
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory
Lecture 5

Allan Borodin

October 11, 2012

1 / 22

The jump local search algorithm for makespan on
identical machines

Start with any initial solution

It doesnt matter how jobs are arranged on a machine so the
algorithm can move any job (on a“critical machine” defining the
current makespan value) if that move will “improve things”.That is,
we will say that a (successful) jump move is one that moves any job
to another machine so that either the makespan is decreased or the
number of machines determining the current makespan is decreased.

Note that technically speaking this is a non-oblivious local search as
we may not be decreasing the current makepsan in moving to a better
solution.

Finn and Horowitz[1979] prove:that the “localitygap” for this local
search algorithm is 2− 2

m+1 . That is, this is the worst case ratio for
some local optimum compared to the global optimum.

To bound the number of iterations, in moving Jk , it should be moved
to the machine having the current minimum load.

2 / 22

A more complicated local search for makespan
The jump local search does not provide as good an approximation as the
LPT greedy algorithm and doesn’t provide a constant (independent of m)
approximation for the makespan problem in the uniformly related machines
model. There is a more involved neighbourhood called the push
neighbourhood which is inspired by the Kernighan and Lin variable depth
local search algorithms for graph partitioning and TSP. A push operation
is a sequence of jumps defined as follows:

A push is initiated by a jump of a job Jk on a critical machine to a
machine Mi on which it“fits” in the sense that
pk +

∑
Jj on Mi and pj≥pk pj is less than the current makespan.

If smaller (i.e. with pj < pk) jobs on Mi cause the makespan on Mi

to equal or exceed the current makespan then in order of smallest
jobs first, we keep moving small jobs to a priority queue.
We then try to move jobs (in order of the largest job first) on the
queue to a machine on which it fits and continue the process until
either there is no machine on which it fits or the priority queue is
empty.

3 / 22

Locality gaps for push local search

Since a push optimal solution is also a jump optimal solution, it
follows that the push local search has locality gap at most 2− 2

m+1 .

the current lower bound on the locality gap is 4m
3m+1

The bound 8
7 is tight for m = 2 and hence beats LPT for m = 2

machines.

For uniformly related machines, the jump locality gap is at most
2− 2

m+1 and the lower bound is arbitrarily close to 3/2.

Push does not give a constant (independant of input values)
approximation for the restricted or unrelated machines models which
will use to motivate our first “non-combinatorial” technique (IP/LP
rounding).

Linear programming (LP) is itself often solved by some variant of the
simplex method (although no simplex method is known to run in
polynomial time in the worst case). We note that the simplex method
can also be thought of as a local search algorithm, moving fron one
vertex of the LP polytope to an adjacent vertex.

4 / 22

Concluding comments (for now) on local search
We will return later to local search and in particular non-oblivious
local search. But suffice it to say now that local search is the basis for
many practical algorithms, especially when the idea is extended by
allowing some well motivated ways to escape local optima (e.g.
simulated annealing, tabu search).
Although local search with all its variants is viewed as a great
“practical” approach for many problems, local search is not often
analyzed. It is not surprising then that there hasn’t been much
interest in formalizing the method and establishing limits.
As previously mentioned, we can speed up a local search by only
considering changes from S to S ′ when say there is at least a
multiplicative (1 + ε) improvement; that is, for a maximization
problem f (S ′) ≥ (1 + ε)f (S) where f () is the given objective function
or the related potential function for non-oblivious local search. This
usually results in degrading the original locality from (say) c to
c · (1 + ε). In the case of packing problems (where a subset of a
feasible solution is feasible), this degradation can be sometimes be
avoided using partial enumeration. 5 / 22

Ford Fulkerson max flow based algorithms
A number of problems can be reduced to max flow. As already suggested,
the max flow algorithm can itself be viewed as a local search algorithm.

Flow Networks

A flow network F = (G , s, t, c)consists of a “bi-directional” graph
G = (V ,E), a source s and termnal node t, and c is a non-negative real
valued (capacity) function on the edges.

What is a flow

A flow f is a real valued function on the edges satisfying the following
properties:

1 f (e) ≤ c(e) for all edges e (capacity constraint)

2 f (u, v) = −f (v , u) (skew symmetry)

3 For all nodes u (except for s and t), the sum of flows into (or out of)
u is zero. (Flow conservation).
Note: this is the “flow in = flow out” constraint for the convention of
only having non negative flows.

6 / 22

The basic (one commodity) max flow problem

The goal of the max flow problem is to find a valid flow that
maximizes the flow out of the source node s. As can easily be seen
this is also equivalent to maximizing the flow into the terminal node
t. More generally, flow conservation implies that f (S ,T) ≤ c(S ,T)
for any (S ,T) cut. We let val(f) = |f | denote the flow out of the
source s for a given flow f .

We will study the Ford Fulkerson augmenting path scheme for
computing an optimal flow. I am calling it a scheme as there are
many ways to instantiate this scheme although I dont view it as a
general paradigm in the way I view (say) greedy and DP algorithms.

