
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 6

Allan Borodin

October 18, 2012

1 / 26

Finishing up last lecture: weighted interval
scheduling
We have seen that :

1 For the unweighted interval scheduling problem on m machines, the
“best fit” EFT greedy algorithm is optimal.

2 For m = 1, there is an optimal DP (that can be imnplemented as a
priority backtracking (pBT) algorithm.

3 For arbitrary m, the one machine DP can be extended to an optimal
algorithm running in time and space (nm).

4 As previously noted, within the priority BT model, for any fixed m,
any pBT algorithm requires width (i.e. space and hence time) Ω(nm).

5 There is also a priority stack algorithm (using the EFT ordering) that
optimally solves the m = 1 weighted problem.

6 For arbitrary m, the local ratio algorithm has approximation ratio
2− 1

m and it can be shown that no fixed order priority stack algorithm
can be an optimum. (However, the inapproximation approaches 1 as
m increases.)

2 / 26

Weighted interval scheduling continued

Arkin and Silverberg [1987] reduce the m machine weighted interval
problem to a min cost flow problem yielding an O(n2 log n) time
algorithm.

It can also be seen that the weighted version of m machine interval
scheduling problem is polynomial time since the problem can be
expressed as an integer program (IP) which is totally unimodular.

Yannakakis and Gavril [1987] show that the Maximum m colourable
subgraph problem is NP hard for split graphs (which are chordal).

While at first it may seem that the Arkin and Silverberg reduction
only needs the perfect elimination property for interval graphs (which
characterizes chordal graphs), the reduction is using the
charcterization of interval graphs as those graphs whose nodes are
contained in consecutive maximal cliques (i.e. where the maximal
cliques are induced by the perfect ordering defined by the finishing
times of the intervals).

3 / 26

Flow networks with costs
We now augment the definition of a flow network F = (G , s, t, c , κ) where
κ(e) is the non negative cost of edge e. Given a flow f , the cost of a path
or cycle π is

∑
e∈π κ(e)f (e).

MIn cost flow problem

Given a network F with costs, and given flow f in F , the goal is to find a
flow f of minimum cost. Sometimes we are only interested in a min cost
max flow.

Given a flow f , we can extend the definition of an augmenting path in
F to an augmenting cycle which is just a simple cycle (not necessarily
including the source) in the residual graph Gf .

If there is a negative cost augmenting cycle, then the flow can be
increased on each edge of this cycle which will not change the flow
(by flow conservation) but will reduce the cost of the flow.

A negative cost cycle in a directed graph can be detected by the
Bellman Ford DP for the single source shortest path problem.

4 / 26

The metric labelling problem

We consider a problem well motivated by applications in, for example,
information retrieval. (See Kleinberg and Tardos text)

The metric labelling problem

Given: graph G = (V ,E), a set of labels L = {a1, . . . , ar} in a metric
space M with distance δ, and a cost function κ : V × L→ <≥0. The goal
is to construct an assignment α of labels to the nodes V so as to minimize∑

i∈V κ(i , α(i)) +
∑

(i ,j)∈E pi ,j · δ(α(i), α(j))

The idea is that κ represents a cost for labelling the node (e.g. a penalty
for a bad classification of a web page), p represents the importance of that
edge (e.g. where in a web page a particular link occurs) and δ represents
the (basic or unweighted) cost of giving different labels to nodes that are
related (e.g. the penalty for different labellings of web pages that are
linking to each other or otherwise seem to be discussing similar topics.

5 / 26

The binary label case

A case of special interest and the easiest to deal with is when the
metric is the binary {0, 1} metric; that is, δ(a, b) = 1 if a 6= b and 0
otherwise. (When there are only two labels, the binary {0, 1} metric
is the only metric.)

The case of two labels suggests that the problem might be formulated
as a min cut problem. Indeed this can be done to achieve an optimal
algorithm when there are only two labels. For more than two labels,
the binary metric case remains NP hard but a there is a
2-approximation via a local search algorithm that uses min cuts to
search a local neighbourhood.

