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Miscellaneous topics to end the term
Clearly “algorithm design, analysis, and theory” is an extremely broad
subject (and one might say it is much of what CS does) so we have only
discussed a few topics and even then only discussed them briefly.
As promised or threatened last class, here are a few topics with which we
will conclude the course:

1 An optimal randomized algorithm for the unconstrained submodular
maximization problem.

2 Matroids and comments on the monotone submodular maximization
problem (subject to a constraint).

3 A return to non-oblivious local search and its power.
1 The Khanna et al non-oblivious algorithm for Max-k-Sat
2 The Filmus and Ward non-oblivious local search for monotone

submodular maximization subject to a matroid constraint.
3 The Berman WMIS algorithm for k + 1 claw free graphs.

4 The constructive Lovász Local Lemma for 3SAT when variables do
not appear in too many clauses.

5 Spectral methods: We will not get to this but you could look at the
various notes that can be found on the web.
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Submodular maximization problems

A set function f : 2U → < is submodular if
f (S) + f (T ) ≥ f (S ∪ T ) + f (S ∩ T ) for all S ,T ⊆ U.

Equivalently, f is submodular if it satisfies decreasing marginal gains;
that is,
f (S ∪{x})− f (S) ≥ f (T ∪{x})− f (T ) for all S ⊆ T ⊆ U and x ∈ U

We will always assume that f is normalized in that f (∅) = 0.

Submodular functions arise naturally in many applications and has
been a toipic of much recent activity.

Probably the most frequent application of (and papers about)
submodular functions is when the function is also monotone
(non-decreasing) in that f (S) ≤ f (T ) for S ⊆ T .

Note that linear functions (also called modular) functions are a
special case of monotone submodular functions.
Aside: Any linear function maximiation problem can be reformulated
more generally as a (monotone) submodular function problem.
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Submodular maximization
In the submodular maximization problem, we want to compute S so as to
maximize f (S).

For monotone functions, we are maximizing f (S) subject to some
constraint (otherwise just choose S = U).

For the non monotone case, the problem is already interesting in the
unconstrained case. Perhaps the most prominent example of such a
problem is Max-Cut (and Max-Di-Cut).

Max-Cut is an NP-hard problem. Using an SDP approach just as in
the Max-2-Sat problem yields the same approximation ratio
α = 2

π min{0≤θ≤π}
θ

(1−cos(θ) ≈ .87856. Assuming UGC, this is optimal.

For a submodular function, we may be given an explicit representation
(when a succinct representation is possible as in Max-Cut) or we
access the function by an oracle such as the value oracle which given
S , outputs the value f (S) and such an oracle call is considered to
have O(1) cost. Other oracles are possible (e.g. given S , output the
element x of U that maximizes f (S ∪ {x})− f (S)).
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Unconstrained (non monotone) submodular
maximization

Feige, Mirrokni and Vondrak [2007] began the study of approximation
algorithms for the unconstrained non monotone submodular
maximization (USM) problem establishing several results:

1 Choosing S uniformly at random provides a 1/4 approximation.
2 An oblivious local search algorithm results in a 1/3 approximation.
3 A non-oblivious local search algorithm results in a 2/5 approximation.
4 Any algorithm using only value oracle calls, must use an exponential

number of calls to achieve an approximation (1/2 + ε) for any ε > 0.

The Feige et al paper was followed up by improved local search
algorithms by Gharan and Vondrak [2011] and Feldman et al [2012]
yielding (respectively) approximation ratios of .41 and .42.

The (1/2 + ε) inapproximation was augmented by Dobzinski and
Vondrak showing the same bound for an explicitly given instance
under the assumption that RP 6= NP.
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The Buchbinder et al (1/3) and (1/2)
approximations for USM
In this years FOCS [2012] conference, Buchbinder et al give an elegant
linear time deterministic 1/3 approximation and then extend that to a
randomized 1/2 approximization. The conceptually simple form of the
algorithm is (to me) as interesting as the optimality (subject to the proven
inapproximation results) of the result. Let U = u1, . . . un be the elements
of U in any order.

The deterministic 1/3 approximation for USM

X0 := ∅;Y0 := U
For i := 1 . . . n
ai := f (Xi−1 ∪ {ui})− f (Xi−1); bi := f (Yi−1 \ {ui})− f (Yi−1)
If ai ≥ bi

then Xi := Xi−1 ∪ {ui};Yi := Yi−1
else Xi := Xi−1;Yi := Yi−1 \ {ui}

End If
End For
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The randomized 1/2 approximation for USM

Notwithstanding the previous “debate” as to whether or not an
algorithm is being improved by the natural randomization of a
deterministic algorithm, Buchbinder et al show that the “natural
randomization” of the previous deterministic algorithm achieves
approximation ratio 1/2.

