following useful

lemma.

Lemma II.1. For every 1 ≤ i ≤ n, ai + bi ≥ 0.

Proof: Notice that (Xi−1 ∪ {ui})∪ (Yi \ {ui}) = Yi−1

and (Xi−1∪{ui})∩(Yi\{ui}) = Xi−1. By combining both

observations with submodularity, one gets:

ai + bi = [f(Xi−1 ∪ {ui})− f(Xi−1)] +

[f(Yi−1 \ {ui})− f(Yi−1)]

= [f(Xi−1 ∪ {ui}) + f(Yi−1 \ {ui})]−
[f(Xi−1) + f(Yi−1)] ≥ 0 .

Let OPT denote an optimal solution. Define OPTi �
(OPT ∪Xi)∩Yi. Thus, OPTi coincides with Xi and Yi on

elements 1, . . . , i, and it coincides with OPT on elements

i + 1, . . . , n. Note that OPT0 = OPT and the output of

the algorithm is OPTn = Xn = Yn. Examine the sequence

f(OPT0), . . . , f(OPTn), which starts with f(OPT ) and

ends with the value of the output of the algorithm. The

main idea of the proof is to bound the total loss of value

along this sequence. This goal is achieved by the following

lemma which upper bounds the loss in value between every

two consecutive steps in the sequence. Formally, the loss

of value, i.e., f(OPTi−1)− f(OPTi), is no more than the

total increase in value of both solutions maintained by the

algorithm, i.e., [f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)].

Lemma II.2. For every 1 ≤ i ≤ n,

f(OPTi−1)−f(OPTi) ≤
[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] .

Before proving Lemma II.2, let us show that Theorem I.1

follows from it.

Proof of Theorem I.1: Summing up Lemma II.2 for

every 1 ≤ i ≤ n gives:

n∑
i=1

[f(OPTi−1)− f(OPTi)] ≤
n∑

i=1

[f(Xi)− f(Xi−1)] +

n∑
i=1

[f(Yi)− f(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

f(OPT0)− f(OPTn) ≤
[f(Xn)− f(X0)] + [f(Yn)− f(Y0)] ≤ f(Xn) + f(Yn) .

Recalling the definitions of OPT0 and OPTn, we obtain

that f(Xn) = f(Yn) ≥ f(OPT )/3.

It is left to prove Lemma II.2.
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Figure 1. Tight example for Algorithm 1. The weight of the dashed edges
is 1− ε. All other edges have weight of 1.

Proof of Lemma II.2: Assume without loss of gener-

ality that ai ≥ bi, i.e., Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1

(the other case is analogous). Notice that in this case

OPTi = (OPT∪Xi)∩Yi = OPTi−1∪{ui} and Yi = Yi−1.

Thus the inequality that we need to prove becomes:

f(OPTi−1)−f(OPTi−1∪{ui}) ≤ f(Xi)−f(Xi−1) = ai .

We now consider two cases. If ui ∈ OPT , then the left

hand side of the last inequality is 0, and all we need to show

is that ai is non-negative. This is true since ai + bi ≥ 0 by

Lemma II.1, and ai ≥ bi by our assumption.

If ui �∈ OPT , then also ui �∈ OPTi−1, and thus:

f(OPTi−1)−f(OPTi−1 ∪ {ui}) ≤
f(Yi−1 \ {ui})− f(Yi−1) = bi ≤ ai .

The first inequality follows by submodularity: OPTi−1 =
((OPT ∪Xi−1)∩Yi−1) ⊆ Yi−1\{ui} (recall that ui ∈ Yi−1

and ui �∈ OPTi−1). The second inequality follows from our

assumption that ai ≥ bi.

A. Tight Example

We now show that the analysis of Algorithm 1 is tight.

Theorem II.3. For an arbitrarily small constant ε > 0,
there exists a submodular function for which Algorithm 1
provides only (1/3 + ε)-approximation.

Proof: The proof follows by analyzing Algorithm 1 on

the cut function of the weighted digraph given in Figure 1.

The maximum weight cut in this digraph is {u1, u4, u5}.
This cut has weight of 6 − 2ε. We claim that Algorithm

1 outputs the cut {u2, u3, u4, u5}, whose value is only 2
(assuming the nodes of the graph are considered at the given

order). Hence, the approximation guarantee of Algorithm 1

on the above instance is:

2

6− 2ε
=

1

3− ε
≤ 1

3
+ ε .

