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Duality: See Vazirani and Shmoys/Williamson texts,
and Williamson article

For a primal maximization (resp. minimization) LP in standard form,
the dual LP is a minimization (resp. maximization) LP in standard
form.

Specifically, if the primal P is:

I Minimize c · x
I subject to A · x ≥ b
I x ≥ 0

then the dual LP D with dual variables y is:

I Maximize b · y
I subject to Atr · y ≤ c
I y ≥ 0

Note that the dual (resp. primal) variables are in correspondence to
primal (resp. dual) constraints.

If we consider the dual D as the primal then its dual is the original
primal P. That is, the dual of the dual is the primal.
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An example: set cover
As already noted, the vertex cover problem is a special case of the set
cover problem in which the elements are the edges and the vertices are the
sets, each set (ie vertex v) consisting of the edges adjacent to v .

The set cover problem as an IP/LP

minimize
∑

j wjxj
subject to

∑
j :ei∈Sj ≥ 1 for all i

xj ∈ {0, 1} (resp. xj ≥ 0)

The dual LP

maximize
∑

i yi
subject to

∑
i :ei∈Sj yi ≤ wj for all j

yi ≥ 0

If all the parameters in a standard form minimization (resp. maximization)
problem are non negative, then the problem is called a covering (resp.
packing) problem. Note that the set cover problem is a covering problem
and its dual is a packing problem.
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Duality Theory Overview

An essential aspect of duality is that a finite optimal value to either
the primal or the dual determines an optimal value to both.

The relation between these two can sometimes be easy to interpret.
However, the interpretation of the dual may not always be intuitively
meaningful.

Still, duality is very useful because the duality principle states that
optimization problems may be viewed from either of two perspectives
and this might be useful as the solution of the dual might be much
easier to calculate than the solution of the primal.

In some caes, the dual might provide additional insight as to how to
round the LP solution to an integral solution.

Moreover, the relation between the primal P and the dual D will lead
to primal-Dual algorithms and to called dual fiiting analysis.

In what follows we will assume the primal is a minimization problem
to simplify the exposition.
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Strong and Weak Duality
Strong Duality

If x∗ and y∗ are (finite) optimal primal and resp. dual solutions, then
D(y∗) = P(x∗).

Note: Before it was known that solving LPs was in polynomial time, it was
observed that strong duality proves that LP (as a decision problem) is in
NP ∩ co−NP which strongly suggested that LP was not NP-complete.

Weak Duality

If x and y are primal and resp. dual solutions, then D(y) ≤ P(x).

Duality can be motivated by asking how one can verify that the
minimum in the primal is at least some value z . To get witnesses, one
can explore non-negative scaling factors (i.e. the dual variables) that
can be used as multipliers in the constraints. The multipliers,
however, must not violate the objective (i.e cause any multiplies of a
primal variable to exceed the coefficient in the objective) we are
trying to bound.
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Motivating duality and proving weak duality

Consider the motivating example in V. Vazirani’s text:
minimize 7x1 + x2 + 5x3
subject to

x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

The proof for weak duality

b · y =
∑m

j=1 bjyj
≤

∑m
j=1(

∑n
i=1 Ajixi )yj

≤
∑n

i=1

∑m
j=1(Ajiyj)xi

≤
∑n

i=1 cixi = c · x
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Max flow-min Cut in terms of duality
While the max flow problem can be naturally formulated as a LP, the
natural formulation for min cut is as an IP. However, for this IP, it
can be shown that the extreme point solutions (i.e. the vertices of the
polyhedron defined by the constraints) are all integral {0,1} in each
coordinate. Moreover, there is a precise sense in which max flow and
min cut can be viewed as dual problems. This is described nicely in
Vazarani (section 12.2).
In order to formulate max flow in standard LP form we reformulate
the problem so that all flows (i.e. the LP variables) are non-negative.
And to state the objective as a simple linear function (of the flows)
we add an edge of infinite capacity from the terminal t to the source
s and hence define a circulation problem.

The max flow LP

maximize ft,s
subject to fi ,j ≤ ci ,j for all (i , j) ∈ E∑

j :(j ,i)∈E fj ,i −
∑

j :(i ,j)∈E fi ,j ≤ 0 for all i ∈ V
fi ,j ≥ 0 for all (i , j) ∈ E
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Max flow-min cut duality continued
For the primal edge capacity constraints, introduce dual (“distance”)
variables di ,j and for the vertex flow conservation constraints, introduce
dual (“potential”) variables pi .