That is, the algorithm chooses to either add {ui} to Xi−1 with

probability
a′i

a′i+b′i
or to delete {ui} from Yi−1 with probability

b′i
a′i+b′i

where a′i = max{ai , 0} and b′i = max{bi , 0}.
If ai = bi = 0 then add {ui} to Xi−1.

Note: Part of the proof for both the deterministic and randomized
algorithms is the fact that ai + bi ≥ 0.
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Monotone submodular function maximization
As previously mentioned, the monotone problem is only interesting
when the submodular maximization is subject to some constraint.
Probably the simplest and most widely used constraint is a cardinality
constraint; namely, to maximize f (S) subject to |S | ≤ k for some k
and since f is monotone this is the same as the constraint f (S) = k .
Following Cornuéjols, Fisher and Nemhauser [1977] (who study a
specific submodular function), Nemhauser, Wolsey and Fisher [1978]
show that the standard greedy algorithm achieves a 1− 1

e
approximation for the cardinality constrained monotone problem.
More precisely, for all k, the standard greedy is a 1− (1− 1

k )k

approximation for a cardinality k constraint.

Standard greedy algorithm

S := ∅
While |S | < k

Let u maximize f (S ∪ {u})− f (S)
S := S ∪ {u}

End While
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Generalizing to a matroid constraint

Nemhauser and Wolsey [1978] showed that the 1− 1
e approximation

is optimal in the sense that an exponential number of value oracle
queries would be needed to beat the bound for the cardinalily
constraint.

Furthermore, Feige [1998] shows it is NP hard to beat this bound
even for the explicitly represented maximum k-coverage problem.

Following their first paper, Fisher, Nemhauser and Wolsey [1978]
extended the cardinality constraint to a matroid constaint. Matroids
are an elegant abstraction of independence in a variety of settings.

Fisher, Nemhauser and Wolsey show that both the standard greedy
algorithm and the 1-exchange local search algorithm achieve a 1

2
approximation for an arbitrary matroid constraint.

They also showed that this bound was tight for greedy and for the
1-exchange local search.
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Matroids and independence systems

Let M = (U,F), where U is a set of elements, F ⊆ 2|U|; I ∈ F is
called an independent set.
An independence system satisfies the following properties:
1) ∅ ∈ F ; often stated although not necessary if F 6= ∅
2) S ⊆ T ,T ∈ F ⇒ S ∈ F
A matroid is an independence system that also satisfies:
3) S ,T ∈ F , |S | < |T |, then ∃x ∈ T \ S such that S ∪ {x} ∈ F
Sets having at most k elements constitute the independent sets in a
uniform matroid

Other common examples, include
1 partition matroids where U is the disjoint union U1 ∪ U2 . . . ∪ Ur and

there are individual cardiality constraints ki for each block Ui of the
partition.

2 Graphic matroids where U is the set of edges E in a graph G = (V ,E )
and E ′ ⊆ E is independent if G = (V ,E ′) is acyclic.

3 Linear matroids where U is a set of vectors in a vector space and I is
independent in the usualy sense of linear independence.
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Achieving the 1− 1
e approximation for arbitrary

matroids

An open problem for 30 years was to see if the 1− 1
e approximation

for the cardinality constraint could be obtained for arbittrary matroids.

Calinsecu et al [2007, 2011] positively answer this open problem using
a very different (than anything in our course) algorithm consiting of a
continuous greedy algorithm phase followed by a pipage rounding
phase.

Following Calinsecu et al, Filmus and Ward [2012A, 2012B] develop
(using LP analysis to guide the development) a sophisticated
non-oblivious local search algorithm that is also able to match the
1− 1

e bound, first for the maximum coverage problem and then for
arbitrary monotone submodular functions.
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The power of non-oblivious local search
In Lecture 4 we very briefly mentioned non-oblivious local search. As
stated, for some applications it turns to be beneficial to search for a
solution (in the local neighbourhood) that improves a related potential
function rather than the given objective function. This has been termed
non-oblivious local search.