Let us track the execution of the algorithm. Let Xi, Yi be

the solutions maintained by the algorithm. Initially X0 =
∅, Y0 = {u1, u2, u3, u4, u5}. Note that in case of a tie (ai =
bi), Algorithm 1 takes node ui.

1) In the first iteration the algorithm considers u1. Adding

this node to X0 increases the value of this solution

by 2 − 2ε. On the other hand, removing this node

from Y0 increases the value of Y0 by 2. Hence, X1 ←
X0, Y1 ← Y0 \ {u1}.

2) Let us inspect the next two iterations in which the

algorithm considers u2, u3. One can easily verify

that these two iterations are independent, hence, we

consider only u2. Adding u2 to X1 increases its

value by 1. On the other hand, removing u2 from

Y1 = {u2, u3, u4, u5} also increases the value of Y1

by 1. Thus, the algorithm adds u2 to X1. Since u2

and u3 are symmetric, the algorithm also adds u3 to

X1. Thus, at the end of these two iterations X3 =
X1 ∪ {u2, u3} = {u2, u3}, Y3 = {u2, u3, u4, u5}.

3) Finally, the algorithm considers u4 and u5. These two

iterations are also independent so we consider only

u4. Adding u4 to X3 does not increase the value of

X3. Also removing u4 from Y3 does not increase the

value of Y3. Thus, the algorithm adds u4 to X3. Since

u4 and u5 are symmetric, the algorithm also adds u5

to X3. Thus, we get X5 = Y5 = {u2, u3, u4, u5}.

III. A RANDOMIZED (1/2)-APPROXIMATION

ALGORITHM

In this section we present a randomized algorithm achiev-

ing a tight (1/2)-approximation for USM. Algorithm 1

compared the marginal profits ai and bi, and based on

this comparison it made a greedy deterministic decision

whether to include or exclude ui from its output. The random

algorithm we next present makes a “smoother” decision,

based on the values ai and bi. In each step, it randomly

chooses whether to include or exclude ui from the output

with probability derived from the values ai and bi. A formal

description of the algorithm appears as Algorithm 2.

The rest of this section is devoted to proving that Al-

gorithm 2 provides an approximation guarantee of 1/2 to

USM. In Appendix A, we describe another algorithm which

can be thought of as the continuous counterpart of Algo-

rithm 2. This algorithm achieves the same approximation

ratio (up to low order terms), but keeps a fractional inner

state.

Let us first introduce some notation. Notice that for

every 1 ≤ i ≤ n, Xi and Yi are random variables

denoting the sets of elements in the two solutions generated

by the algorithm at the end of the ith iteration. As in

Section II, let us define the following random variables:

OPTi � (OPT ∪ Xi) ∩ Yi. Note that as before, X0 = ∅,
Y0 = N and OPT0 = OPT . Moreover, the following
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Algorithm 2: RandomizedUSM(f,N )

1 X0 ← ∅, Y0 ← N .

2 for i = 1 to n do
3 ai ← f(Xi−1 ∪ {ui})− f(Xi−1).
4 bi ← f(Yi−1 \ {ui})− f(Yi−1).
5 a′i ← max{ai, 0}, b′i ← max{bi, 0}.
6 with probability a′i/(a

′
i + b′i)

* do:

Xi ← Xi−1 ∪ {ui}, Yi ← Yi−1.

7 else (with the compliment probability b′i/(a
′
i + b′i))

do: Xi ← Xi−1, Yi ← Yi−1 \ {ui}.
8 return Xn (or equivalently Yn).

* If a′i = b′i = 0, we assume a′i/(a
′
i + b′i) = 1.

always holds: OPTn = Xn = Yn. The proof idea is similar

to that of the deterministic algorithm in Section II when

considering the sequence E[f(OPT0)], . . . ,E[f(OPTn)].
This sequence starts with f(OPT ) and ends with the

expected value of the algorithm’s output. The following

lemma upper bounds the loss of two consecutive elements

in the sequence. Formally, E[f(OPTi−1) − f(OPTi)] is

upper bounded by the average expected change in the

value of the two solutions maintained by the algorithm, i.e.,
1/2 · E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)].

Lemma III.1. For every 1 ≤ i ≤ n,

E [f(OPTi−1)− f(OPTi)] ≤
1

2
· E [(f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] , (1)

where expectations are taken over the random choices of the
algorithm.

