
CSC2420 Fall 2012: Algorithm Design, Analysis
and Theory

Allan Borodin

November 15, 2012; Lecture 10

1 / 27

Randomized online bipartite matching and the
adwords problem.

We briefly return to online algorithms and algorithms in the random
order model (ROM). Here we have already seen evidence of the power
of randomization in the context of the MaxSat problem.

Another nice sequence of results begins with a randomized online
algorithm for bipartite matching due to Karp, Vazirani and Vazirani
[1990]. We quickly overview some results in this area as it represents
a topic of current interest. (The recent FOCS 2012 conference had a
session of three papers related to this topic.)

In the online bipartite matching problem, we have a bipartite graph G
with nodes U ∪ V . Nodes in U enter online revealing all their edges.
A deterministic greedy matching produces a maximal matching and
hence a 1

2 approximation.

It is easy to see that any deterministic online algorithm cannot be
better than a 1

2 approximation even when the degree of every u ∈ U
is at most (equal) 2

2 / 27

The randomized ranking algorithm

The Ranking algorithm chooses a random permutation of the nodes
in V and then when a node u ∈ U appears, it matches u to the
highest ranked unmatched v ∈ V such that (u, v) is an edge (if such
a v exists).

Aside: making a random choice for each u is still only a 1
2 approx.

Equivalently, this algorithm can be viewed as a deterministic greedy
algorithm (i.e. always matching when possible and breaking ties
consistently) in the ROM model.

That is, let {v1, . . . , vn} be any fixed ordering of the vertices and let
the nodes in U enter randomly, then match each u to the first
unmatched v ∈ V according to the fixed order.

To argue this, consider fixed orderings of U and V ; the claim is that
the matching will be the same whether U or V is entering online.

Note: This is a comment about this particular algorithm and not
some general equivalence between randomized online algorithms and
deterministic algorithms in the ROM model.

3 / 27

The KVV result and recent progress

KVV Theorem

Ranking provides a (1− 1/e) approximation.

Original analysis is not rigorous.

There is an alternative proof (and extension) by Goel and Mehta
[2008], and then another proof in Birnbaum and Mathieu [2008].

Recall that this positive result can be stated either as the bound for a
particular deterministic algorithm in the stochastic ROM model, or as
the randomized Ranking algorithm in the (adversarial) online model.

KVV show that the (1− 1/e) bound is essentially tight for any
randomized online (i.e. adversarial input) algorithm. In the ROM
model, Goel and Mehta state inapproximation bounds of 3

4 (for
deterministic) and 5

6 (for randomized) algorithms.

4 / 27

Some comments on the Birnbaum and Mathieu
proof

The worst case example for any online algorithm is a (n, n) graph
with a perfect matching.

In particular, for n = 2, the precise expected competitive (i.e.
approximation) ratio is 3

4 . The inapproximation can be seen by using
the Yao principle for obtaining bounds on randomized algorithms.

The main lemma in the analysis

Let xt be the probability (over the random permutations of the vertices in
V) that the vertex of rank t is matched. Then 1− xt ≤ 1

n

∑t
s=1 xs

Letting St =
∑t

s=1 xs the lemma can be restated as
St(1 + 1/n) ≥ 1 + St−1 fo all t. Given that the graph has a perfect
matching, the expected competitive ratio is Sn/n. It is shown that
1
nSn ≥ 1− (1− 1

n+1)n → 1− 1/e.

5 / 27

Getting past the (1− 1/e) bound

The ROM model can be considered as an example of what is called
stochastic optimization in the OR literature. There are other
stochastic optimization models that are perhaps more natural, namely
i.i.d sampling from known and unknown distributions.

Feldman et al [2009] study the known distribution case and show a
randomized algorithm that first computes an optimal offline solution
(in terms of expectation) and uses that to guide an online allocation.

They achieve a .67 approximation (improved to .699 Bahmani and
Kapralov [2010] and also show that no online algorithm can achieve
better than 26/27 ≈ .99 (improved to .902).

Karande, Mehta, Tripathi [2011] show that an approximation in the
ROM model implies the same approximation in the unknown
distribution model. They show that the KVV Ranking algorithm
achieves approximation .653 in the ROM model and is no better than
.727.