The first place I encountered non-oblivious local search was in
Khanna et al [1994,1998] where they considered the weighted exact
Max-k-Sat problem and other CSP problems. Independently Alimonti
[1994,1995,1997] utlilized the same non-oblivious local search and
terminology for various problems.
Khanna et al show that

1 The 1-flip (flip the truth assignment of one variable) oblivous local
search achieves a locality gap (and really a totality ratio as defined in
Lecture 8) of k

k+1 .
2 For (unweighted) Max-2-Sat, this ratio is tight even for r -flip oblivous

local search for any r = o(n).
3 For every k , there is a non-oblvious 1-flip local search algorithm that

achieves totality ratio 2k−1
2k

, the same ratio achieved by Johnson’s
algorithm (and the the naive randomized algorithm) 12 / 24



The inutition for the non-oblivious local search
When there are two more different truth assignments which achieve
(say roughly) the same objective value, which if any truth assignment
should you prefer?
Intuitively clauses satisfied by two literals are better than those
satisifed by one literal. So thinking of the objective of (weighted)
exact Max-2-Sat as being the weight W1 of clauses satisfied by one
literal plus the weight W2 of clauses satisfied by two literals, we are
led to a potential function α1W1 + α2W2 or W1 + αW2 for some
α > 1.
By considering the proof of the totality ratio, we can see that the best
choice of (α1, α2) = (3/2, 2) or α is 4

3 leading to a totality ratio of
3/4. More generally, there is a choice of scaling factors αi (for clauses
satisfied by i literals) for the exact Max-k-Sat problem that yields the
stated ratio.
In this and other results we are often omitiing discussion of
approximate local optimal that introduces an ε into the results which
can then usually be removed in standard ways.
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Another application of non-oblivious local search:
weighted max coverage

The weighted max coverage problem

Given: A universe E , a weight function w : E → <≥0 and a collection of
of subsets F = {F1, . . . ,Fn} of U. The goal is to find a subset of indices
S (subject to a matroid constraint) so as to maximize f (S) = w(∪i∈SFi )
subject to some constraint (often defined as the cardinality constraint).
Note: f is a monotone submodular function.

In matroid, all maximal independent sets have the same size; the rank
of a matroid is the size of the largest maximal independent set.
Conversely, if all maximal independent sets in an independence system
M have the same size, then M is a matroid.

For ` < r = rank(M), the `-flip oblivious local search for max
coverage has locality gap r−1

2r−`−1 →
1
2 as r increases. (Recall that

greedy achieves 1
2 .)
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The non-oblivious local search for max coverage

Given two solutions S1 and S2 with the same value for the objective,
we again ask, when one solution is better than the other?

Similar to the motivation used in Max-k-Sat, solutions where various
elements are covered by many sets is intuitively better so we are led
to a potential function of the form g(S) =

∑
ακ(u,S)w(u) where

κ(u, S) is the number of sets Fi (i ∈ S) such that u ∈ Fi and
α : {0, 1, . . . , r} → <≥0.

The interesting and non-trivial development is in defining the
appropriate scaling functions {αi} for i = 0, 1, . . . r

Filmus and Ward derive the following recurrence for the choice of the
{αi} : α0 = 0, α1 = 1−−1

e , and αi+1 = (i + 1)αi − iαi−1 − 1
e .
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The very high level idea and the locality gap

The high-level idea behind the derivation is like the factor revealing
LP used by Jain et al [2003]; namely, they formulate an LP for an
instance of rank r that determines the best obtainable ratio (by this
approach) and the {αi} obtaining this ratio.

The Filmus-Ward locality gap for the non oblivious local search

The 1-flip non oblivious local search has locality gap O(1− 1
e − ε) and

runs in time O(ε−1r2|F||U| log r)
The ε in the ratio can be removed using partial enumeration resulting in
time O(r3|F|2|U|2 log r).
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A non oblivious local search for an arbitrary
monotone submodular function

The previous development and the analysis needed to obtain the
bounds is technically involved but is aided by having the explicit
weight values for each Fi . For a general monotone submodular
function we no longer have these weights.

Instead, Filmus and Ward define a potential function g that gives
extra weight to solutions that contain a large number of good
sub-solutions, or equivalently, remain good solutions on average even
when elements are randomly removed.

A weight is given to the average value of all solutions obtained from a
solution S by deleting i elements and this corresponds roughly to the
extra weight given to elements covered i + 1 times in the max
coverage case.

The potential function is :

g(S) =
∑|S|

k=0

∑
T :T⊆S ,|T |=k

β
(|S|)
k

(|S|k )
f (T ) =

∑|S |
k=0 β

(|S|)
k ET [f (T )]
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One more non oblivious local search

We consider the weighted max (independent) vertex set in a k + 1
claw free graph. Note that this is the standard graph theoretic notion
of an indepedent set of vertices and this is not independence in a
matroid. The problem is that of finding an independent set S of
vertices so as to maximize a linear function f (S) (i.e. weights given
to vertices).

The concept of an independent set in a k + 1 claw free graph has
been abstracted by Feldman et al [2011] to an independence system
called k-exchange systems which are a proper subcase of Mestre’s
[2006] k-extendible systems which are a subcase of Jenkyn’s [1976] k
systems.