Before proving Lemma III.1, let us show that Theorem I.2

follows from it.

Proof of Theorem I.2: Summing up Lemma III.1 for

every 1 ≤ i ≤ n yields:

n∑
i=1

E [f(OPTi−1)− f(OPTi)] ≤

1

2
·

n∑
i=1

E [f(Xi)− F (Xi−1) + f(Yi)− F (Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E [f(OPT0)− f(OPTn)] ≤
1

2
· E [f(Xn)− f(X0) + f(Yn)− f(Y0)] ≤

E[f(Xn) + f(Yn)]

2
.

Recalling the definitions of OPT0 and OPTn, we obtain

that E[f(Xn)] = E[f(Yn)] ≥ f(OPT )/2.

It is left to prove Lemma III.1.

Proof of Lemma III.1: Notice that it suffices to prove

Inequality (1) conditioned on any event of the form Xi−1 =
Si−1, when Si−1 ⊆ {u1, . . . , ui−1} and the probability

that Xi−1 = Si−1 is non-zero. Hence, fix such an event

for a given Si−1. The rest of the proof implicitly assumes

everything is conditioned on this event. Notice that due to

the conditioning, the following quantities become constants:

• Yi−1 = Si−1 ∪ {ui, . . . , un}.
• OPTi−1 � (OPT ∪Xi−1) ∩ Yi−1 =

Si−1 ∪ (OPT ∩ {ui, . . . , un}).
• ai and bi.

Moreover, by Lemma II.1, ai + bi ≥ 0. Thus, it cannot be

that both ai, bi are strictly less than zero. Hence, we only

need to consider the following 3 cases:

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′i/(a
′
i +

b′i) = 1, and so the following always happen: Yi = Yi−1 =
Si−1∪{ui, . . . , un} and Xi ← Si−1∪{ui}. Hence, f(Yi)−
f(Yi−1) = 0. Also, by our definition OPTi = (OPT∪Xi)∩
Yi = OPTi−1 ∪ {ui}. Thus, we are left to prove that:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
1

2
· [f(Xi)− f(Xi−1)] =

ai
2

.

If ui ∈ OPT , then the left hand side of the last expression

is 0, which is clearly no larger than the non-negative ai/2.

If ui �∈ OPT , then:

f(OPTi−1)− f(OPTi−1 ∪ {ui}) ≤
f(Yi−1 \ {ui})− f(Yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since

OPTi−1 � (OPT ∪ Xi−1) ∩ Yi−1 ⊆ Yi−1 \ {ui} (note

that ui ∈ Yi−1 and ui �∈ OPTi−1).

Case 2 (ai < 0 and bi ≥ 0): This case is analogous

to the previous one, and therefore, we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′i = ai, b
′
i =

bi. Therefore, with probability ai/(ai + bi) the following

events happen: Xi ← Xi−1 ∪ {ui} and Yi ← Yi−1, and

with probability bi/(ai + bi) the following events happen:

Xi ← Xi−1 and Yi ← Yi−1 \ {ui}. Thus,

E[f(Xi)− f(Xi−1) + f(Yi)− f(Yi−1)] =
ai

ai + bi
· [f(Xi−1 ∪ {ui})− f(Xi−1)] +

bi
ai + bi

· [f(Yi−1 \ {ui})− f(Yi−1)]

=
a2i + b2i
ai + bi

. (2)
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Next, we upper bound E[f(OPTi−1) − f(OPTi)]. As

OPTi = (OPT ∪Xi) ∩ Yi, we get,

E[f(OPTi−1)− f(OPTi)] =
ai

ai + bi
· [f(OPTi−1)− f(OPTi−1 ∪ {ui})] +

bi
ai + bi

· [f(OPTi−1)− f(OPTi−1 \ {ui})]

≤ aibi
ai + bi

. (3)

The final inequality follows by considering two cases. Note

first that ui ∈ Yi−1 and ui �∈ Xi−1. If ui �∈ OPTi−1 then

the second term of the left hand side of the last inequality

equals zero. Moreover, OPTi−1 � (OPT ∪Xi−1)∩Yi−1 ⊆
Yi−1 \ {ui}, and therefore, by submodularity,

f(OPTi−1)−f(OPTi−1 ∪ {ui}) ≤
f(Yi−1 \ {ui})− f(Yi−1) = bi .