6 / 26

The case of two labels

The problem for two labels can be restated as follows: find a partition
V = A ∪ B of the nodes so as to minimize∑

i∈A bi +
∑

j∈B aj +
∑

(i ,j)∈A×B pi ,j

We transform this problem to a min cut problem as follows: construct
the flow network F = (G ′, s, t, c) such that

I G ′ = (V ′,E ′)
I V ′ = V ∪ {s, t}
I E ′ = {(u, v)|u 6= v ∈ V } ∪ {(s, u)|u ∈ V } ∪ {(u, t)|u ∈ V }
I c(i , j) = c(j , i) = pi,j ; c(s, i) = ai ; c(i , t) = bi

Claim:

For any partition V = A ∪ B, the capacity of the cut
c(A,B) =

∑
i∈A bi +

∑
j∈B aj +

∑
(i ,j)∈A×B pi ,j .

7 / 26

Integer Programming (IP); Linear Programming
(LP)

We now introduce what is both theoretically and “in practice” one of
the most general frameworks for solving search and optimization
problems. Namely, we consider how many problems can be
formulated as integer programs (IP). (Later, we will also consider
other mathematical programming formulations.)
Solving an IP is in general an NP hard problem although there are
various IP problems that can be solved optimally. Moreover, in
practice, many large instances of IP do get efficiently solved.
Our initial emphasis will be on linear program (LP) relaxations of IPs.
LPs can be solved optimally in polynomial time. This was shown by
Khachiyan’s ellipsoid method [1979] and then Karmarkar’s‘ [1984]
more practical interior point method. In many cases, implementations
of Danzig’s [1947] simplex method will outperform (in terms of time)
the worst case polynomial time methods. Smoothed analyis gives an
explanation for the success of simplex. It is an open problem if there
is a strongly polynomial time algorithm for solving LPs.

8 / 26

Some IP and LP concepts

Integer Programs

An IP has the following form:

Maximize (minimize)
∑

j cjxj

subject to (
∑

j aijxj)Ribi for i = 1, . . . ,m
and where Ri can be =,≥,≤
xj is an integer (or contained in some prescribed set of integers) for
all j

Here we often assume that all parameters {aij , cj , bi} are integers or
rationals but in general they can be real valued.

An LP has the same form except now the last condition is realized by
letting the xj be real valued. It can be shown that if an LP has only
rational parameters then we can assume that the {xj} will be rational.

9 / 26

Canonical LP forms

Without loss of generality, LPs can be formulated as follows:

Standard Form for an LP

Maximize c · x Minimize c · x
subject to A · x ≤ b A · x ≥ b

x ≥ 0 x ≥ 0

Slack form

maximize/minimize c · x
subject to A · x + b = s

x ≥ 0; s ≥ 0

The {sj} variables are called slack variables.

10 / 26

LP relaxation and rounding
One standard way to use IP/LP formulations is to start with an IP
representation of the problem and then relax the integer constraints
on the xj variables to be real (but again rational may suffice) variables.
We start with the well known simple example for the weighted vertex
cover problem. Let the input be a graph G = (V ,E) with a weight
function w : V → <≥0. To simplify notation let the vertices be
{1, 2,n}. Then we want to solve the following “natural IP
representation” of the problem:

I Minimize w · x
I subject to xi + xj ≥ 1 for every edge (i , j) ∈ E
I xj ∈ {0, 1} for all j .

The intended meaning is that xj = 1 iff vertex j is in the chosen cover.
The constraint forces every edge to be covered by at least one vertex.
Note that we could have equivalently said that the xj just have to be
non negative integers since it is clear that any optimal solution would
not set any variable to have a value greater than 1.
The “natural LP relaxation” then is to replace xj ∈ {0, 1} by
xj ∈ [0, 1] or more simply xj ≥ 0 for all j . 11 / 26

LP rounding fo the natural vertex cover IP

It is clear that by allowing the variables to be arbitrary reals in [0,1],
we are admitting more solutions than an LP optimal with variables in
{0, 1}. Hence the LP optimal has to be at least as good as any IP
solution and usually it is better.