The fractional min cut dual

minimize
∑

(i ,j)∈E ci ,jdi ,j
subject to di ,j − pi + pj ≥ 0

ps − pt ≥ 1
di ,j ≥ 0; pi ≥ 0

Now consider the IP restriction : di ,j , pi ∈ {0, 1} and let {(d∗i ,j , p∗i )}
be an intergal optimum.
The {0, 1} restriction and second constraint forces p∗s = 1; p∗t = 0.
The IP optimum then defines a cut (S ,T ) with S = {i |p∗i = 1} and
T = {i |p∗i = 0}.
Suppose (i , j) is in the cut, then p∗i = 1, p∗j = 0 which by the first
constraint forces di ,j = 1.
The optimal {0, 1} IP solution (of the dual) defines a a min cut.
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Solving the f -frequency set cover by a primal dual
algorithm

In the f -frequency set cover problem, each element is contained in at
most f sets.

Clearly, the vertex cover problem is an instance of the 2-frequency set
cover.

As in the vertex cover LP rounding, we can similarly solve the
f -frequency cover problem by obtaining an optimal solution {x∗j } to

the (primal) LP and then rounding to obtain x̄j = 1 iff x∗j ≥
1
f . This

is, as noted before, a conceptually simple method but requires solving
the LP.

We know that for a minimization problem, any dual solution is a
lower bound on any primal solution. One possible goal in a primal
dual method for a minimization problem will be to maintain a
fractional feasible dual solution and continue to try improve the dual
solution. As dual constraints become tight we then set the
corresponding primal variables.
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Primal dual for f -frequency set cover continued
Suggestive lemma

Claim: Let {y∗i } be an optimal solution to the dual LP and let
C′ = {Sj |

∑
ei∈Sj y

∗
i = wj}. Then C′ is a cover.

This suggests the following algorithm:

Primal dual algorithm for set cover

Set yi = 0 for all i
C′ := ∅
While there exists an ei not covered by C′

Increase the dual variable yi until there is some j :
ei ∈ Sj and

∑
{k:ei∈Sj} yj = wj

C′ := C′ ∪ {Sj}
End While

Theorem: Approximation bound for primal dual algorithm

The cover formed by tight constraints in the dual solution provides an f
approximation for the f -frequency set cover problem.
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Comments on the primal dual algorithm

What is being shown is that the integral primal solution is within a
factor of f of the dual solution which implies that the primal dual
algorithm is an f -approximation algorithm for the f -frequency set
cover problem.

In fact, what is being shown is that the integraility gap of this IP/LP
formulation for f -frequency set cover problem is at most f .

In terms of implementation we would calculate the minimum ε needed
to make some constraint tight so as to chose which primal variable to
set. This ε could be 0 if a previous iteration had more than one
constraint that becomes tight simultaneously. This ε would then be
subtracted from wj for j such that ei ∈ Sj .
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More comments on primal dual algorithms

We have just seen an example of a basic form of the primal dual
method for a minimization problem. Namely, we start with an
infeasible integral primal solution and feasible (fractional) dual. (For a
covering primal problem and dual packing problem, the initial dual
solution can be the all zero solution.) Unsatisfied primal constraints
suggest which dual constraints might be tightened and when one or
more dual constraints become tight this determines which primal
variable(s) to set.

Some primal dual algorithms extend this basic form by using a second
(reverse delete) stage to achieve minimality.

NOTE In the primal dual method we are not solving any LPs. Primal
dual algorithms are viewed as “combinatorial algorithms” and in some
cases they might even suggest an explicit greedy algorithm.
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A primal dual algorithm with reverse delete :
the weighted vertex feedback problem

The vertex feedback problem

Given a graph G = (V ,E ), a feedback vertex set (FVS) F is a subset of
vertices whose removal will make the resulting graph acyclic. That is, if
S = V − F , then G [S ] = (S ,E [S ]) is acyclic where G [S ] is the graph
induced by S .

The (weighted) feedback vertex set problem is to compute a
miniumm size (weight) feedback vertex set.

The problem (i.e. in its decision version) was one of Karp’s original
NP complete problems. It has application to circuit design and
constraint satisfaction problems. It is as hard as vertex cover.

An obvious IP for this problem would have the constraints∑
v∈C xv ≥ 1 for every cycle C in the graph. Not only is this possibly

an exponential size IP (which might not be a problem), is is known
that the integrality gap is Θ(log |V |).
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An alternative IP/LP for the FVS problem

Chudak et al [1998] provide primal dual interpretations for the
2-approximation algorithms due to Becker and Geiger [1994] and
Bafna, Berman, Fujito [1995]. In the primal dual interpretations, both
algorithms use almost the same IP representation and method for
raising dual variables.