If ui ∈ OPTi−1 then the first term of the left hand side

of the inequality equals zero, and we also have Xi−1 ⊆
((OPT ∪Xi−1)∩Yi−1) \ {ui} = OPTi−1 \ {ui}. Thus, by

submodularity,

f(OPTi−1)−f(OPTi−1 \ {ui}) ≤
f(Xi−1 ∪ {ui})− f(Xi−1) = ai .

Plugging (2) and (3) into Inequality (1), we get the follow-

ing:
aibi

ai + bi
≤ 1

2
·
(
a2i + b2i
ai + bi

)
,

which can be easily verified.

IV. APPROXIMATION ALGORITHMS FOR SUBMODULAR
MAX-SAT AND SUBMODULAR WELFARE WITH 2

PLAYERS

In this section we build upon ideas from the previous

sections to obtain linear time tight (3/4)-approximation

algorithms for both the Submodular Max-SAT (SSAT) and

Submodular Welfare (SW) with 2 players problems. In

contrast to USM, tight approximations are already known for

the above two problems [13]. However, the algorithms we

present in this work, in addition to providing tight approx-

imations, also run in linear time. We require the definition

of a monotone submodular function: a submodular function

f : 2N → R
+ is monotone if for every A ⊆ B ⊆ N ,

f(A) ≤ f(B). Moreover, a monotone submodular function

f is normalized if f(∅) = 0.

A. A (3/4)-Approximation for Submodular Max-SAT
In the Submodular Max-SAT problem we are given a

CNF formula Ψ with a set C of clauses over a set N of

variables, and a normalized monotone submodular function

f : 2C → R
+ over the set of clauses. Given an assignment

φ : N → {0, 1}, let C(φ) ⊆ C be the set of clauses satisfied

by φ. The goal is to find an assignment φ that maximizes

f(C(φ)).
Usually, an assignment φ can give each variable exactly a

single truth value. However, for the sake of the algorithm we

extend the notion of assignments, and think of an extended

assignment φ′ which is a relation φ′ ⊆ N ×{0, 1}. That is,

the assignment φ′ can assign up to 2 truth values to each

variable. A clause C is satisfied by an (extended) assignment

φ′, if there exists a positive literal in the clause which is

assigned to truth value 1, or there exists a negative literal

in the clause which is assigned a truth value 0. Note again

that it might happen that some variable is assigned both 0
and 1. Note also, that an assignment is a feasible solution

to the original problem if and only if it assigns exactly one

truth value to every variable of N . Let C(φ′) be the set of

clauses satisfied by φ′. We define g : N × {0, 1} → R
+

using g(φ′) � f(C(φ′)). Using this notation, we can restate

SSAT as the problem of maximizing the function g over the

set of feasible assignments.

Observation IV.1. The function g is a normalized monotone
submodular function.

The algorithm we design for SSAT conducts n iterations.

It maintains at each iteration 1 ≤ i ≤ n two assignments Xi

and Yi which always satisfy that: Xi ⊆ Yi. Initially, X0 = ∅
assigns no truth values to the variables, and Y0 = N×{0, 1}
assigns both truth values to all variables. The algorithm

considers the variables in an arbitrary order u1, u2, . . . , un.

For every variable ui, the algorithm evaluates the marginal

profit from assigning it only the truth value 0 in both

assignments, and assigning it only the truth value 1 in both

assignments. Based on these marginal values, the algorithm

makes a random decision on the truth value assigned to ui.

After the algorithm considers a variable ui, both assignments

Xi and Yi agree on the single truth value assigned to ui.

Thus, when the algorithm terminates both assignments are

identical and feasible. A formal statement of the algorithm

appears as Algorithm 3.

The proof of the Theorem I.3 uses similar ideas to

previous proofs in this paper, and is therefore, deferred to

Appendix B. Note, however, that unlike for the previous

algorithms, here, the fact that the algorithm runs in linear

time requires a proof. The source of the difficulty is that

we have an oracle access to f , but use the function g in

the algorithm. Therefore, we need to prove that we may

implement all oracle queries of g that are conducted during

the execution of the algorithm in linear time.

