
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

An introductory (i.e. foundational) level
graduate course.

Allan Borodin

November 1, 2012; Lecture 8

1 / 24

Randomized algorithms

The why of randomization:

There are some problem settings (e.g. simulation, cryptography,
interactive proofs, sublinear time algorithms) where randomization is
necessary.

We can use randomization to improve approximation ratios.

Even when a given algorithm can be derandomized, there is often
conceptual insight to be gained from the initial randomized algorithm.

In complexity theory a fundamental question is how much can
randomization lower the time complexity of a problem. For decision
problems, there are three polynomial time randomized classes ZPP
(zero-sided), RP (1-sided) and BPP (2-sided) error. The big question
(and conjecture?) is BPP = P?

One important aspect of randomized algorithms is that the probability
of success can be amplified by repreated independent trials of the
algorithm.

2 / 24

Comment on Umesh Vazarani’s DLS talk

In his DLS talk, Umesh Vazarani made an interesting suggestion: Will
quantum computation be a 2010s analog to the impact of
randomization in say the 1980s. (I would say the 1970s and 80’s.)

For example, there is a necessary use of randomization in interactive
proofs. Probabisitically checkable proofs (PCPs) gave rise to insights
(e.g. hardness results) for approximation bounds.

We will see today how a randomized algorithm can suggest algorithms
and simplify analysis.

So even if say true randomness does not exist (i.e. no source of true
random bits), the computational use of randomization has great
conceptual benefits. (Moreover, in practice, pseudo randomness
works).

Vazarani gave an example where quantum concepts have suggested
new classical algorithms (in the context of matrix weighted majority)
in addition to adding insight into semi definite programming.

3 / 24

Some problems in randomized polynomial not known
to be in polynomial time

1 The symbolic determinant problem.

2 Given n, find a prime in [2n, 2n+1]

3 Estimating volume of a convex body given by a set of linear
inequalitiies.

4 Solving a quadratic equation in Zp[x] for a large prime p.

4 / 24

Polynomial identity testing
The general problem concerning polynomial identities is that we are
implicitly given two multivariate polynomials and wish to determine if
they are identical. One way we could be implicitly given these
polynomials is by an arithmetic circuit. A specific case of interest is
the following symbolic determinant problem.
Consider an n × n matrix A = (ai ,j) whose entries are polynomials of
total degree (at most) d in m variables, say with integer coeficients.
The determinant det(A) =

∑
π∈Sn(−1)sgn(π)

∏n
i=1 ai ,π(i), is a

polynomial of degree nd . The symbolic determinant problem is to
determine whether det(A) ≡ 0, the zero polynomial.

Schwartz Zipple Lemma

Let P ∈ F[x1, . . . , xm] be a non zero polynomial over a field F of total
degree at most d . Let S be a finite subset of F. Then
Probri∈uS [P(r1,rm) = 0] ≤ d

|S |

Schwartz Zipple is clearly a multivariate generalization of the fact
that a univariate polynomial of degree d can have at most d zeros.

5 / 24

Polynomial identity testing and symbolic
determinant continued

Returning to the symbolic determinant problem, suppose then we
choose a suffciently large set of integers S (for definiteness say
|S | ≥ 2nd). Randomly choosing ri ∈ S , we evaluate each of the
polynomial entries at the values xi = ri . We then have a matrix A′

with (not so large) integer entries.

We know how to compute the determinant of any such integer matrix
A′n×n in O(n3) arithmetic operations. (Using the currently fastest,
but not necessarily practical, matrix multiplication algorithm the
determinant can be computed in O(n2.38) arithmetic operations.)

That is, we are computing the det(A) at random ri ∈ S which is a
degree nd polynomial. Since |S | ≥ 2nd , then Prob[det(A′) = 0] ≤ 1

2
assuming det(A) 6≡ 0. The probability of correctness con be amplifed
by choosing a bigger S or by repeated trials.

In complexity theory terms, the problem (is det(A) ≡ 0) is in co-RP.

6 / 24

The naive randomized algorithm for exact
Max-k-Sat
We continue our discussion of randomized algorthms by considering the use
of randomization for improving approximation algorithms. In this context,
randomization can be (and is) combined with any type of algorithm.
Warning: For the following discussion of Max-Sat, we will follow the
prevailing convention by stating approximation ratios as fractions c < 1.

