
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

An introductory (i.e. foundational) level
graduate course.

Allan Borodin

October 4, 2012

1 / 22

Lecture 4

1 We begin where we left off with the DP (+ scaling) based algorithm
for deriving a FPTAS for the knapsack problem.

2 DP based approach for a DP based algorithm for deriving a PTAS
(poly in n and m, and exponential in 1

ε) for makespan on identical
machines.

3 Some attempts to formally model DP algorithms

4 Introducing local search

2 / 22

Dynamic programming and scaling

We have previously seen that with some use of brute force and
greediness, we can achieve PTAS algorithms for the identical
machines makespan (polynomial in the number n of jobs but
exponential in the number m of machines) and knapsack problems.

We now consider how dynamic programming (DP) can be used to
acheive

1 An FPTAS for the knapsack problem
2 A PTAS for the makespan problem which is polynomial in m and n,

To achieve these improved bounds we will combine dynamic
programming with the idea of scaling inputs.

3 / 22

An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in the numeric values
vj (rather than the encoded length |vj |) of the input values.

Define S [j , v] = the minimum size s needed to achieve a profit of at least
v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we usually give in the form of an
array) such that

1 the desired result can be easily obtained from ths array

2 each entry of the array can be easily computed given “pevious entries”

4 / 22

How to compute the array S [j , v] and why is this
sufficient

The value of an optimal solution is max{v |S [n, v] is finite}.
We have the following equivalent recursive definition that shows how
to compute the entries of S [j , v] for 0 ≤ j ≤ n and v ≤

∑n
j=1 vj .

1 Basis: S [0, v] =∞ for all v > 0 and S [0, 0] = 0
2 Induction: S [j , v] = min{A,B} where A = S [j − 1, v] and

B = S [j − 1,max{v − vj , 0}] + sj .

It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.
For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.
The running time is O(n,V) where V =

∑n
j=1 vj .

Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])
is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values up to the high order bits does not change feasibility.

5 / 22

The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2

.

We will need a combination of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.

6 / 22

The high level idea of the makespan PTAS

Let T be a candidate for an achievable makespan value. Depending
on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled values of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a soluton that achieves
makespan T .

If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

We use binary search to find the best T .

7 / 22

The optimal DP for a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of size zi .

M[x1, . . . , xd] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T .

The n jobs can be scheduled within makespan T iff M[n1, , nd] is at
most m.

8 / 22

Computing M[x1, . . . , xd]

Clearly M[0, . . . , 0] = 0 for the base case.

Let V = {(v1, , vd)|
∑

i vizi ≤ T} be the set of configurations that
can complete on one machine within makespan T ; that is, scheduling
all of the vi jobs with size zi on one machine does not exceed the
target makespan T .

M[x1, . . . , xd] = 1 + min(v1,...,vd)∈V :vi≤xi M[x1 − v1, . . . , xd − vd]

There are at most nd array elements and each entry uses
approximately nd time to compute (given previous entries) so that the
total time is O(n2d).

Must any (say DP) algorithm be exponential in d?

9 / 22

Large jobs and scaling (not worrying about any
integrality issues)

A job is large if pi ≥ T/s = T · ε
Scale down large jobs to have size p̃i = largest multiple of T/(s2)

pi − p̃i ≤ T/(s2)

There are at most d = s2 job sizes p̃

There can be at most s large jobs on any machine not exceeding
target makespan T .

10 / 22

Taking care of the small jobs and accounting for the
scaling down

We now wish to add in the small jobs with sizes less than T/s. We
continue to try to add small jobs as long as some machine does not
exceed the target makespan T . If this is not possible, then makespan
T is not possible.

If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T/(s2) so this only increases the makespan to (1 + 1/s)T .

11 / 22

Models for DP algorithms

We previously presented priority algorithms as a model for greedy and
greedy-like algorithms and then considered extending that framework
to the stack priority model which can be viewed as a model for a
basic class of primal dual with reverse delete algorithms (alternatively,
a basic class of local ratio algorithms). (We will return to primnal
dual algorithms later.)

