CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

Allan Borodin

September 20, 2012

Lecture 2

We continue where we left off last lecture, namely we are considering a
PTAS for the the knapsack problem.

Input: A knapsack size capacity C and n items Z = {h, ..., I,} where
li = (vj,s;) with v; (resp. s;) the profit value (resp. size) of item ;.
Output: A feasible subset S C {1,..., n} satsifying 3 ;s s; < C so as to

maximize V(S) = > ;s ;.

Note: | will usually use approximation ratios r > 1 (so that we can talk
unambiguously about upper and lower bounds on the ratio) but many

people use approximation ratios p < 1 for maximization problems; i.e.
ALG > pOPT.

It is easy to see that the most natural greedy methods (sort by

non-increasing profit densities g sort by non-increasing profits v;, sort by
¢l

non-decreasing size s;) will not yield any constant ratio.

The partial enumeration greedy PTAS for knapsack

PGreedy, Algorithm:

Sort 7 so that v11 > "2 >
For every feasible subset HC T with |H| < k
let R=7Z—Handlet Sy :=H
Consider items in R (in the order of profit densities)
and greedily add items to Sy that do not exceed knapsack capacity C.
% It is sufficient to stop as soon as the first item is too large to fit
End For
Choose the Sy that maximizes the profit.

Sahni’'s PTAS result
Theorem (Sahni 1975): V(OPT) < (1 + +)V/(PGreedyy).

@ This algorithm takes time kn* and setting k = % yields a (1 +¢)
1

S o 1
approximation (i.e. a PTAS) running in time ¢ne.
@ To obtain a 2-approximation it suffices to maximize between the

largest value item and the value of the profit density greedy algorithm.

@ An FPTAS is an algorithm achieving a (1 + ¢) approximation with
running time poly(n, %) There is an FPTAS for the knapsack
problem (using dynamic programming and scaling the input values) so
that this algorithm was quickly subsumed but still the partial
enumeration technique is important.

@ In particular, more recently this technique (for k = 3) was used to
achieve an _%; ~ 1.58 approximation for monotone submodular
maximization subject to a knapsack constraint. It is NP-hard to do
better than a _=5 approximation for submodular maximization subject
to a cardinality constraint and hence this is also the best possible

ratio for submodular maximization subject to a knapsack constraint.

4

The priority algorithm model and variants

Before temporarily leaving greedy (and greedy-like) algorithms, | want to
present the priority algorithm model and how it can be extended in
(conceptually) simple ways to go beyond the power of the priority model.

@ What is the intuitive nature of a greedy algorithm as exemplified by
the CSC 373 algorithms mentioned last class)? With the exception of
Huffman coding (which we can also deal with) all these algorithms
consider one input item in each iteration and make an irrevocable
“greedy” decision about that item.

@ We are then already assuming that the class of search/optimization
problems we are dealing with can be viewed as making a decision Dy
about each input item /¢ (e.g. on what machine to schedule job /y in
the makespan case) such that {(/1,D1),...,(In, Dp)} constitutes a
feasible solution.

@ Note: that a problem is only fully specified when we say how input
items are represented.

@ We mentioned that a “non-greedy” online algorithm for identical
machine makespan can improve the competitive ratio; that is, the
algorithm does not always place a job on the (or a) least loaded
machine (i.e. does not make a greedy or locally optimal decision in
each iteration). It isn't always obvious if or how to define a “greedy”
decision but for many problems the definition of greedy can be
informally phrased as “live for today” (i.e. assume the current input
item could be the last item) so that the decision should be an optimal
decision given the current state of the computation. For example, in
the knapsack problem, a greedy decision always takes an input if it
fits within the knapsack constraint and in the makespan problem, a
greedy decision always schedules a job on some machine so as to
minimize the increase in the makespan. This is more general than
saying it must place the item on the least loaded machine.

6

@ We have both fixed order priority algorithms (e.g. unweighted interval
scheduling and LPT makespan) and adaptive order priority algorithms
(e.g. the set cover greedy algorithm and Prim’s MST algorithm).

@ The key concept then is to indicate how the algorithm chooses the
order in which input items are considered. We cannot allow the
algorithm to use any ordering (as there may very well be an optimal
ordering that allows the algorithm to achieve optimality). We might
be tempted to say that the ordering has to be determined in
polynomial time but that gets us into the “tarpit” of trying to prove
what can and can’t be done in polynomial time. Instead, we take an
information theoretic viewpoint in defining the orderings we allow.