The basic fact underlying the IP representations is the following:

Fact

Let d(v) be the degree of v , b(S) = |E [S ]| − |S |+ 1 and τ(S) = the size
of a minimal feedback set for G [S ]. Then if F is any FVS, and E [S ] 6= ∅
then

1
∑

v∈F [dS(v)− 1] ≥ b(S) for all S ⊆ V and hence

2
∑

v∈F dS(v) ≥ b(S) + τ(S)
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Primal dual for FVS continued

The IP/LP and the resulting primal dual algorithm is a little easier to state
for the Berger and Geiger algorithm but the analysis is perhaps a little
simpler for the Bafna et al. algorithm. Here is the formulation for the
Berger and Geiger algorithm:

Primal for Berger and Geiger algorithm

P: minimize
∑

v∈V wvxv
subject to

∑
v∈S dS(v)xv ≥ b(S) + τ(S) for all S ⊆ V with E [S ] 6= ∅

IP: xv ∈ {0, 1} LP: xv ≥ 0

The dual

D: maximize
∑

S(b(S) + τ(S))yS
subject to

∑
S :v∈S dS(v)yS ≤ wv for all v ∈ V

yS ≥ 0 for all S ⊆ V with E [S ] 6= ∅

Note: These are exponential size LPs but that will not be a problem.
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Primal dual for Berger and Geiger

yv = 0 for all v ; ` := 0;F := ∅
V ′ := V ;E ′ := E
While F is not a FVS for (V ′,E ′)
` := `+ 1
recursively remove all isolated vertices and degree 1 vertices and incident

edges from (V ′,E ′)
S := V ′ In the Bafna et al algorithm S is not always set to V ′

Increase yS until ∃v` ∈ S :
∑

T :v`∈T dT (S)vT = wv`

F := F ∪ {v`}
Remove v` from V ′ and all incident edges from E ′

End While
For j = `..1 % This is the reverse delete phase

If F − {vj} is an FVS then F := F − {vj}
End If

End For
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Comments on the primal dual for Berger and Geiger
algorithm

the algorithm as originally stated shows how to efficiently find a v` so
as to make the the dual constraint tight; namely let
v` = argminv∈Swv/dS(v`) and let ε = wv`/dS(v`). Then εdS(u) is
subtracted from wu for all u ∈ S .

It is easy to verify that any FVS is a solution to the primal and
conversely any IP solution is an FVS.

It is immediate that the F computed is an (integral) FVS since the
While condition forces this.

The analysis shows that for the dual LP constructs a feasible
fractional {yS} solution satisfying:∑

v∈F wv ≤ 2
∑

S(b(S) + τ(S))− 2
∑

S yS ≤ 2
∑

S(b(S) + τ(S))

Therefore, the primal dual algorithm is a 2-approximation algorithm.

The integrality gap is then at most 2 and this is known to be tight. It
is also interesting to note that the dual objective function cannot be
efficiently evaluated since τ(S) is the optimal FVS value for G [S ].
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Using dual fitting to prove the approximation ratio
of the greedy set cover algorithm
We have already seen the following natural greedy algorithm for the
weighted set cover problem:

The greedy set cover algorithm

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
C′ := C′ ∪ Sj

End While

We wish to prove the following theorem (Lovasz[1975], Chvatal [1979]):

Approximation ratio for greedy set cover

The approximation algorithm for the greedy algorithm is Hd where d is the
maximum size of any set Sj .
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The dual fitting analysis

The greedy set cover algorithm setting prices for each element

C′ := ∅
While there are uncovered elements

Choose Sj such that
wj

|S̃j |
is a minimum where

S̃j is the subset of Sj containing the currently uncovered elements
%Charge each element e in S̃j the average cost price(e) =

wj

|S̃j |
% This charging is just for the purpose of analysis
C′ := C′ ∪ Sj

End While

We can account for the cost of the solution by the costs imposed on
the elements; namely, {price(e)}. That is, the cost of the greedy
solution is

∑
e price(e).
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Dual fitting analysis continued

The goal of the dual fitting analysis is to show that ye = price(e)/Hd

is a feasible dual and hence any primal solution must have cost at
least

∑
e price(e)/Hd .

Consider any set S = Sj in C having say k ≤ d elements. Let
e1, . . . , ek be the elements of S in the order covered by the greedy
algorithm (breaking ties arbitrarily). Consider the iteration is which ei
is first covered. At this iteration S̃ must have at least k − i + 1
uncovered elements and hence S could cover cover ei at the average
cost of

wj

k−i+1 . Since the greedy algorithm chooses the most cost

efficient set, price(ei ) ≤
wj

k−i+1 .

Summing over all elements in Sj , we have∑
ei∈Sj yei =

∑
ei∈Sj price(ei )/Hd ≤

∑
ei∈Sj

wj

k−i+1
1
Hd

= wj
Hk
Hd
≤ wj .

Hence {ye} is a feasible dual.
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