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Lecture 3

1 We will first do the analysis of the Greedyα revocable priority
algorithm for the WISP problem showing that the algorithm has an
approximation ratio of 1

α(1− α) which is optimized at α = 1/2.

2 We mention a similar algorithm: Graham’s convex hull scan algorithm

3 We then introduce the priority stack model

4 We return briefly to greedy algorithms and consider “the natural
greedy algorithms for the weighted versions of set packing and vertex
cover”.

5 We then move on to two dynamic programming algorithms, for the
makespan and knapsack problems.
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The Greedyα algorithm for WJISP
The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S := ∅ % S is the set of currently accepted intervals
Sort input intervals so that f1 ≤ f2 . . . ≤ fn
for i = 1..n

Ci := min weight subset of S : (S/Ci ) ∪ {Ii} feasible
if v(Ci ) ≤ α · v(Ii ) then

S := (S/Ci ) ∪ {Ii}
end if

END FOR

Figure: Priority algorithm with revocable acceptances for WJISP

The Greedyα algorithm (which is not greedy by my definition) has a tight
approximation ratio of 1

α(1−α) for WISP and 2
α(1−α) for WJISP.
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Graham’s [1972] convex hull algorithm
Graham’s scan algorithm for determining the convex hull of a set of n
points in the plane is an efficient (O(n log n) time) algorithm in the
framework of the revcocable priority model. (This is not a search or
optimization problem but does fit the framework of making a decision for
each input point. For simplicity assume no three points are colinear.)

Choose a point that must be in the convex hull
(e.g. the (leftmost) point p1 having smallest y coordinate)

Sort remaining points p2, . . . , pn by increasing angle with respect to p1
Push p1, p2, p3 on a Stack
for i = 4..n
Push pi onto stack
While the three top points u, v , pi on the Stack make a “right turn”

Remove v from stack
End While
Return points on Stack as the points defining the convex hull.

Figure: The Graham convex hull scan algorithm
4 / 23



Priority Stack Algorithms
For packing problems, instead of immediate permanent acceptances,
in the first phase of a priority stack algorithm, items (that have not
been immediately rejected) can be placed on a stack. After all items
have been considered (in the first phase), a second phase consists of
popping the stack so as to insure feasibility. That is, while popping
the stack, the item becomes permanently accepted if it can be
feasibly added to the current set of permanently accepted items;
otherwise it is rejected. Within this priority stack model (which
models a class of primal dual with reverse delete algorithms and a
class of local ratio algorithms), the weighted interval selection
problem can be computed optimally.
For covering problems (such as min weight set cover and min weight
Steiner tree), the popping stage is to insure the minimality of the
solution; that is, when popping item I from the stack, if the current
set of permanently accepted items plus the items still on the stack
already consitute a solution then I is deleted and otherwise it
becomes a permanently accepted item.
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Chordal graphs and perfect elimination orderings

An interval graph is an example of a chordal graph. There are a number of
equivalent definitions for chordal graphs, the standard one being that there
are no induced cycles of length greater than 3.

We shall use the characterization that a graph G = (V ,E ) is chordal iff
there is an ordering of the vertices v1, . . . , vn such that for all i ,
Nbdh(vi ) ∩ {vi+1, . . . , vn} is a clique. Such an ordering is called a perfect
elimination ordering (PEO).

It is easy to see that the interval graph induced by interval intersection has
a PEO (and hence interval graphs are chordal) by ordering the intervals
such that f1 ≤ f2 . . . ≤ fn. Trees are also chordal graphs and a PEO is
obtained by stripping off leaves one by one.
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MIS and colouring chordal graphs
Using this ordering (by earliest finishing time), we know that there is
a greedy (i.e. priority) algorithm that optimally selects a maximum
size set of non intersecting intervals. The same algorithm (and proof
by charging argument) using a PEO in a fixed order greedy algorithm
optimally solves the unweighted MIS problem for any chordal graph.
This can be shown by an inductive argument showing that the partial
solution after the i th iteration is promising in that it can be extended
to an optimal solution; and it can also be shown by a simple charging
argument.
We also know that the greedy algorithm that orders intervals such
that s1 ≤ s2 . . . ≤ sn and then colours nodes using the smallest
feasible colour is a an optimal algorithm for colouring interval graphs.
Ordering by earliest starting times is (by symmetry) equivalent to
ordering by latest finishing times first. The generalization of this is
that any chordal graph can be optimally coloured by a greedy
algorithms that orders vertices by the reverse of a PEO. This can be
shown by arguing that when the algorithm first uses colour k, it is
witnessing a clique of size k. 7 / 23



The optimal priority stack algorithm for the (WMIS)
problem in chordal graphs ; Akcoglu et al [2002

Stack := ∅ % Stack is the set of items on stack
Sort nodes using a PEO
Set w ′(vi ) := w(vi ) for all vi