Informal definition of a priority algorithm

Lets first consider fixed priority algorithms. Since | am using this
framework mainly to argue negative results (e.g. a priority algorithm for
the given problem cannot achieve a stated approximation ratio), we will
view the semantics of the model as a game between the algorithm and an
adversary. Initially there is some (possibly infinite) set J of potential
inputs. The algorithm chooses a total ordering m on 7. Then the
adversary selects a subset Z C J of actual inputs so that Z becomes the
input to the priority algorithm. The input items /..., I, are ordered
according to 7. Finally, in iteration k for 1 < k < n, the algorithm
considers input item /, and based on this input and all previous inputs and
decisions (i.e. based on the current state of the computation) the
algorithm makes an irrevocable decision D) about this input item.

The fixed (order) priority algorithm template

J is the set of all possible input items
I C J is the input instance
decide on a total ordering 7 of J

S: =0 % S is the set of items already seen
i:=0 % i =1S|
while Z\ S # @ do

i i=i+1

Z:=7T\S

li :=min {l € T}
make an irrevocable decision D; concerning /;
S:=5U {/,'}

end

Figure: The template for a fixed priority algorithm

Some comments on the priority model

@ A special (but usual) case is that 7 is determined by a function
f:J — R and and then ordering the set of actual input items by
increasing (or decreasing) values f(). (We can break ties by say using
the index of the item to provide a total ordering of the input set.)
N.B. We make no assumption on the complexity or even the
computability of the ordering 7 or function f.

@ As stated we do not give the algorithm any additional information
other than what it can learn as it gradually sees the input sequence.
However, we can allow priority algorithms to be given some (hopefully
easily computed) global information such as the number of input
items, or say in the case of the makespan problem the minimum
and/or maximium processing time/load of any input item. (Some
proofs can be easily modified to allow such global information.)

10

The adaptive priority model template

J is the set of all possible input items
7 is the input instance

S:=0 % S is the set of items already considered
i:=0 % i=|S]|
while 7\ S # @ do

i:=i+1

decide on a total ordering w; of J

Z:=T\S

l; := mingﬂi{/ € I}
make an irrevocable decision D; concerning /;
S :=SuU{li}
T = T\ 1 <gy 1}
% some items cannot be in input set
end

Figure: The template for an adaptive priority algorithm

11

Inapproximations with respect to the priority model
Once we have a precise model, we can then argue that certain
approximation bounds are not possible within this model. Such
inapproximation results have been estalished with respect to (adaptive)
priority algorithms for a number of problems but in many cases much
better results can be established using extensions of the model.

© For the weighted interval selection (a packing problem) with arbitrary
weighted values (resp. for proportinal weights v; = |f; — s;|), no
priority algorithm can achieve a constant approximation (respectively,
better than a 3-approximation).

© For the knapsack problem, no priority algorithm can achieve a
constant approximation. (We have already noted how partial
enumeration greedy can achieve a PTAS.)

© For the set cover problem, the natural greedy algorithm is essentially
the best priority algorithm.

© As previously mentioned, for fixed order priority algorithms, there is
an Q(log mloglog m) inapproximation bound for the makespan
problem in the restricted machines model.

12

Extensions of the priority model: priority with
revocable acceptances

@ For packing problems, we can have priority algorithms with revocable
acceptances. That is, in each iteration the algorithm can now eject
previously accepted items in order to accept the current item.
However, at all times, the set of currently accepted items must be a
feasible set and all rejections are permanent.

@ Within this model, there is a 4-approximation algorithm for the
weighted interval selection problem WISP (Bar-Noy et al [2001], and
Erlebach and Spieksma [2003]) and a ~ 1.17 inapproximation bound
(Horn [2004]). More generally, the algorithm applies to the weighted
job interval selection problem WJISP resulting in an 8-approximation.

@ The model has also been studied with respect to the proportional
profit knapsack problem/subset sum problem (Ye and B [2008])
improving the constant approximation. And for the general knapack
problem, the model immediately yields a 2-approximation.

13

The Greedy,, algorithm for WJISP

The algorithm as stated by Erlebach and Spieksma (and called
ADMISSION by Bar Noy et al) is as follows:

S$:=0 % S is the set of currently accepted intervals
Sort input intervals so that 4 < ... < f,
fori=1..n

Ci := min weight subset of S: (§/C;) U {/;} feasible
if v(Ci) < a-v(l;) then

= (S/G)u{li}
end if

END FOR

Figure: Priority algorithm with revocable acceptances for WJISP

The Greedy,, algorithm (which is not greedy by my definition) has a tight
approximation ratio of ai=a) for WISP and () for WJISP.

14/1