Consider the exact Max-k-Sat problem where we are given a CNF
propositional formula in which every clause has exactly k literals. We
consider the weighted case in which clauses have weights. The goal is
to find a satisfying assignment that maximizes the size (or weight) of
clauses that are satisfied.

Since exact Max-k-Sat generalizes SAT, it is clearly an NP hard
problem for k ≥ 3. It is interesting to note that while 2-SAT is
polynomial time, Max-2-Sat is still NP hard.

The naive randomized (online) algorithm for Max-k-Sat is to
randomly set each variable to true or false with equal probability.

7 / 24

Analysis of naive Max-k-Sat algorithm continued

Since the expectation of a sum is the sum of the expectations, we just
have to consider the probability that a clause is satisfied to determine
the expected weight of a clause.

Since each clause Ci has k variables, the probability that a random
assignment of the literals in Ci will set the clause to be satisfied is
exactly 2k−1

2k
. Hence E [weight of satisfied clauses] = 2k−1

2k

∑
i wi

Of course, this probability only improves if some clauses have more
than k literals. It is the small clauses that are the limiting factor in
this analysis.

This is not only an approxination ratio but moreover a “totality ratio”
in that the algorithms expected value is a factor 2k−1

2k
of the sum of

all clause weights whether satisfied or not.

We can hope that when measuring againt an optimal solution (and
not the sum of all clause weights), small clauses might not be as
problematic as they are in the above analysis of the naive algorithm.

8 / 24

Derandomizing the naive algorithm
We can derandomize the naive algorithm by what is called the method of
conditional expectations. Let F [x1, . . . , xn] be an exact k CNF formula
over n propositional variables {xi}. For notational simplicity let true = 1
and false = 0 and let w(F)|τ denote the weightea sum of satisfied clauses
given truth assignment τ .

Let xj be any variable. We express E[w(F)|xi∈u{0,1}] as
E[w(F)|xi∈u{0,1}|xj = 1] · (1/2) + E[w(F)|xi∈u{0,1}|xj = 0] · (1/2)
This implies that one of the choices for xj will yield an expectation at
least as large as the overall expectation.
It is easy to determine how to set xj since we can calculate the
expectation clause by clause.
We can continue to do this for each variable and thus obtain a
deterministic online solution whose weight is at least the overall
expected value of the naive randomized algorithm.
For exact Max-2-Sat (resp. Max-3-Sat), the approximation (and
totality) ratio is 3

4 (resp. 7
8). For k ≥ 3, using PCPs, Hastad proves

that it is NP-hard to improve upon the 2k−1
2k

approximation ratio for

Max-k-Sat. For Max-2-Sat, the 3
4 ratio can be improved. 9 / 24

Johnson’s Max-Sat Algorithm

Johnson’s [1974] algorithm

For all clauses Ci , w
′
i := wi/(2|Ci |)

Let L be the set of clauses in F and X the set of variables
For x ∈ X (or until L empty)

Let P = {Ci ∈ L such that x occurs positively}
Let N = {Cj ∈ L such that x occurs negatively}
If
∑

Ci∈P w ′i ≥
∑

Cj∈N w ′j
x := true; L := LP
For all Cr ∈ N, w ′r := 2w ′r End For

Else
x := false; L := L− N
For all Cr ∈ P, w ′r := 2w ′r End For

End If
Delete x from X

End For

10 / 24

Johnson’s algorithm is the derandomized algorithm

Yannakakis [1994] presented the naive algorithm and showed that
Johnson’s algorithm is the derandomized naive algorithm.

Yannakakis also observed that for arbitrary Max-Sat, the
approximation of Johnson’s algorithm is at best 2

3 . For example,
consider the 2-CNF F = (x ∨ ȳ) ∧ (x̄ ∨ y) ∧ ȳ when variable x is first
set to true.

Chen, Friesen, Zheng [1999] showed that Johnson’s algorithm
achieves approximation ratio 2

3 for arbitrary weighted Max-Sat.

For arbitrary Max-Sat (resp. Max-2-Sat), the current best
approximation ratio is .797 (resp. .931) using semi-definite
programming and randomized rounding.

