CSC 2420 Fall 2012, Assignment 1 Due: October 18 at start of class

- 1. Consider Graham's LPT algorithm for makespan minimization on m identical machines. The proof that $LPT(\mathcal{J}) \leq \frac{4}{3} \frac{1}{3m}$ proceeds by contradication. Show that if the approximation does not hold for some input set \mathcal{J} , then the smallest processing time $p_n > OPT/3$. (After this the proof argues that ther are at most 2 items per machine and any such configuration of items can be modified to be the solution produced by the LPT algorithm.)
- 2. Consider the knapsack problem with input items $\{(v_1, s_1), \ldots, (v_n, s_n)\}$ and capacity C. WLG the sizes s_j of all items are at most C. Let $Greedy_{pd}(\mathcal{I})$ be the greedy algorithm that first sorts the items $I_j = (v_j, s_j)$ so that $\frac{v_1}{s_1} \geq \frac{v_2}{s_2} \ldots \geq \frac{v_n}{s_n}$ and then accepts items greedily (i.e. as long as they fit). Consider the following algorithm:

Let $i^* = argmax_i\{v_i | i = 1...n\}$ and let $A = \{I_{i^*}\}$ and $B = Greedy_{pd}(\mathcal{I})$ Return the better of the two solutions. Show that this algorithm is a 2-approximation of the optimal.

- Bonus question: Instead of the partial enumertion PTAS for the knapsack problem, can we obtain a PTAS by enumerating over all feasible subsets (of size at most $k = \frac{1}{\epsilon}$) of the largest valued items (rather than all subsets of size at most k) and then accepting greedily?
- 3. Consider the following scheduling problem. We have n jobs $\mathcal{J} = J_1, \ldots, J_n$ with $J_i = (d_i, p_i, v_i)$ where d_i (resp. p_i, v_i) is the deadline (resp. processing time, value) of job J_i . We can assume all paramters are positive integers. A schedule is a mapping $\sigma : \mathcal{J} \to \mathbb{N} \cup \{\infty\}$ where $\sigma(J_i) = t_i \in \mathbb{N}$ means that job J_i begins processing at time t_i (and then ends at time $t_i + p_i$) and $\sigma(J_i) = \infty$ means that job J_i is not scheduled. A schedule is feasible if all scheduled jobs complete by their deadlines and scheduled jobs do not overlap. (We can say that a job ending at time t and one starting at time t do not overlap.) Show how to use dynamic programming and scaling to provide a FPTAS for this problem.

What is the (asymptotic) time complexity of your algorithm in terms of n and ϵ where you can assume that all arithmetic operations take one step?

- 4. Suppose we are interested in the makespan problem in the related machines model. Say we want to compute the makespan when there are m_1 machines running at speed $s_1 = 1$ and m_2 machines running at speed $s_2 > 1$. Show how to modify the optimal DP for the identical machines model when there are only a fixed number d different processing times so as to provide an optimal algorithm for the related machines model under the same assumption of having only d different processing times. What is the (asymptotic) time complexity of your algorithm in terms of n, m_1, m_2 and d where n is the number of jobs?
- 5. Bound the maximum number of iterations for the Jump local search to find a local optimum when the algorithm moves a job J_k it always moves that job to a least loaded machine.
- 6. Consider the makespan problem for the restricted machines model. Suppose all jobs have processing time/load = 1. Show how to use a max flow algorithm to achieve an optimal makespan solution.