
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

Allan Borodin

November 23, 2012; Lecture 11

1 / 21

Sublinear space and the streaming model

Sublinear space has been an important topic in complexity theory
since the start of complexity theory. While not as important as the
P = NP or NP = co −NP question, there are two fundamental space
questions that remain unresolved:

1 Is NSPACE (S) = DSPACE (S) for S ≥ log n ?
2 Is P contained in DSPACE (log n) or ∪kSPACE (logk n)? Equivalently,

is P contained in polylogarthmic parallel time.

Savitch [1969] showed a non deterministic S space bounded TM can
be simulated by a deterministic S2 space bounded machine (for space
constructible bounds S).

Further in what was considered a very surprising result, Immerman
[1987] and independently Szelepcsényi [1987]
NSPACE (S) = co − NSPACE (S). (Savitch’s result was also
considered suprising by some researchers when it was announced.)

2 / 21

USTCON vs STCON

We let USTOC (resp. STCON) denote the problem of deciding if there is
a path from some specified source node s to some specified target node t
in an unidrected (resp. directed) graph G .

As previously mentioned the Aleliunas’ et al [1979] random walk
result showed that USTCON is in RSPACE (log n) and after a
sequence of partial results about USTCON, Reingold [2008] was
eventually able to show that USTCON is in DSPACE (log n)

It remains open if STCON is in RSPACE (log n) (and hence
NSPACE (S) = RSPACE (S) or if RSPACE (S) = DSPACE (S).

3 / 21

The streaming model

In the data stream model, the input is a sequence A of inputs
a1, . . . , an which is assumed to be too large to store in memory.

We usually assume that n is not known and hence one can think of
this model as a type of online or dynamic algorithm that is
maintaining (say) current statistics.

The space available S(n) is some sublinear function. The input
streams by and what can only store information in the sublinear space
allotted.

It is also desirable that that each input is processed efficiently, say
log n and perhaps even in time O(1).

The goal is to approximately compute some function (say a statistic)
of the data or identify some particular element(s) of the data stream.

Most results concern the space required for a one pass algorithm. But
there are other results concerning the tradeoff between the space and
number of passes.

4 / 21

Some well-studied streaming problems

Computing frequency moments. Let A = a1 . . . an be a data stream
with ai ∈ [m] = {1, 2, . . .m}. Let ni denote the number of occurences
of the value i in the stream A. The kth frequency moment is
Fk =

∑
i∈[m](ni)

k

1 F1 = n, the length of the sequence which can be simply computed.
2 F0 is the number of distinct elements in the stream
3 F2 is a special case of interest called the repeat index (also known as

Ginis homogeneity index).

Finding k-heavy hitters; i.e. those elements appearing at least n/k
times in stream A.

Finding rare or unique elements in A.

5 / 21

An example of a deterministic streaming algorithms

As in sublinear time, it will turn out that almost all of the results in this
area are for randomized algorithms. Here is one exception.

The missing element problem

Suppose we are given a stream A = a1, . . . , an−1 and we are promised that
the stream A is a permutation of {1, . . . , n} − {x} for some integer x in
[1, n]. The goal is to compute the missing x .

Space n is obvious using a bit vector cj = 1 iff j has occured.

Instead we know that
∑

j∈A = n(n + 1)/2− x .
So if s =

∑
i∈A ai , then x = n(n + 1)/2− s.

This uses only 2 log n space and constant time/item.

6 / 21

Generalizing to k missing elements

Now suppose we are promised a stream A of length n − k whose elements
consist of a permutation of n− k distinct elements in {1, . . . , n}. We want
to find the missing k elements.

Generalizing the one missing element solution, to the case that there
are k missing elements we can (for example) maintain the sum of j th

powers (1 ≤ j ≤ k) sj =
∑

i∈A(ai)
j = cj(n)−

∑
i /∈A x ji . Here cj(n) is

the closed form expression for
∑n

i=1 i . This results in k equations in k
unknowns using space k2 log n but without an efficient way to
compute the solution.

As far as I know there may not be an efficient small space streaming
algorithm for this problem.

Using randomization, much more efficient methods are known;
namely, there is a streaming alg with space and time/item
O(k log k log n); it can be shown that Ω(k log(n/k)) space is
necessary.

7 / 21

What is known about computing Fk?

Given an error bound ε and confidence bound δ, the goal in the frequency
moment problem is to compute an estimate F ′k such that
Prob[|Fk − F ′k | > εFk] ≤ δ.

The seminal paper in this regard is by Alon, Matias and Szegedy
(AMS) [1999]. AMS establish a number of results:

1 For k ≥ 3, there is an Õ(m1−1/k) space algorithm. (The Õ notation
hides factors that are polynomial in 1

ε and polylogarithmic in m, n, 1δ .
2 For k = 0 and every c > 2, there is an O(log n) space algorithm

computing F ′0 such that
Prob[(1/c)F0 ≤ F ′0 ≤ cF0 does not hold] ≤ 2/c .