Can we formulate a model for dynamic programming (DP) algorithms
that

I Captures many/most known DP algorithms
I Is amenable to analysis in terms of what can and cannot be done

(efficiently) by such algorithms?

Is this worth doing?

12 / 22

Why formalize? : The attacks against formalization

“ trying to define what may be indefinable. I shall not today
attempt further to define the kinds of material...But
I know it when I see it ... ” U.S. Supreme Court Justice

Potter Stewart in discussing obscenity, 1964.

Samuel Johnson (1709-1784): All theory is against freedom
of the will; all experience for it.
Anonymous theoretican: What you can do by DP in polynomial time
is what you can do in polynomial time (and hence not currently
tractable).

Anonymous students: Who cares what kind of an algorithm it is?

13 / 22

Bellman [1957] arguing against defining DP (in the
spirit of Samuel Johnson)

We have purposely left the description a little vague, since it is the spirit
of the approach to these processes that is significant, rather than a letter
of some rigid formulation.

It is extremely important to realize that one can neither axiomatize
mathematical formulation 1 nor legislate away ingenuity.

In some problems, the state variables and the transformations are forced
upon us; in others, there is a choice in these matters and the analytic
solution stands or falls upon this choice; in still others, the state variables
and sometimes the transformations must be artificially constructed.
Experience alone, combined with often laborious trial and
error, will yield suitable formulations of involved processes.

1I take this to mean that one cannot axiomatize or completely formalize an
intuitive concept.

14 / 22

The pBT model: An attempt to model some simple
DP (and backtracking) algorithms

In an extension of the priority framework, Alekhnovich et al [2011]
consider the pBT model (for prioritized branching tree or prioritized
backtrack where upon considering an input item, the algorithm can
branch on different possible decisions. The algorithm can also
terminate branches whenever it wishes.

For search problems, the goal is to have a branch that produces a
feasible solution if one exists, and for optimization problems the
solution having the best approximation ratio is chosen. (Aside: it
would have been better to just have non deterministic branching
instead of branching on decisions.)

The complexity of such an algorithm is size (or maximum “width”) or
the time in say a depth first search of the pBT tree.

The pBT model can capture DPs where the implicit induction is on
the number of items as in the interval scheduling and knapsack DPs.

15 / 22

Some pBT results
In the pBT model, we can optimally solve one machine interval
scheduling with fixed order width n (the number of intervals) using
the standard DP, and Ω(n) width is required for any adaptive order
pBT that optimally solves the problem. Furthermore for any fixed m,
the width required for optimally solving the m machine problem is
Ω(nm) which can be achieved again using DP.
In the pBT model, we have the following result for the knapsack
problem: We can obtain a (1 + ε)-approximation with width O(1

ε2
)

(based on the Lawler adaption of the Ibarra and Kim FPTAS) and any
adaptive order pBT algorithm that achieves a (1 + ε)-approximation

requires width Ω(1
ε3.17

) and width
(n/2
n/4

)
= Ω(2n/2/

√
n) for optimality.

The lower bounds hold even for the Subset-Sum problem.
Chvátal [1980] established an exponential time bound for the
knapsack problem with respect to a model that captures a style of
branch and bound algorithms. Similar attempts to formalize some
branch and bound methods were obtained by Chvátal [1977] for the
MIS problem and by McDiarmid [1979] for the graph colouring.

16 / 22

The pBP model: a more ambitious DP model
The pBP (for prioritized branching program) model extends the pBT
model by combining merging with branching so that the underlying
structure of a pBP algorithm is a rooted DAG and not a rooted tree.
The semantics are a little involved but the idea is meant to better
capture memoization which is central to DP algorithms (in the sense
of distinguishing them from divide and conquer algorithms).
In the pBP model, there is an optimal O(n3) width algorithm for
solving the shortest path problem when there are negative weights but
not negative cycles. If the input graph has negative cycles the
algorithm will output an arbitrary set of edges. Here the input items
are In contrast, any pBT algorithm would require exponential
width to solve the promise version of the shortest path problem on
some instance (which could be a graph with negative cycles).
For the bipartite matching problem where the input items are edges,
any pBP algorithm requires exponential width. A challenge is to
prove such a result when the input items are vertices.
There is an optimal max flow algorithm for bipartite matching.

