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Brief Announcements

1 Game theory reading group meets at 4 in theory lab

2 Assignment 2 due next Thursday. I may add one more easy question.

3 We need to finish up the 1− 1/e analysis for Yannakakis’ IP/LP
randomized rounding algorithm. This is needed for question 6 of the
assignment.
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The SDP/vector program approach: Max-2-Sat

We briefly consider an important extension of the IP/LP approach,
namely representing a problem as a strict quadratic program and then
relaxing such a program to a vector program. Vector programs are
known to be equivalent to semidefinite programs.

For our purposes of just introducing the idea of this approach we will
not discuss SDP concepts but rather just note that such programs
(and hence vector programs) can be solved to arbitrary precision
within polynomial time. This framework provides one of the most
powerful optimization methods.

We illustrate the approach in terms of the Max-2-Sat problem. A very
similar algorithm and analysis produces the same approximation ratio
for the Max-Cut problem.
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The quadratic program for Max-2-Sat

We introduce {-1,1} variables yi corresponding to the propositional
variables. We also introduce a homogenizing variable y0 which will
correspond to a constant truth value. That is, when yi = y0, the
intended meaning is that xi is set true and false otherwise.

We want to express the {−1, 1} truth value val(C ) of each clause C
in terms of these {−1, 1} variables.

1 val(xi ) = (1 + yiy0)/2
val(x̄i ) = (1− yiy0)/2

2 If C = (xi ∨ xj), then val(C ) = 1− val(x̄i ∧ x̄j) = 1− ( 1−yiy0
2 )(

1−yjy0
2 ) =

(3 + yiy0 + yjy0 − yiyj)/4 = 1+y0yi
4 +

1+y0yj
4 +

1−yiyj
4

3 If C = (x̄i ∨ xj) then val(C ) = (3− yiy0 + yjy0 + yiyj)/4
4 If C = (x̄i ∨ x̄j) then val(C ) = (3− yiy0 − yjy0 − yiyj)/4
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The quadratic program for Max-2-Sat continued

The Max-2-Sat problem is then to maximize
∑

wkval(Ck) subject to
(yi )

2 = 1 for all i

By collecting terms of the form (1 + yiyj) and (1− yiyj) the
max-2-sat objective can be represented as the strict quadratic
objective: max

∑
0≤i<j≤n aij(1 + yiyj) +

∑
bij(1− yiyj) for some

appropriate aij , bij .

Like an IP this integer quadratic program cannot be solved efficiently.
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The vector program relaxation for Max-2-Sat

We now relax the quadratic program to a vector program where each
yi is now a unit length vector vi in <n+1 and scalar multiplication is
replaced by vector dot product. This vector program can be
(approximately) efficiently solved (i.e. in polynomial time).

The randomized rounding (from v∗i to yi ) proceeds by choosing a
random hyperplane in <n+1 and then setting yi = 1 iff v∗i is on the
same side of the hyperplane as v∗0. That is, if r is a uniformly random
vector in <n+1, then set yi = 1 iff r · v∗i ≥ 0.

The rounded solution then has expected value

2
∑

aijProb[yi = yj ] +
∑

bijProb[yi 6= yj ] ; Prob[yi 6= yj ] =
thetaij
π

where θij is the angle between v∗i and v∗j .

The approximation ratio (in expectation) of the rounded solution

Let α = 2
π min{0≤θ≤π}

θ
(1−cos(θ) ≈ .87856 and let OPTVP be the value

obtained by an optimal vector program solution.
Then E[rounded solution] ≥ α · (OPTVP).

6 / 24



The random walk algorithm for 2-Sat

First, here is the idea of the deterministic polynomial time algorithm
for 2-Sat: We can first eliminate all unit clauses. We then reduce the
problem to the directed s − t path problem. We view each clause
(x ∨ y) in F as two directed edges (x̄ , y) and (ȳ , x) in a graph GF

whose nodes are all possible literals x and x̄ . Then the formula is
satisfiable iff there does not exist a variable x such that there are
paths from x to x̄ and from x̄ to x in GF .

There is also a randomized algorithm for 2-SAT (due to
Papadimitriou [1991]) based on a random walk on the line graph with
nodes {0, 1, , n}. We view being on node i as having a truth
assignment τ that is Hamming distance i from some fixed satisfying
assignment τ∗ if such an assignment exists (i.e. F is satisfiable).