3 For k = 1, log n is obvious to exactly compute the length but an
estimate can be obtained with space O(log log n + 1/ε)

4 For k = 2, they obtain space Õ(1) = O(log(1/δ
ε2 (log n + logm))

5 They also show that for all k > 5, there is a (space) lower bound of
Ω(m1−5/k).

8 / 21

Results following AMS

A considerable line of research followed this seminal paper. Notably
settling the conjecture in AMS:

The following results apply to real as well as integral k .

1 An Ω̃(m1−2/k) space lower bound for all k > 2 (Bar Yossef et al
[2002]).

2 Indyk and Woodruff [2005] settle the space bound for k > 2 with a
matching upper bound of Õ(m1−2/k)

The basic idea behind these randomized approximation algorithms is
to define a random variable Y whose expected value is close to Fk
and variance is sufficiently small such that this r.v. can be calculated
under the space constraint.

We will just sketch the (non optimal) AMS results for Fk for k > 2
and the result for F2.

9 / 21

The AMS Fk algorithm
Let s1 = (8

ε2
m1− 1

k)/δ2 and s2 = 2 log 1
δ .

AMS algorithm for Fk

The output Y of the algorithm is the median of s2 random variables
Y1,Y2,,Ys2 where Yi is the average of s1 random variables
Xij , 1 ≤ j ≤ s1 . All Xij are independent identically distributed random
variables. Each X = Xij is calculated in the same way as follows: Choose
random p ∈ [1, . . . , n], and then see the value of ap. Maintain
r = |{q|q ≥ p and aq = ap}|. Define X = n(rk − (r − 1)k).

Note that in order to calculate X , we only require storing ap (i.e.
logm bits) and r (i.e. at most log n bits). Hence the Each X = Xij is
calculated in the same way using only O(log n + logm) bits.

For simplicity we assume the input stream length n is known but it
can be estimated and updated as the stream unfolds.

We need to show that E[X] = Fk and that the variance is small
enough to use the Chebyshev inequality.

10 / 21

Before moving on

Streaming is an important field of recent algorithmic research. We
have just considered one problem in one particular input model, the
so-called time series model. There are two more general input models
in which this and other similar problems can be studied.

1 Cash register model: the input stream is a sequence (I1, I2, , In) where
It = (aj , ct) and ct ≥ 1 representing how much to increase the
(integral) count for item aj . The current count state (n1(t), . . . , nm(t))
at time t is then ni (t) = ni (t − 1) + ct if It = (i , ct) and otherwise
ni (t) = ni (t − 1).

2 Turnstile model: this is the same model but now |ct | ≥ 1 allowing
(integral) decrements as well as increments.

11 / 21

New topic: the weighted majority algorithm
I am following a survey type paper by Arora, Hazan and Kale [2005]. To
quote from their paper: “We feel that this meta-algorithm and its analysis
should be viewed as a basic tool taught to all algorithms students together
with divide-and-conquer, dynamic programming, random sampling, and
the like”.

The weighted majority algorithm and generalizations
The ”classical” WMA pertains to the following situation:
Suppose we have say n expert weathermen (or maybe “expert” stock
market forecasters) and at every time t, they give a binary prediction
(rain or no rain, Raptors win or lose, dow jones up or down, Romney
or Obama if there was an election every day).
Now some or all of these experts may actually be getting their
opinions from the same sources (or each other) and hence these
predictions can be highly correlated.
Without any knowledge of the subject matter (and why should I be
any different from the “experts”) I want to try to make predictions
that will be nearly as good (over time t) as the BEST expert.

12 / 21

The weighted majority algorithm

The WM algorithm

Set wi (0) = 1 for all i
For t = 0...

Our (t + 1)st predication is
0: if

∑
i : expert i predicts 0 wi (t) ≥ (1/2)

∑
i wi (t)

1: if
∑

i : expert i predicts 1 wi (t) ≥ (1/2)
∑

i wi (t) ; arbitrary o.w.

% We vote with weighted majority; arbitrary if tie

For i = 1..n
If expert i made a mistake on (t + 1)st prediction

then wi (t + 1) = (1− ε)wi (t);
else wi (t + 1) = wi (t)

End If
End For

End For

13 / 21

How good is our uninformed prediction?

Theorem : Perfomance of WM

Theorem: Let mi (t) be the number of mistakes of expert i after the first t
forecasts, and let M(t) be the number of our mistakes. Then for any
expert i (including the best expert) M(t) ≤ 2 ln n

ε + 2(1 + ε)mi (t) .

That is, we are essentially within a multiplicative factor of 2 plus an
additive term of the best expert (without knowing anything).

Using randomization, the factor of 2 can be removed. That is, instead
of taking the weighted majority opinion, in each iteration t, choose
the prediction of the i th expert with probability wi (t)/

∑
i wi (t)

Theorem: Performance of Randomized WM

For any expert i , E[M(t)] ≤ ln n
ε + (1 + ε)mi (t)

14 / 21

What is the meaning of the randomized
impovement?

In many applications of randomization we can argue that
randomization is (provably) necessary and in other applications, it
may not be provable so far but current experience argues that the
best algorithm in theory and practice is randomized.

For some algorithms (and especially online algorithms) analyzed in
terms of worst case performance, there is some debate on what
randomization is actually accomplishing.