% w ′(v) will be the residual weight of a node
For i = 1..n

Ci := {vj |j < i , vi ∈ Nbhd(vj) and vj on Stack}
w ′(vi ) := w ′(vi )− w ′(Ci )
If w ′(vi ) > 0 then

push vi onto Stack ; else reject
End For
S := ∅ % S will be the set of accepted nodes
While Stack 6= ∅

Pop next node v from Stack
If v is not adjacent to any node in S , then S :=S ∪ {v}

End While

Figure: Priority stack algorithm for chordal WMIS
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The “natural greedy algorithm”: WMIS for
k + 1-claw free graphs
We return briefly to greedy algorithms considering the vague idea of “the
natural greedy algorithm”.

k + 1-claw free graphs

A graph G = (V ,E ) is k + 1-claw free if for all v ∈ V , the induced
subgraph of Nbhd(v) has at most k independent vertices (i.e. does not
have a k + 1 claw as an induced subgraph).

There are many types of graphs that are k + 1 claw free for small k;
in particular, the intersection graph of axis parallel translates of a
convex object in the two dimensional plane is a 6-claw free graph. For
rectangles, the intersection graph is 5-claw free.

Let {S1, . . . ,Sn} be subsets of a universe U such that |Si | ≤ k. The
intersection graph G = (V ,E ) defined by (Si , Sj) ∈ E iff Si ∩ Sj 6= ∅
is a k + 1 claw free graph.
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k + 1-claw free graphs and the natural greedy
algorithm continued

Of special note are 3-claw free graphs which are simply called claw free.
For example, line graphs are 3-claw free. A matching in a graph G
corresponds to an independent set in the line graph L(G ).

The natural greedy algorithm for WMIS

The natural greedy algorithm sorts the vertices such that
w(v1) ≥ w(v2) . . . ≥ w(vn) and then accepts vertices greedily; i.e. if the
vertex is independent of previously accepted vertices then accept.

The natural greedy algorithm provides a k-approximation for WMIS on
k + 1 claw free graphs. (A more complex algorithm, generalizing weighted
matching, optimally solves the WMIS for 3-claw free graphs.)
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The “natural greedy” might not be the best greedy:
Set packing
We consider two examples (weighted set packing and vertex cover) where
the (seemingly) most natural) greedy algorithm is not the best greedy
(approximation) algorithm.
The weighted set packing problem (AKA the single minded combinatorial
auction problem) is defined as follows: There is a universe U of size m, a
collection of subsets {S1, . . . ,Sn} of U and a weight wi for each set Si .
The objective is to select a non-intersecting subcollection of these subsets
so as to maximize the weight of the chosen sets.

It is NP hard to obtain approximation ratio m
1
2
−ε for any ε > 0.

The induced intersection graph is m + 1 claw free and hence the
natural greedy algorithm yields a a min{m, n} approximation. Let’s
assume n >> m and try to improve upon the m approximation.
The “next most natural greedy algorithm” (ordering sets by
non-increasing w(S)/|S |) is still an m-approximation.
We can obtain approximation 2

√
m by ordering sets by non-increasing

w(S)/
√
|S |.
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Second example where natural greedy is not best:
weighted vertex cover
If we consider vertex cover as a special case of set cover then the natural
greedy (which is essentially optimal for set cover) becomes the following:

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

While there are uncovered edges
Let v be the node minimizing w(v)/d ′(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd)v)

End While

Figure: Natural greedy algorithm for weighted vertex cover with approximation
ratio Hn
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Clarkson’s [1983] modified greedy for weighted
vertex cover

d ′(v) := d(v) for all v ∈ V
% d ′(v) will be the residual degree of a node

w ′(v) := w(v) for all v ∈ V
% w ′(v) will be the residual weight of a node

While there are uncovered edges
Let v be the node minimizing w ′(v)/d ′(v)
w :=w ′(v)/d ′(v)
w ′(u) :=w ′(u)− w for all u ∈ Nbhd(v)
Add v to the vertex cover;
remove all edges in Nbhd(v);
recalculate the residual degree of all nodes in Nbhd(v)

End While

Figure: Clarkson’s greedy algorithm for weighted vertex cover with approximation
ratio 2
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A common generalization of k + 1-claw free graphs
and chordal graphs
One vague theme I try to think about is the interplay between classes of
problems and classes of algorithms. In some way this leads to a common
extension of chordal and k + 1-claw free graph implicitly defined in
Akcoglu et al [2002] and pursued in Ye and B. [2009].

A graph is inductively k-independent is there is a “k-PEO” ordering
of the vertices v1, . . . , vn such that Nbhd(vi ) ∩ {vi+1, . . . , vn} has at
most k independent vertices.

For example,

The JISP problem induces an inductively 2-independent graph.
Every planar graph is inductively 3-independent.

It can be shown that the WMIS stack algorithm and analysis for chordal
graphs extends to provide a k approximation for inductive k independent
graphs by using a k-PEO. The reverse order k-PEO greedy algorithm is a
k-approximation for inductive k independent graphs.