A Note on Max-SAT: The well known Max-SAT
problem is in fact a special case of SSAT where f is a

linear function. We note that Algorithm 3 can be applied

to Max-SAT in order to achieve a (3/4)-approximation in

linear time, however, this is not immediate. This result is

summarized in the following theorem. The proof of this

theorem is deferred to a full version of the paper.
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Algorithm 3: RandomizedSSAT(f,Ψ)

1 X0 ← ∅, Y0 ← N × {0, 1}.
2 for i = 1 to n do
3 ai,0 ← g(Xi−1 ∪ {ui, 0})− g(Xi−1).
4 ai,1 ← g(Xi−1 ∪ {ui, 1})− g(Xi−1).
5 bi,0 ← g(Yi−1 \ {ui, 0})− g(Yi−1).
6 bi,1 ← g(Yi−1 \ {ui, 1})− g(Yi−1).
7 si,0 ← max{ai,0 + bi,1, 0}.
8 si,1 ← max{ai,1 + bi,0, 0}.
9 with probability si,0/(si,0 + si,1)

* do:

Xi ← Xi−1 ∪ {ui, 0}, Yi ← Yi−1 \ {ui, 1}.
10 else (with the compliment probability

si,1/(si,0 + si,1)) do:

11 Xi ← Xi−1 ∪ {ui, 1}, Yi ← Yi−1 \ {ui, 0}.
12 return Xn (or equivalently Yn).

* If si,0 = si,1 = 0, we assume si,0/(si,0 + si,1) = 1.

Theorem IV.2. Algorithm 3 has a linear time implementa-
tion for instances of Max-SAT.

B. A (3/4)-Approximation for Submodular Welfare with 2
Players

The input for the Submodular Welfare problem consists

of a ground set N of n elements and k players, each

equipped with a normalized monotone submodular utility

function fi : 2
N → R

+. The goal is to divide the elements

among the players while maximizing the social welfare. For-

mally, the objective is to partition N into N1,N2, . . . ,Nk

while maximizing
∑k

i=1 fi(Ni).
We give below two different short proofs of Theorem I.4

via reductions to SSAT and USM, respectively. The second

proof is due to Vondrák [37].

Proof of Theorem I.4: We provide here two proofs.

Proof (1): Given an instance of SW with 2 players,

construct an instance of SSAT as follows:

1) The set of variables is N .

2) The CNF formula Ψ consists of 2|N | singleton

clauses; one for every possible literal.

3) The objective function f : 2C → R
+ is defined as

following. Let P ⊆ C be the set of clauses of Ψ
consisting of positive literals. Then, f(C) = f1(C ∩
P ) + f2(C ∩ (C \ P )).

Every assignment φ to this instance of SSAT corresponds

to a solution of SW using the following rule: N1 = {u ∈
N|φ(u) = 0} and N2 = {u ∈ N|φ(u) = 1}. One can

easily observe that this correspondence is reversible, and

that each assignment has the same value as the solution

it corresponds to. Hence, the above reduction preserves

approximation ratios.

Moreover, queries of f can be answered in constant time

using the following technique. We track for every subset

C ⊆ C in the algorithm the subsets C ∩P and C ∩ (C \P ).
For Algorithm 3 this can be done without effecting its

running time. Then, whenever the value of f(C) is queried,

answering it simply requires making two oracle queries:

f1(C ∩ P ) and f2(C ∩ (C \ P )).
Proof (2): In any feasible solution to SW with two

players, the set N1 uniquely determines the set N2 = N −
N1. Hence, the value of the solution as a function of N1 is

given by g(N1) = f1(N1) + f2(N −N1). Thus, SW with

two players can be restated as the problem of maximizing

the function g over the subsets of N .

Observe that the function g is a submodular function, but

unlike f1 and f2, it is possibly non-monotone. Moreover,

we can answer queries to the function g using only two

oracle queries to f1 and f2
3. Thus, we obtain an instance

of USM. We apply Algorithm 2 to this instance. Using

the analysis of Algorithm 2 as is, provides only a (1/2)-
approximation for our problem. However, by noticing that

g(∅) + g(N ) ≥ f1(N ) + f2(N ) ≥ g(OPT ), the claimed

(3/4)-approximation is obtained.
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APPENDIX

A. A (1/2)-Approximation for USM Using Fractional Val-
ues

In this section we present Algorithm 4, which is the con-

tinuous counterpart of Algorithm 2, presented in Section III.