In a [1996] article Blum states that “Intuitively, the advantage of the
randomized approach is that it dilutes the worst case”. He continues
to explain that in the determinstic algorithm, slightly more than half
of the total weight could have predicted incorrectly, causing the
algorithm to make a mistake and yet only reducing the total weight
by 1/4 (when ε = 1/2). But in the randomized version, there is still a
.5 probability that the algorithm will predict correctly. Convincing?

15 / 21

An opposing viewpoint
In the blog LessWrong this view is strongly rejected. Here the writer
makes the following comments: “We should be especially suspicious
that the randomized algorithm guesses with probability proportional
to the expert weight assigned. This seems strongly reminiscent of
betting with 70% probability on blue, when the environment is a
random mix of 70% blue and 30% red cards. We know the best bet
and yet we only sometimes make this best bet, at other times betting
on a condition we believe to be less probable.
Yet we thereby prove a smaller upper bound on the expected error. Is
there an algebraic error in the second proof? Are we extracting useful
work from a noise source? Is our knowledge harming us so much that
we can do better through ignorance?” The writer asks: “So what’s
the gotcha ... the improved upper bound proven for the randomized
algorithm did not come from the randomized algorithm making
systematically better predictions - doing superior cognitive work,
being more intelligent - but because we arbitrarily declared that an
intelligent adversary could read our mind in one case but not in the
other.” 16 / 21

Generalizing: The Multiplicative Weights algorithm

Bluem’s article expresses a second benefit of the randomized approach:
“Therefore the algorithm can be naturally applied when predictions are
‘strategies’ or other sports of things that cannot easily be combined
together. Moreover, if the ‘experts’ are programs to be run or functions to
be evaluated, then this view speeds up prediction since only one expert
needs to be examined in order to produce the algorithm’s prediction”
Following the terminolgy in Arora et al, the Weighted Majority algorithm
can be generalized to the multiplicative weights algorithm. We now
consider that the i th expert or decision on day t is a real valued cost/profit
mi (t) ∈ [−1, 1] and let ε ≤ 1/2.

Performance of The MW algorithm

Let p(t) be the distribution defined by < w1(t), . . . ,wn(t) > normalized
by Φ(t) =

∑
i wi (t). Then the expected cost of the MW algorithm after

T rounds is
∑T

t=1 m(t) · p(t) ≤ ln n
ε +

∑T
t=1mi (t) + ε

∑T
t=1 |mi (t)|

17 / 21

Reinterpreting in terms of gains instead of losses

We can have a vector m(t) of gains instead of losses and then use the
“cost vector” −m(t) in the MW algorithm resulting in:

Performance of The MW algorithm for gains∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1mi (t)− ε
∑T

t=1 |mi (t)|

By taking convex combinations, an immediate corollary is

Performance wrt. a fixed distribution p∑T
t=1 m(t) · p(t) ≥ − ln n

ε +
∑T

t=1 m(t)− ε|m(t)|)p

18 / 21

An application to learning a linear binary classifier
Instead of the online application of following expert advice, let us now
think of “time” as rounds in an iterative procedure. In particular, we
would like to compute a linear binary classifier (when it exists).

We are trying to classsify objects characterized by n features; that is
by points a in <n. We are given m labelled examples
(a1, `1), . . . , (am, `m) where `j ∈ {−1,+1}
We are going to assume that these examples can be “well classified”
by a linear classifier in the sense that there exists a non negative
vector x∗ ∈ <n (with xi ≥ 0) such that sign(aj · x∗) = `j for all j .

This is equivalent to saying `jaj · x∗ ≥ 0 and furthermore to explain
the “well”) we will say that `jaj · x∗ ≥ δ for some δ > 0.

The goal now is to learn some linear classifer; ie a non negative
x ∈ <n such that `jaj · x∗ ≥ 0. Without loss of generality, we can
assume that

∑
i xi = 1.

Letting bj = `jaj , this can now be veiwed as a reasonably general LP
(search) problem.

19 / 21

Littlestone’s Winnow algorithm for learning a linear
classifier

Litlestone [1987] used the multiplicative weights approach to solve
this linear classification problem.
Let ρ = maxj ||bj ||∞ and let ε = δ/(2ρ)
The idea is to run the MW algorthm with the decisions given by the n
features and gains specified by the m examples. The gain for feature i
with respect to the j th example is defined as (bj)i/ρ which is in [-1,1].
The x we are seeking is the distribution p in MW.

The Winnow algorithm

Initialize p
While there are points not yet satisfied

Let bj · p < 0 % a constraint not satisfied
Use MW to upate p

End While

Bound on number of iterations

The Winnow algorithm will terminate in at most d4ρ2 ln n/δ2e iterations.20 / 21

Miscellaneous topics to end the term

Clearly “algorithm design, analysis, and theory” is a extremely broad
subject (and one might say it is much of what CS does) so clearly we have
only discussed a few topic and even then only discussed them briefly.
Here are a few possible topics which with we will conclude the course:

1 A return to non-oblivious local and its power.

2 The constructive Lovasz Local Lemma for 3SAT when variables do
not appear in too many clauses.

3 spectral methods

21 / 21