The goal then is to convert an optimal LP solution into an IP solution
in such a way that the IP solution is not much worse than the LP
optimal (and hence not much worse than an IP optimum)

Consider an LP optimum x∗ and create an integral solution x̄ as
follows: x̄j = 1 iff x∗j ≥ 1/2 and 0 otherwise. We need to show two
things:

1 x̄ is a valid solution to the IP (i.e. a valid vertex cover)
2

∑
j wj x̄j ≤ 2 ·

∑
j wjx

∗
j ; that is, the LP relaxation results in a

2-approximation.

12 / 26

The integrality gap

Analogous to the locality gap (that we encountered in local search),
for LP relaxations of an IP we can define the integrality gap (for a
minimization problem) as maxI

IP−OPT
LP−OPT ; that is, we take the worst

case ratio over all input instances I of the IP optimum to the LP
optimum. (For maximization problems we take the inverse ratio.)

Note that the integrality gap refers to a particular IP/LP relaxation of
the problem just as the locality gap refers to a particular
neighbourhood.

The same concept of the integrality gap can be applied to other
relaxations such as in semi definite programming (SDP).

It should be clear that the simple IP/LP rounding we just used for the
vertex cover problem shows that the integrality for the previously
given IP/LP formulation is at most 2.

By considering the complete graph Kn on n nodes, it is also easy to
see that this integrality gap is at least n−1

n/2 = 2− 1
n .

13 / 26

Integrality gaps and approximation ratios
When one proves a positive (i.e upper) bound (say c) on the
integrality gap for a particular IP/LP then usually this is a
constructive result in that some proposed rounding establishes that
the resulting integral solution is within a factor c of the LP optimum
and hence this is a c-approximation algorithm.
When one proves a negative (i.e. lower) bound (say c ′) on the
integrality gap then this is only a result about the given IP/LP. In
practice we tend to see an integrality gap as strong evidence that this
particular formulation will not be able to result in a better than c ′

approximation. Indeed I know of no natural example where we have a
lower bound on an integrality gap and yet nevertheless the IP/LP
formulation leads “directly” into a better approximation ratio.
In theory there are a some conditions that need to be established to
make this into a provable statement. For the VC example, we observe
that the rounding is independent (for each variable) and “oblivious”
(to the input graph). In contrast to the Kn input, the LP-OPT and
IP-OPT coincide for an even length cycle. Hence this intergrality gap
does represent a tight bound on the formulation. 14 / 26

Makespan for the unrelated and restricted machine
models: non-independent rounding

In the VC example I use the terms “(input) independent rounding” and
“oblivious” rounding.)

We now return to the makespan problem with respect to the unrelated
machines model and the special case of the restricted machine model.

Recall the unrelated machines model where a job j is represented by a
tuple (pj ,1, . . . , pj ,m) where pj ,i is the time that job j uses if scheduled
on machine i .

An important scheduling result is the Lenstra, Shmoys, Tardos (LST)
[1990] IP/LP 2-approximation algorithm for the makespan problem in
the unrelated machine model (when m is part of the input). They
also obtain a PTAS for fixed m.

15 / 26

The natural IP and the LP relaxation

The IP/LP for unrelated machines makespan

Minimize T

Subject to
1

∑
i xj,i = 1 for every job j % schedule every job

2
∑

j xj,ipj,i ≤ T for every machine i % do not exceed makespan
3 xj,i ∈ {0, 1} % xj,i = 1 iff job j scheduled on machine i

The immdiate LP relaxation is to just have xj ,i ≥ 0

Even for identical machines (where pj ,i = pj for all i), the integrality
gap IG is unbounded since the input could be just one large job with
say size T leading to an LP-OPT of T/m and IP-OPT = OPT = T
so that the IG = m.