11 / 24

Modifying Johnson’s algorithm for Max-Sat
In proving the (2/3) approximation ratio for Johnson’s Max-Sat
algorithm,, Chen et al asked whether or not the ratio could be
improved by using a random ordering of the propositional variables
(i.e. the input items). This is an example of the random order model
(ROM), a randomized variant of online algorithms.
To precisely model the Max-Sat problem within the priority
framework, we need to specify the input model.
In increasing order of providing more information (and possibly better
approximation ratios), the following input models can be considered:

1 Each propositional variable x is represented by the length of each
clause Ci in which x appears positively, and for each clause Cj in which
it appears negatively.

2 In addition, for each Ci and Cj , a list of the other variables in that
clause is specified.

3 The variable x is reprsented by a complete specification of each clause
it which it appears.

We note that Johnson’s algorithm can be viewed as a priority
algorithm using the weakest of these three input models.

12 / 24

Improving on Johnson’s algorithm

The question asked by Chen et al was answered by Costello, Shapira
and Tetali [2011] who showed that in the ROM model, Johnson’s
algorithm achieves approximation (2/3 + ε) for ε ≈ .003653

Poloczek and Schnitger [same SODA 2011 conference] show that the
approximation ratio for Johnsons algorithm in the ROM model is at
most 2

√
157 ≈ .746 < 3/4 , the ratio obtained by Yannakakis’ IP/LP

approximation that we will soon present.

Poloczek and Schnitger first consider a “canonical randomization” of
Johnson’s algorithm”; namely, the canonical randomization sets a

variable xi = true with probability
w ′
i (P

w ′
i (P)+w ′

i (N) where w ′i (P) (resp.

w ′i (N)) is the current combined weight of clauses in which xi occurs
positively (resp. negatively). Their substantial additional idea is to
adjust the random setting so as to better account for the weight of
unit clauses in which a variable occurs.

13 / 24

A few comments on the Poloczek and Schnitger
algorithm

The new Poloczek and Schnitger algorithm is called Slack and has
approximation ratio = 3/4.
In terms of priority algorithms this is a randomized online algorithm
(i.e. adversary chooses the ordering) where the variables are
represented in the second (middle power) input model.
This approximation ratio is in contrast to Azar et al [2011] proving
that no randomized online algorithm can achieve approximation better
than 2/3 when the input model is the weakest of the input models.
Finally (in this regard), Poloczek [2011] shows that no deterministic
priority algorithm can achieve a 3/4 approximation within the second
(middle) input model. This provides a strong sense in which one can
prove that the Poloczek and Schnitger Slack algorithm cannot be
derandomized.
The best deterministic priority algorithm in the third (most powerful)
model remains an open problem as does the best randomized priority
algorithm.

14 / 24

Yannakakis’ IP/LP randomized rounding algorithm for
Max-Sat

We will formulate the weighted Max-Sat problem as a {0, 1} IP.

Relaxing the variables to be in [0, 1], we will treat some of these
variables as probabilities and then round these variables to 1 with that
probability.

Let F be a CNF formula with n variables {xi} and m clauses {Cj}.
The Max-Sat formulation is :
maximize

∑
j wjzj

subject to
∑
{xi is in Cj} yi +

∑
{x̄i is in Cj}(1− yi) ≥ zj

yi ∈ {0, 1}; zj ∈ {0, 1}
The yi variables correspond to the propositional variables and the zj
correspond to clauses.

The relaxation to an LP is yi ≥ 0; zj ∈ [0, 1]. Note that here we
cannot simply say zj ≥ 0.

15 / 24

Randomized rounding of the yi variables

Let {y∗i }, {z∗j } be the optimal LP solution,

Set ỹi = 1 with probability y∗i .

Theorem

Let Cj be a clause with k literals and let bk = 1− (1− 1
k)k . Then

Prob[Cj is satisifed] is at least bkz
∗
j .

The theorem shows that the contribution of the j th clause Cj to the
expected value of the rounded solution is at least bkwj .

Note that bk converges to (and is always greater than) 1− 1
e as k

increases. It follows that the expected value of the rounded solution is
at least (1− 1

e) LP-OPT ≈ .632 LP-OPT.

Taking the max of this IP/LP and the naive randomized algorithm
results in a 3

4 approximation algorithm that can be derandomized.

16 / 24