Start with an arbitrary truth assignment τ and if F (τ) is true then we
are done; else find an arbitrary unsatisfied clause C and randomly
choose one of the two variables xi occurring in C and now change τ
to τ ′ by setting τ ′(xi ) = 1− τ(xi ).
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The expected time to reach a satisfying assignment
When we randomly select one the the two literals in C and
complement it, we are getting close to τ∗ (i.e. moving one edge
closer to node 0 on the line) with probability at least 1

2 . (If it turns
out that both literal values disagree with τ∗, then we are getting
closer to τ∗ with probability = 1.)
As we are proceeding in this random walk we might encounter
another satisfying assignment which is all the better.
It remains to bound the expected time to reach node 0 in a random
walk on the line where on each random step, the distance to node 0 is
reduced by 1 with probability at least 1

2 and otherwise increased by 1
(but never exceeding distance n). This perhaps biased random walk is
at least as good as the case where we randomly increase or decrease
the distance by 1 with probability equal to 1

2 .

Claim:

The expected time to hit node 0 is at most 2n2.

To prove the claim one needs some basic facts about Markov chains.
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The basics of finite Markov chains

A finite Markov chain M is a discrete-time random process defined
over a set of states S and a matrix P = {Pij} of transition
probabilities.

Denote by Xt the state of the Markov chain at time t. It is a
memoryless process in that the future behavior of a Markov chain
depends only on its current state: Prob[Xt+1 = j |Xt = i ] = Pij and
hence Prob[Xt+1 = j ] =

∑
i Prob[Xt+1 = j |Xt = i ]Prob[Xt = i ].

Given an initial state i , denote by r tij the probability that the first time
the process reaches state j occurs at time t;
r tij = Pr [Xt = j and Xs 6= j for 1 ≤ s ≤ t − 1|X0 = i ]

Let fij the probability that state j is reachable from initial state i ;
fij =

∑
t>0 r

t
ij .

Denote by hij the expected number of steps to reach state j starting
from state i (hitting time); that is, hij =

∑
t>0 t · r tij

Finally, the commute time cij is the expected number of steps to reach
state j starting from state i , and then return to i from j ; cij = hij + hji
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Stationary distributions
Define qt = (qt1, q

t
2, . . . , q

t
n), the state probability vector (the

distribution of the chain at time t), as the row vector whose i-th
component is the probability that the Markov chain is in state i at
time t.
A distribution π is a stationary distribution for a Markov chain with
transition matrix P if π = πP.
Define the underlying directed graph of a Markov chain as follows:
each vertex in the graph corresponds to a state of the Markov chain
and there is a directed edge from vertex i to vertex j iff Pij > 0. A
Markov chain is irreducible if its underlying graph consists of a single
strongly connected component. We end these preliminary concepts by
the following theorem.

Theorem: Existence of a stationary distribution

For any finite, irreducible and aperiodic Markov chain,

(i) There exists a unique stationary distribution π.

(ii) For all states i , hii <∞, and hii = 1/πi .
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Back to random walks on graphs
Let G = (V ,E ) be a connected, non-bipartite, undirected graph with
|V | = n and |E | = m. A uniform random walk induces a Markov
chain MG as follows: the states of MG are the vertices of G ; and for
any u, v ∈ V , Puv = 1/deg(u) if (u, v) ∈ E , and Puv = 0 otherwise.
Denote by (d1, d2, . . . , dn) the vertex degrees. MG has a stationary
distribution (d1/2m, . . . , dn/2m).
Let Cu(G ) be the expected time to visit every vertex, starting from u
and define C (G ) = maxu Cu(G ) to be the cover time of G .

Theorem: Aleliunas et al [1979]

Let G be a connected undirected graph. Then

1 For each edge (u, v), Cu,v ≤ 2m,

2 C (G ) ≤ 2m(n − 1).

It follows that the 2-SAT random walk has expected time at most
2n2. to find a satisfying assignment in a satisfiable formula. Can use
Markov inequality to obtain probability of not finding satisfying
assignment. 11 / 24



Extending the random walk idea to k-SAT

The random walk 2-Sat algorithm might be viewed as a drunken walk
(and not an algorithmic paradigm). We could view the approach as a
local search algorithm that doesn’t know when it is making progress
on any iteration but does have confidence that such an exploration of
the local neighborhood likely to be successful over time.

We want to extend the 2-Sat algorithm to k-SAT. However, we know
that k-SAT is NP-complete for k ≥ 3 so our goal now is to improve
upon the naive running time of 2n, for formulas with n variables.

In 1999, Following some earlier results, Schöning gave a very simple
(a good thing) random walk algorithm for k-Sat that provides a
substantial improvement in the running time (over say the naive 2n

exhaustive search) and this is still almost the fastest (worst case)
algorithm known.

This algorithm was derandomized by Moser and Scheder [2011].

Beyond the theoretical significance of the result, this is the basis for
various Walk-Sat algorithms that are used in practice.
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Schöning’s k-SAT algorithm
The algorithm is similar to the 2-Sat algorithm with the difference being
that one does not allow the random walk to go on too long before trying
another random starting assignment. The result is a one-sided error alg
running in time Õ[(2(1− /1k)]n; i.e. Õ(43)n for 3-SAT, etc.