16 / 26

Adapting the natural IP

As in the PTAS for the identical machine makespan PTAS, we use
binary search to find an appropriate approximation T for the optimal
makespan.

Given a candidate T , we remove all xji such that pj ,i > T and obtain
a “search problem” (i.e. constant or no objective function) for finding
xj ,i satisfying the IP constraints.

Once we have found the optimal T for the search problem, LST then
shows how to use a non-independent rounding to obtain an integral
solution yielding a 2-approximation.

Note: We use the term “rounding” in a very general sense to mean
any efficient way to convert the LP solution into an intergral solution.

17 / 26

Sketch of LST rounding for makespan problem

Using slack form, LP theory can be used to show that if L is a
feasible LP with m + n constraints (not counting the non-negativity
constraints for the variables) then L has an optimal basic solution
such that at most n + m of the variables are non-zero.

It follows that there are at most m of the n jobs that have fractional
solutions (i.e. are not assigned to a single machine).

Jobs assigned to a single machine do not need to be rounded; i.e. if
xj ,i = 1 then schedule job j on machine i .

Construct a bipartite graph between the y ≤ m fractionally assigned
jobs and the m machines.

18 / 26

The non-rounding continued

The goal is then to construct a matching of size y ; that, is, the
matching dictates how to schedule these fractionally assigned jobs.
So it “only” remains to show that this bipartite graph has a matching
of size y . Note, of course, this is what makes the “rounding”
non-independent .

The existence of this matching requires more LP whereby it can be
shown (LST credit Dantzig [1963]) that the connected components of
the bipartite graph are either trees or trees with with one added edge
(and therefore causing a unique cycle).

The resulting schedule then has makespan at most 2T since each
fractional job has pj ,i ≤ T and the LP has guaranteed makespan at
most T before assigning the fractional jobs.

19 / 26

The restricted machine makespan problem
The restricted machines model is a special case of the unrelated
machines problem where for every job j , pj ,i ∈ {pj ,∞}. Hence the
LST 2-approximation applies.
LST show that it is NP hard to do better than a 1.5 approximation
for the restricted machines problem.
Shmoys shows that for the special case that pj ∈ {1, 2} that the
problem can be solved in polynomial time. (Bonus problem.)
There is a relatively new (somewhat strange) result due to Svensson
[2011]. He shows how to approximate the value of the optimum
makespan to within a factor of 33/17 ≈ 1.9413 < 2. This is proven
constructively by a local search algorithm satisfying the
approximation. However, the local search is not shown to terminate in
polynomial time.
Note that if we could determine the optimal makespan value in
polynomial time, then we can also find an optimal solution in
polynomial time. However, the same cannot be said when we are only
approximating the makespan value.

20 / 26

The special case of graph orientation

Consider the special case when there are (at most) two allowable
machines for each job. This is called the graph orientation problem.

It turns out easier to reason about the LP rounding applied to the
graph orientation problem for the given IP/LP but still the integrality
gap is 2.

A more refined IP/LP by Eveblendr, Krcal and Sgall [2008] achieves a
1.75 approximation for the graph orientation problem.

Even for the case when each job can only be scheduled on at most 3
machines, beating the 2-approximation remains an open problem.

21 / 26

Some concluding remarks (for now) about LP
rounding

We will hopefully return to LP/LP rounding later. There are some
nice notes by Allan Jepson provide some of the geometric concepts
underlying LP solutions. (Note: these slides are password protected
but I will provide password in class.)
There can be, of course, many different IP/LP formulations for a
given problem. In particular, one often adds additional constraints so
that the polytope of the LP solutions is smaller.
For example, one could simply add constraints xi + xj + xk ≥ 2 for
every triangle in the graph and more generally, constraints for every
odd length cycle.
It turns out that this does not essentially change the integrality gap.
Adding such constraints corresponds to one round of what is called
the LS left and project method.
There are a number of lift and project methods. If you are interested,
then consult our local expert Toni Pitassi. You may also want to look
at Siavosh Bennabas’ very recent thesis.

22 / 26