7 / 22

A flow f and its residual graph

Given any flow f for a flow network F = (G , s, t, c), we can define
the residual graph Gf = (V ,E (f)) where E (f) is the set if all edges e
having positive residual capacity ; i.e. the residual capacity of e wrt
to f is cf (e) = c(e)− f (e) > 0.

Note that c(e)− f (e) ≥ 0 for all edges by the capacity constraint.
Also note that with our convention of negative flows, even a zero
capacity edge (in G) can have residual capacity.

The basic concept underlying Ford Fulkerson is that of an augmenting
path which is an s − t path in Gf . Such a path can be used to
augment the current flow f to derive a better flow f ′.

Given an augmenting path π in Gf , we define its residual capacity wrt
f as cf (π) = min{cf (e)|e in the path π}.

8 / 22

The Ford Fulkerson scheme

Ford Fulkerson

f := 0 ; Gf := G %initialize
While there is an augmenting path in Gf

Choose an augmenting path π
f̃ := f + fpi ; f := f̃ % Note this also changes Gf

End While

I call this a scheme rather than a well specified algorithm since we have
not said how one chooses an augmenting path (as there can be many such
paths)

9 / 22

The max flow-min cut theorem

Ford Fulkerson Max Flow-Min Cut Theorem

The following are equivalent:

1 f is a max flow

2 There are no augmenting paths wrt flow f ; that is, no s− t path in Gf

3 val(f) = c(S ,T) for some cut (S ,T) ; hence this cut (S ,T) must be
a min (capacity) cut since val(f) ≤ c(S ,T) for all cuts.

Hence the name max flow (=) min cut

10 / 22

Comments on max flow - min cut theorem

This is a rather unusual local search algorithm in that any local
optimum is a global optimum.

Suppose we have a flow network in which all capacities are integral.
Then :

1 Any Ford Fulkerson implementation must terminate.
2 If the sum of the capacities for edges leaving the source s is C , then

the algorithm terminates in at most C iterations and hence with
complexity at most O(mC).

3 Ford Fulkerson implies that there is an optimal integral flow. (There
can be other non integral optimal flows.)

11 / 22

Good and bad ways to implement Ford Fulkerson

There are bad ways to implement the networks such that

1 There are networks with non rational capacities where the algorithm
does not terminate.

2 There are networks with integer capacities where the algorithm uses
exponential (in representation of the capacities) time to terminate.

There are various ways to implement Ford-Fulkerson so as to achieve
polynomial time. Edmonds and Karp provided the first polynomial
time algorithm by showing that a shortest length augmenting path
yields the time bound O(|V | · |E |2). For me, the conceptually
simplest polynomial time analysis is the Dinitz algorithm which has
time complexity O(|V |2|E |) and also has the advantage of leading to
the best known time bound for unweighted bipartite matching. I
think the best known worst case time for max flow is the
preflow-push-relabel algorithm of Goldberg and Tarjan with time
O(|V | · |E | polylog(|E |). or maybe O(|V | · |E |).

12 / 22

The Dinitz (sometimes written Dinic) algorithm

Gven a flow f , define the leveled graph Lf = (V ′,E ′) where
V ′ = {v |v reachable from s in Gf } and i (u, v) ∈ E ′ iff
level(v) = level(u) + 1. Here level(u) = length of shortest path from
s to u.

A blocking flow f̃ is a flow such that every s to t path in Lf has a
saturated edge.

The Dinitz Algorithm

Initialize f (e) = 0 for all edges e
While t is reachable from s in Gf (else no augmenting path)

Construct Lf corresponding to Gf

Find a blocking flow f̂ wrt Lf and set f := f + f̂
End While

13 / 22

The run time of Dinitz’ algorithm

Let m = |E | and n = |V |
The algorithm halts in at most n − 1 iterations (i.e. blocking steps).

The residual graph and the levelled graph can be computed in time
O(m) with breadth first search and using depth first search we can
compute a blocking path in time O(mn). Hence the total time for the
Dinitz blocking flow algorithm is O(mn2)

A unit network is one in which all capaities are in {0,1} a nd for each
node v 6= s, t, either v has at most one incoming edge (i.e. of
capacity 1) or at most one outgoing edge. In a unit network, the
Dinitz algorithm terminates within 2

√
n iterations and hence on such

a network, a max flow can be computed in time O(m
√
n) (Hopcroft

and Karp [1973].

14 / 22

Application to unweighted bipartite matching

We can transform the maximum bipartite matching problem to a max
flow problem.
Namely, given a bipartite graph G = (V ,E), with V = X ∪ Y , we
create the flow network FG = (G ′, s, t, c) where

I G ′ = (V ′,E ′) with V ′ = V ∪ {s, t} for nodes s, t /∈ V
I E ′ = E ∪ {(s, x)|x ∈ X} ∪ {(y , t)|y ∈ Y }
I c(e) = 1 for all e ∈ E ′.

.

Claim: Every matching M in G gives rise to an integral flow fM in FG

with val(fM) = |M|; conversely every integral flow f in FG gives rise to a
matching Mf in G with |M| = val(f).

Hence a maximum size bipartite matching can be computed in time
O(m

√
n) using the Hopcroft and Karp adatpion of the blocking path

algorithm.