17 / 22

Combinatorial DP Programs

Finally we mention another model by Bompadre [2010] that also captures
a limited class of DP algorithms. This model is incomparable with the
pBT and pBP models. There are a number of positive and negative results
derived by Bompadre. We will hopefully return to consider this model as
well as another new model now in the editorial process.

18 / 22

Local search: the other conceptually simplest
approach
We now begin a discussion of the other (than greedy) conceptually
simplest search/optimization algorithm, namely localsearch.

The vanilla local search paradigm

Initialize S
While there is a“better” solution S ′in“Nbhd(S)”
S := S ′

EndWhile

If and when the algorithm terminates, the algorithm has computed a local
optimum. To make this a precise algorithmic model, we have to say:

1 How are we allowed to choose an initial solution?
2 What consititutes a local neighbourhood Nbhd(S)?
3 What do we mean by “better”?

Answering these questions (especially as to defining local neighbourhood)
will often be quite problem specific.

19 / 22

Towards a precise definition for local search
We clearly want the initial solution to be efficiently computed and to
that end (so as to be precise) we can (for example) say that the initial
solution is a random solution, or a greedy solution or adversarially
chosen. Of course, in practice we can use any efficiently computed
solution and this is done in practice.
We want the local neighbourhood Nbhd(S) to be such that we can
efficiently search for a “better” solution (if one exists).

1 In many problems, a solution S is a subset of the input items or
equivalently a {0,1} vector, and in this case we often define the
Nbhd(S) = {S ′|dH(S ,S ′) ≤ k} for some small k where dH(S ,S ′) is
the Hamming distance.

2 More generally whenever a solution is a vector over a small domain D,
we can use Hamming distance to define a local neighbourhood.
Hamming distance k implies that Nbhd(S) can be searched in at most
time |D|k .

3 We can view Ford Fulkerson flow algorithms as local search algorithms
where the neighbourhood of a solution S (i.e. a flow) are flows
obtained by adding an augmenting path flow. This is an exponential
size neighbourhood but one that can be searched efficiently.

20 / 22

What does “better” solution mean? Oblivious and
non-oblivious local search

For a search problem, we would generally have a non-feasible initial
solution and “better” can then mean“closer” to being feasible.

For an optimization problem it usually means being an improved
solution which respect to the given objective. For reasons I cannot
understand, this has been termed oblivious local search.

For some applications, it turns out that rather than searching to
improve the given objective function, we search for a solution in the
local neighbourhood that improves a related potentental function and
this has been termed non-oblivious local search.

And in searching for an improved solution, we may want an arbitrary
improved solution, a random improved solution, or the best improved
solution in the local neighbourhood.

For efficiency we may insist that there is a “sufficient” improvement.

21 / 22

The jump local search algorithm for makespan on
identical machines

Start with any initial solution

It doesnt matter how jobs are arranged on a machine so the
algorithm can move any job (on a“critical machine” defining the
current makespan value) if that move will “improve things”.That is,
we will say that a (successful) jump move is one that moves any job
to another machine so that either the makespan is decreased or the
number of machines determining the current makespan is decreased.

Note that technically speaking this is a non-oblivious local search as
we may not be decreasing the current makepsan in moving to a better
solution.

Finn and Horowitz[1979] prove:that the “localitygap” for this local
search algorithm is is2− 2

m+1 . That is, this is the worst case ratio for
some local optimum compared to the global optimum.

To bound the number of iterations, in moving Jk , it should be moved
to the machine having the current minimum load.

22 / 22