This concept clearly generalizes “inductive degree k” and all graphs having
treewidth k are inductive degree k.
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Dynamic programming and scaling

We have previously seen that with some use of brute force and greediness,
we can achieve PTAS algorithms for the identical machines makespan
(polynomial in the number n of jobs but exponential in the number m of
machines) and knapsack problems. We now consider how dynamic
programming (DP) can be used to acheive a PTAS for the makespan
problem which is polynomial in m and n, and how to achieve an FPTAS
for the knapsack problem.
To achieve these improved bounds we will combine dynamic programming
with the idea of scaling inputs.
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An FPTAS for the knapsack problem

Let the input items be I1, . . . , In (in any order) with Ik = (vk , sk). The idea
for the knapsack FPTAS begins with a “pseudo polynomial” time DP for
the problem, namely an algorithm that is polynomial in the numeric values
vj (rather than the encoded length |vj |) of the input values.

Define S [j , v ] = the minimum size s needed to achieve a profit of at least
v using only inputs I1, . . . Ij ; this is defined to ∞ if there is no way to
achieve this profit using only these inputs.

This is the essense of DP algorithms; namely, defining an approriate
generalization of the problem (which we give in the form of an array) such
that

1 the desired result can be easily obtained from ths array S [ , ]

2 each entry of the array can be easily computed given “pevious entries”
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How to compute the array S [j , v ] and why is this
sufficient

The value of an optimal solution is max{v |S [n, v ] is finite}.
We have the following equivalent recursive definition that shows how
to compute the entries of S [j , v ] for 0 ≤ j ≤ n and v ≤

∑n
j=1 vj .

1 Basis: S [0, v ] =∞ for all v
2 Induction: S [j , v ] = min{A,B} where A = S [j − 1, v ] and

B = S [j − 1,max{v − vj , 0}] + sj .

It should be clear that while we are computing these values that we
can at the same time be computing a solution corresponding to each
entry in the array.
For efficiency one usually computes these entries iteratively but one
could use a recursive program with memoization.
The running time is O(n,V ) where V =

∑n
j=1 vj .

Finally, to obtain the FPTAS the idea (due to Ibarra and Kim [1975])
is simply that the high order bits/digits of the item values give a good
approximation to the true value of any solution and scaling these
values down (or up) to the high order bits does not change feasibility.
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The better PTAS for makespan

We can think of m as being a parameter of the input instance and
now we want an algorithm whose run time is poly in m, n for any
fixed ε = 1/s.

The algorithm’s run time is exponential in 1
ε2

.

We will need a combination of paradigms and techniques to achieve
this PTAS; namely, DP and scaling (but less obvious than for the
knapsack scaling) and binary search.

18 / 23



The high level idea of the makespan PTAS

Let T be a candidate for an achievable makespan value. Depending
on T and the ε required, we will scale down “large” (i.e. if
pi ≥ T/s = T · ε) to the largest multiple of T/s2 so that there are
only d = s2 values for scaled values of the large jobs.

When there are only a fixed number d of job sizes, we can use DP to
test (and find) in time O(n2d) if there is a soluton that achieves
makespan T .

If there is such a solution then small jobs can be greedily scheduled
without increasing the makespan too much.

We use binary search to find a good T .
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The optimal DP for a fixed number of job values

Let z1, . . . , zd be the d different job sizes and let n =
∑

ni be the
total number of jobs with ni being the number of jobs of szie zi .

M[x1, . . . , xd ] = the minimum number of machines needed to
schedule xi jobs having size zi within makespan T .

The n jobs can be scheduled within makespan T iff M[n1, , nd ] is at
most m.
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Computing M[x1, . . . , xd ]

Clearly M[0, . . . , 0] = 0 for the base case.

Let V = {(v1, , vd)|
∑

i vizi ≤ T} be the set of configurations that
can complete on one machine within makespan T ; that is, scheduling
vi jobs with size zi on one machine does not exceed the target
makespan T .

M[x1, . . . , xd ] = 1 + min(v1,...,vd )∈V :vi≤xi M[x1 − v1, . . . , xd − vd ]

There are at most nd array elements and each entry uses
approximately nd time to compute (given previous entries) so that the
total time is O(n2d).

Must any (say DP) algorithm be exponential in d?

21 / 23



Large jobs and scaling (not worrying about any
integrality issues)

A job is large if pi ≥ T/s = T · ε
Scale down large jobs to have size p̃i = largest multiple of T/(s2)

pi p̃i ≤ T/(s2)

There are at most d = s2 job sizes p̃

There can be at most s large jobs on any machine not exceeding
target makespan T .
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Taking care of the small jobs and accounting for the
scaling down

We now wish to add in the small jobs with sizes less than T/s. We
continue to try to add small jobs as long as some machine does not
exceed the target makespan T . If this is not possible, then makespan
T is not possible.

If we can add in all the small jobs then to account for the scaling we
note that each of the at most s large jobs were scaled down by at at
most T/(s2) so this only increases the makespan to (1 + 1/s)T .
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