Similar ideas allow us to compute the maximum number of edge (or
node) disjoint paths in directed and undirected graphs.

15 / 22

Additional comments on maximum bipartite
matching

There is a nice terminology for augmenting paths in the context of
matching. Let M be a matching in a graph G = (V ,E). A vertex v is
matched if it is the end point of some edge in M and otherwise if is
free. A path π is an alternating path if the edges in π alternate
between M and E −M.

Abusing terminology briefly, an augmenting path (relative to a
matching M) is an alternating path that starts and ends in a free
vertex. An augmenting path in a graph shows that the matching is
not a maximum and can be immediately improved.

Clearly the existence of an augmenting path in a bipartite graph G
corresponds to an augmenting path in the flow graph FG used to
show that bipartite matching reduce to flows.

16 / 22

The Konig-Egevary Theorem

In any graph, the size of every vertex cover must be at least as large
as the size of any matching.

Theorem: Konig [1931], Egervary [1931]

In a bipartite graph, the minimum size of a vertex cover equals the size of
a maximum matching.

In a bipartite graph, a minimum vertex cover and maximum size
matching can be efficiently computed at the same time.

The Konig-Egervary theorem and the efficient computation of the min
vertex cover/maximum matching is a key ingrediant of the Hungarian
method for computing an optimal matching in a weighted bipartite
matching, which is sometimes called the assignment problem.

17 / 22

The weighted bipartite matching problem

Can the flow algorithm for unweighted bipartite matching be modified
for weighted bipartite matching?

The obvious modification would set the capacity of < x , y >∈ E to
be its weight w(x , y) and the capacity of any edge < s, x > could be
set to maxy{w(x , y)} and similarly for the weight of edges < y , t >.

Why doesnt this work?

It is true that if G has a matching of total weight W then the
resulting flow network has a flow of value W .

But the converse fails! Why?

18 / 22

Setting up the Hungarian Algorithm

We will see that this method is intimately tied to the linear
programming (LPs) and duality. I am not sure about the history of
the Hungarian method; it was formalized in 1955 by Kuhn who
attributed the method to Hungarians Konig and Egerva’ry.

Let G = (X ∪ Y),E) be a weighted bipartite graph with wij denoting
the weight of edge (xi , yj). Without loss of generality we can assume
that G is a complete bipartite graph and that |X | = |Y | = n.

A weighted cover is a labelling (u, v) of the vertices (ui = `(xi) and
vj = `(yj)) such that ui + vj ≥ wij for all i , j . (As we will see later,
the labels are the dual variables in a natural LP representation of the
weighted matching problem.)

Given a cover, the equality graph Gu,v is the graph whose edges
correspond to those (xi , yj) such that ui + vj = wij .

19 / 22

The Hungarian Algorithm: Kuhn after Konig and
Egervary

We will explain the algorithm when we get to LP duality but for now here
is a statement taken from West’s text :

The Hungarian Algorithm

Let (u, v) be any initital cover
Let M be a maximum matching in the equality graph
While M is not a perfect matching

Let Q be a vertex cover of size |M|.
Let R = X ∩ Q and T = Y ∩ Q
Let ε = min{ui + vj − wij : xi ∈ X − R, yj ∈ Y − T}
ui := ui − ε for xi ∈ X − R
vj := vj + ε for yj ∈ T
Form the new equality graph and maximum matching

End While
Return M as a maximum weighted matching.

20 / 22

Flow networks with costs
We now augment the definition of a flow network F = (G , s, t, c , κ) where
κ(e) is the non negative cost of edge e. Given a flow f , the cost of a path
or cycle π is

∑
e∈π κ(e)f (e).

MIn cost flow problem

Given a network F with costs, and given flow f in F , the goal is to find a
flow f of minimum cost. Sometimes we are only interested in a min cost
max flow.

Given a flow f , we can extend the definition of an augmenting path in
F to an augmenting cycle which is just a simple cycle (not necessarily
including the source) in the residual graph Gf .

If there is a negative cost augmenting cycle, then the flow can be
increased on each edge of this cycle which will not change the flow
(by flow conservation) but will reduce the cost of the flow.

A negative cost cycle in a directed graph can be detected by the
Bellman Ford DP for the single source shortest path problem.

21 / 22

Weighted interval scheduling on m machines
We have seen that :

1 For the unweighted interval scheduling problem on m machines, the
“best fit” EFT greedy algorithm is optimal.

2 For m = 1, there is an optimal DP or priority stack (i.e. local ratio)
algorithm (again using the EFT ordering) that optimally solves the
weighted problem.

3 For arbitrary m, the local ratio algorithm has approximation ratio
2− 1

m and it can be shown that no fixed order priority stack algorithm
can be an optimum.

4 Arkin and Silverberg [1987] reduce the m machine weighted interval
problem to a min cost flow problem yielding an O(n2 log n) time
algorithm.

5 It can also be seen that the weighted version of m machine interval
scheduling problem is polynomial time since the problem can be
expressed as an integer program (IP) which is totally unimodular.

6 Yannakakis and Gavril [1987] show that the Maximum m colourable
subgraph problem is NP hard for split graphs (which are chordal).

22 / 22