Randomized k-SAT algorithm

Choose a random assignment τ
Repeat 3n times % n = number of variables
If τ satisfies F then stop and accept
Else Else Let C be an arbitrary unsatisfied clause

Randomly pick and flip one of the literals in C
End If

Claim

If F is satisfiable then the above succeeds with probability p at least
[(1/2)(k/k − 1)]n. It follows that if we repeat the above process for t
trials, then the probability that we fail to find a satisfying assignment is at
most (1− p)t < e−pt . Setting t = c/p, we obtain error probability (1e )c .
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Randomized online bipartite matching and the
adwords problem. NOTE: Not yet discussed in
lecture.

We return to online algorithms and algorithms in the random order
model (ROM). Here we have already seen evidence of the power of
randomization in the context of the MaxSat problem.
Another nice sequence of results begins with a randomized online
algorithm for bipartite matching due to Karp, Vazirani and Vazirani
[1990]. We quickly overview some results in this area as it represents
a topic of current interest. (The recent FOCS 2012 conference had a
session of three papers related to this topic.)
In the online bipartite matching problem, we have a bipartite graph G
with nodes U ∪ V . Nodes in U enter online revealing all their edges.
A deterministic greedy matching produces a maximal matching and
hence a 1

2 approximation.
It is easy to see that any deterministic online algorithm cannot be
better than a 1

2 approximation even when the degree of every u ∈ U
is at most (equal) 2
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The randomized ranking algorithm

The algorithm chooses a random permutation of the nodes in V and
then when a node u ∈ U appears, it matches u to the highest ranked
unmatched v ∈ V such that (u, v) is an edge (if such a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

Equivalently, this algorithm can be viewed as a deterministic greedy
(i.e. always matching when possible and breaking ties consistently)
algorithm in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.
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The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and then another proof in Birnbaum and Mathieu [2008].

Recall that this positive result can be stated either as the bound for a
particular deterministic algorithm in the stochastic ROM model, or as
the randomized Ranking algorithm in the (adversarial) online model.

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

In the ROM model, Karande, Mehta, Tripathi [2011] show that
Ranking achieves approximation at least .653 (beating 1− 1/e) and
no better than .727.
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Some comments on the Birnbaum and Mathieu
proof

The worst case example a (n, n) graph with a perfect matching.

In particular, for n = 2, the precise expected competitive (i.e.
approximation) ratiois 3

4 . The inapproximation can be seen by using
the Yao principle for obtaining bounds on randomized algorithms.

The main lemma in the analysis

Let xt be the probability (over the random permutations of the vertices in
V ) that the vertex of rank t is matched. Then 1− xt ≤ 1

n

∑t
s=1 xs

Letting St =
∑t

s=1 xs the lemma can be restated as
St(1 + 1/n) ≥ 1 + St−1 fo all t. Given that the graph has a perfect
matching, the expected competitive ratio is Sn/n. It is shown that
1
nSn ≥ 1− (1− 1

n+1)n → 1− 1/e.
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Getting past the (1− 1/e) bound

The ROM model can be considered as an example of what is called
stochastic optimization in the OR literature. There are other
stochastic optimization models that are perhaps more natural, namely
i.i.d sampling from known and unknown distributions.

Feldman et al [2009] study the known distribution case and show a
randomized algorithm that first computes an optimal offline solution
(in terms of expectation) and uses that to guide an online allocation.

They achieve a .67 approximation (improved to .699 Bahmani and
Kapralov [2010] and also show that no online algorithm can achieve
better than 26/27 .99 (improved to .902 ).

Karande, et al [2011] how that an approximation in the ROM model
implies thre same approximation in the unknown distribution model.
They show that the KVV Ranking algorithm achieves approximation
.653 in the ROM model and is no better than .727.
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The adwords problem: an extension of bipartite
matching

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each advertiser also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets. Without budgets and when each advertiser will pay for at
most one query, the problem then is edge weighted bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.
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Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bid case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).
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Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.
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Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Surprisingly, Aggarwal et al are able to
achieve the same 1-1/e bound for this class of vertex weighted
bipartite matching.
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The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e1−x

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv ). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.
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Some open problems in the ROM model

There are many open problems in the ROM model. In general any online
problem can be studied with respect to this model. For example, relevant
to what we have just discussed:

The adwords problem without any restriction

Beating 1− 1/e for the vertex weighted or b-matching problems.

Perhaps, the first prominent use of this model is for the secretary
problem; namely selecting the maximum element (or best k elements)
in a randomly ordered sequence. Here again 1− 1/e is the best
approximation.

This has been generalized to the matroid secretary problem by
Babaioff. For arbitrary matroids, the approximation ratio remains an
open problem.
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