The work of Jenkyns and Nemhauser et al show that the standard
greedy algorithm is a 1

k approximation for weighted max independent
set in a Jenkyn’s k system.

It remains an open problem to improve upon the greedy approximation
for Mestre’s k extendible systems and Jenkyn’s k systems.
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Oblivious and non-oblivious local search for k + 1
claw free graphs

The standard greedy algorithm and the 1-swap oblivious local search
both achieve a 1

k approximation for the WMIS in k + 1 claw free
graphs. Here we define an “`-swap” oblivous local search by using
neighbrourhoods defined by bringing in a set S of up to ` vertices and
removing all vertices adjacent to S .

The standard greedy and 1-swap oblivious local search can be
extended to the case of submodular (rather than linear) functions on
the vertex sets. This results in a 1

k+1 approximation (locality gap).
The idea is to use marginal gain of an element (relative to the current
solution).

For the unweighted MIS, Halldórsson shows that a a 2-swap oblivious
local search will yield a 2

k+1 approximation.
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Berman’s [2000] non-oblivious local search
For the weighted MIS, the “`-swap” oblivous local search results
(essentially) in an 1

k locality gap for any constant `.
Chandra and Halldórson [1999] show that by first using a standard
greedy algorithm to initialize a solution and then uses a “greedy”
k-swap oblivious local search improves the approximation ratio to 3

2k .
Can we use non-oblivious local search to improve the locality gap?
Once again given two solutions V1 and V2 having the same weight,
when is one better than the other?
Intuitively, if one vertex set V1 is small but vertices in V1 have large
weights that is better than a solution
Berman chooses the potential function g(S) =

∑
v∈S w(v)2. Ignoring

some small ε’s, his k-swap non-oblivious local search achieves a
locality gap of 2

k+1 for WMIS on k + 1 claw-free graphs.
Linear function (resp. monotone submodular) maximization is
extended to k exchangeable systems in Feldman et al [2011] (resp.
Ward [2012]). Note: For the submodular case, the potential function
introduces some obstacles in using the marginal weight.
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A constructive Lovász Local Lemma for 3-SAT

Suppose we have a set of random events E1, . . . ,Em with
Prob[Ei ] ≤ p < 1 for each i . Then if these events are independent we
can easily bound the probability that none of the events has occurred;
namely, it is (1− p)m > 0.

Suppose now that these events are not independent but rather just
have limited dependence. Namely suppose that each Ei is dependent
on at most r other events. Then the Lovász local Lemma (LLL)
states that if e · p · (r + 1) is at most 1, then there is a non zero
probability that none of the events Ei occurred.

As stated this is a non-constructive result
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A somewhat canonical application of the LLL

Let F = C1 ∧ C2 ∧ . . . ∧ Cm be a an exact k CNF formula. From our
previous discussion of the exact Max-k-Sat problem and the naive
randomized algorith, we know that if m < 2k , then F must be
satisfiable.

Suppose instead that we have an arbitrary number of clauses but now
for each clause C , at most r other clauses share a variable with C .

If we let Ei denote the event that Ci is not satisfied for a random
uniform assignment (and hence having probability 1/(2k), then we are
interested in having a non zero probability that none of the Ei

occurred (i.e. that F is satisfiable).

The LLL tells us that if r + 1 ≤ 2k

e , then F is satisfiable.

As nicely stated in Gebauer et al [2009]: “In an unsatisable CNF
formula, clauses have to interleave the larger the clauses, the more
interleaving is required.”
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A constructive algorithm for the previous proof of
satisfiability

Here we will follow a somewhat weaker version (for r ≤ 2k/8) proven
by Moser [2009] and then improved by Moser and G. Tardos [2010] to
give the tight LLL bound. This proof was succinctly explained in a
blog by Lance Fortnow

This is a constructive proof in that there is a randomized algorithm
(which can be de-randomized) that with high probability (given the
limited dependence) will terminate and produce a satisfying
assignment in O(mlogm) evaluations of the formula.

Both the algorithm and the analysis are very elegant. The algorithm
is in essence a local search search algorithm and it seems that this
kind of analysis (an information theoretic argument using Kolmogorov
complexity to bound convergence) should be more widely applicable.
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The Moser algorithm

We are given an exact k-CNF formula F with m variables such that for
every clause C , at most r ≤ 2k/8 other clasues share a variable with C .

Algorithm for finding a satisfying truth assignment

Procedure SOLVE
Let τ be a random assignment
While there is a clause C not satisfied

Call FIX(C)
End While

Procedure FIX(C)
While there is a neighbouring unsatisfied clause D

Randomly set all the variables occuring in D
Call FIX(D)

End While
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