In order to describe Algorithm 4, we need some no-

tation. Given a submodular function f : N → R
+, its

multilinear extension is a function F : [0, 1]N → R
+,

whose value at point x ∈ [0, 1]N is the expected value

of f over a random subset R(x) ⊆ N . The subset

R(x) contains each element u ∈ N independently with

probability xu. Formally, for every x ∈ [0, 1]N , F (x) �
E[R(x)] =

∑
S⊆N f(S)

∏
u∈S xu

∏
u/∈S(1 − xu). For two

vectors x, y ∈ [0, 1]N , we use x ∨ y and x ∧ y to denote

the coordinate-wise maximum and minimum, respectively,

of x and y (formally, (x ∨ y)u = max{xu, yu} and

(x ∧ y)u = min{xu, yu}).
We abuse notations both in the description of the algo-

rithm and in its analysis, and unify a set with its character-

istic vector. We also assume that we have an oracle access

to F . If this is not the case, then one can approximate the

value of F arbitrarily well using sampling. This makes the

approximation ratio deteriorate by a low order term only

(see, e.g., [3] for details).

Algorithm 4: MultilinearUSM(f,N )

1 x0 ← ∅, y0 ← N .

2 for i = 1 to n do
3 a′i ← F (xi−1 + {ui})− F (xi−1).
4 b′i ← F (yi−1 − {ui})− F (yi−1).
5 a′i ← max{ai, 0}, b′i ← max{bi, 0}.
6 xi ← xi−1 +

a′
i

a′
i+b′i

· {ui}*.

7 yi ← yi−1 − b′i
a′
i+b′i

· {ui}*.

8 return a random set R(xn) (or equivalently R(yn)).

* If a′i = b′i = 0, we assume a′i/(a
′
i + b′i) = 1 and

b′i/(a
′
i + b′i) = 0.

The main difference between Algorithms 2 and 4 is that

Algorithm 2 chooses each element with some probability,

whereas Algorithm 4 assigns a fractional value to the

element. This requires the following modifications to the

algorithm:

• The sets Xi, Yi ⊆ 2N are replaced by the vectors

xi, yi ∈ [0, 1]N .

• Algorithm 4 uses the multilinear extension F instead

of the original submodular function f .

Theorem A.1. If one has an oracle access to F , Algorithm 4
is a (1/2)-approximation algorithm for NSM. Otherwise,
it can be implemented using sampling, and achieves an
approximation ratio of (1/2)− o(1).

The rest of this section is devoted to proving Theo-

rem A.1. Similarly to Section III, define OPTi � (OPT ∨
xi) ∧ yi. Examine the sequence F (OPT0), . . . , F (OPTn).
Notice that OPT0 = OPT , i.e., the sequence starts with the

value of an optimal solution, and that OPTn = xn = yn,

i.e., the sequence ends at a fractional point whose value is

the expected value of the algorithm’s output. The following

lemma upper bounds the loss of two consecutive elements

in the sequence. Formally, F (OPTi−1)−F (OPTi) is upper

bounded by the average change in the value of the two

solutions maintained by the algorithm, i.e.,

1/2 · [F (xi)− F (xi−1) + F (yi)− F (yi−1)].

Lemma A.2. For every 1 ≤ i ≤ n,

F (OPTi−1)−F (OPTi) ≤
1

2
· [F (xi)− F (xi−1) + F (yi)− F (yi−1)] .

Before proving Lemma A.2, let us show that Theorem A.1

follows from it.

Proof of Theorem A.1: Summing up Lemma A.2 for

every 1 ≤ i ≤ n gives:

n∑
i=1

[F (OPTi−1)− F (OPTi)] ≤

1

2
·

n∑
i=1

[F (xi)− F (xi−1)] +
1

2
·

n∑
i=1

[F (yi)− F (yi−1)] .

The above sum is telescopic. Collapsing it, we get:

F (OPT0)− F (OPTn) ≤
1

2
· [F (xn)− F (x0)] +

1

2
· [F (yn)− F (y0)] ≤

F (xn) + F (yn)

2
.

Recalling the definitions of OPT0 and OPTn, we obtain

that F (xn) = F (yn) ≥ f(OPT )/2.

It is left to prove Lemma A.2.

Proof of Lemma A.2: By Lemma II.1, ai + bi ≥ 0,

therefore, it cannot be that both ai, bi are strictly less than

zero. Thus, we have 3 cases to consider.

Case 1 (ai ≥ 0 and bi ≤ 0): In this case a′i/(a
′
i +

b′i) = 1, and so yi = yi−1, xi ← xi−1 ∨ {ui}. Hence,

F (yi) − F (yi−1) = 0. Also, by our definition OPTi =
(OPT ∨ xi) ∧ yi = OPTi−1 ∨ {ui}. Thus, we are left to
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prove that:

F (OPTi−1)−F (OPTi−1 ∨ {ui}) ≤
1

2
· [F (xi)− F (xi−1)] = ai/2 .

If ui ∈ OPT , then the left hand side of the above equation

is 0, which is clearly no larger than the non-negative ai/2.

If ui �∈ OPT , then:

F (OPTi−1)− F (OPTi−1 ∨ {ui}) ≤
F (yi−1 − {ui})− F (yi−1) = bi ≤ 0 ≤ ai/2 .

The first inequality follows from submodularity since

OPTi−1 = ((OPT ∨ xi−1) ∧ yi−1) ≤ yi−1 − {ui} (note

that in this case (yi−1)ui = 1 and (OPTi−1)ui = 0).

Case 2 (ai < 0 and bi ≥ 0): This case is analogous

to the previous one, and therefore, we omit its proof.

Case 3 (ai ≥ 0 and bi > 0): In this case a′i = ai, b
′
i =

bi and so, xi ← xi−1+
ai

ai+bi
· {ui} and yi ← yi−1− bi

ai+bi
·

{ui}. Therefore, we have,

F (xi)− F (xi−1) =

ai
ai + bi

· [F (xi−1 ∨ {ui})− F (xi−1)] =
a2i

ai + bi
. (4)

A similar argument shows that:

F (yi)− F (yi−1) =
b2i

ai + bi
. (5)

Next, we upper bound F (OPTi−1) − F (OPTi). For sim-

plicity, let us assume ui �∈ OPT (the proof for the other

case is similar). Recall, that OPTi = (OPT ∨ xi) ∧ yi.

F (OPTi−1)− F (OPTi) =
ai

ai + bi
· [F (OPTi−1)− F (OPTi−1 ∨ {ui})] ≤

ai
ai + bi

· [F (yi−1 − {ui})− F (yi−1)] =
aibi

ai + bi
. (6)

The inequality follows from the submodularity of f since,

OPTi−1 = ((OPT ∨ xi−1) ∧ yi−1) ≤ yi−1 − {ui}
(note again that in this case (yi−1)ui = 1 and

(OPTi−1)ui = 0). Plugging (4), (5) and (6) into the

inequality that we need to prove, we get the following:

aibi
ai + bi

≤ 1

2
· a

2
i + b2i
ai + bi

,

which can be easily verified.

B. Proof of Theorem I.3

In this section we prove that Algorithm 3 is a randomized

linear time (3/4)-approximation algorithm for SSAT. As a

first step we state the following useful lemma.

Lemma A.3. For every 1 ≤ i ≤ n,

E[g(OPTi−1)− g(OPTi)] ≤
1

2
· E [(g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1)] , (7)

where expectations are taken over the random choices of the
algorithm.

The proof of this lemma is deferred to a full version of

the paper. Let us just note that the proof follows the lines of

Lemma III.1. Let us show that the approximation guarantee

of Theorem I.3 follows from the above lemma. The proof

that Algorithm 3 can be implemented to run in linear time

is deferred to a full version of the paper.

Proof of approximation guarantee of Algorithm 3:
Summing up Lemma A.3 for every 1 ≤ i ≤ n we get,

n∑
i=1

E[g(OPTi−1)− g(OPTi)] ≤

1

2
·

n∑
i=1

E[g(Xi)− g(Xi−1) + g(Yi)− g(Yi−1)] .

The above sum is telescopic. Collapsing it, we get:

E[g(OPT0)− g(OPTn)]

≤ 1

2
· E[g(Xn)− g(X0) + g(Yn)− g(Y0)]

≤ E[g(Xn) + g(Yn)− g(Y0)]

2
.

Recalling the definitions of OPT0 and OPTn, we obtain

that:

E[g(Xn)] = E[g(Yn)] ≥ g(OPT )/2 + g(Y0)/4.

The approximation ratio now follows from the observation

that Y0 satisfies all clauses of Ψ, and therefore, g(Y0) ≥
g(OPT ).
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