6 / 27

The adwords problem: an extension of bipartite
matching

In the (single slot) adwords problem, the nodes in U are queries and
the nodes in V are advertisers. For each query q and advertiser i ,
there is a bid bq,i representing the value of this query to the
advertiser.

Each advertiser also usually has a hard budget Bi which cannot be
exceeded. The goal is to match the nodes in U to V so as to
maximize the sum of the accepted bids without exceeding any
budgets. Without budgets and when each advertiser will pay for at
most one query, the problem then is edge weighted bipartite matching.

In the online case, when a query arrives, all the relevant bids are
revealed.

7 / 27

Some results for the adwords problem

Here we are just considering the combinatorial problem and ignoring
game theoretic aspects of the problem.

The problem has been studied for the special (but well motivated
case) that all bids are small relative to the budgets. As such this
problem is incomparable to the matching problem where all bids are
in {0,1} and all budgets are 1.

For this small bids case, Mehta et al [2005) provide a deterministic
online algorithm achieving the 1− 1/e bound and show that this is
optimal for all randomized online algorithms (i.e. adversarial input).

8 / 27

Greedy for a class of adwords problems

Goel and Mehta [2008] define a class of adwords problems which
include the case of small budgets, bipartite matching and b-matching
(i.e. when all budgets are equal to some b and all bids are equal to 1).

For this class of problems, they show that a deterministic greedy
algorithm achieves the familiar 1− 1/e bound in the ROM model.
Namely, the algorithm assigns each query (i.e. node in U) to the
advertiser who values it most (truncating bids to keep them within
budget and consistently breaking ties). Recall that Ranking can be
viewed as greedy (with consistent tie breaking) in the ROM model.

9 / 27

Vertex weighted bipartite matching

Aggarwal et al [2011] consider a vertex weighted version of the online
bipartite matching problem. Namely, the vertices v ∈ V all have a
known weight wv and the goal is now to maximize the weighted sum
of matched vertices in V when again vertices in U arrive online.

This problem can be shown to subsume the adwords problem when all
bids bq,i = bi from an advertiser are the same.

It is easy to see that Ranking can be arbitrarily bad when there are
arbitrary differences in the weight. Greedy (taking the maximum
weight match) can be good in such cases. Can two such algorithms
be somehow combined? Aggarwal et al are able to achieve the same
1-1/e bound for this class of vertex weighted bipartite matching.

10 / 27

The vertex weighted online algorithm

The perturbed greedy algorithm

For each v ∈ V , pick rv randomly in [0, 1]
Let f (x) = 1− e1−x

When u ∈ U arrives, match u to the unmatched v (if any) having the
highest value of wv ∗ f (xv). Break ties consistently.

In the unweighted case when all wv are identical this is the Ranking
algorithm.

11 / 27

Some open problems in the ROM model

There are many open problems in the ROM model. In general any online
problem can be studied with respect to this model. For example, relevant
to what we have just discussed:

The adwords problem without any restriction.

Beating 1− 1/e for the vertex weighted or b-matching problems.

Perhaps, the first prominent use of this model is for the secretary
problem; namely selecting the maximum element (or best k elements)
in a randomly ordered sequence. Here again 1− 1/e is the best
approximation.

This has been generalized to the matroid secretary problem by
Babaioff, Immorlica, R. Kleinberg [2007]. For arbitrary matroids, the
approximation ratio remains an open problem.

12 / 27

Sublinear time and sublinear space algorithms

We continue to consider contexts in which randomization is provably
necessary. In particular, we will study sublinear time algorithms and then
the (small space) streaming model.

An algorithm is sublinear time if its running time is o(n), where n is
the length of the input. As such an algorithm must provide an answer
without reading the entire input.

Thus to achieve non-trivial tasks, we almost always have to use
randomness in sublinear time algorithms to sample parts of the inputs.

The subject of sublinear time algorithms is a big topic and we will
only present a very small selection of hopefully representative results.

The general flavour of results will be a tradeoff between the accuracy
of the solution and the time bound.

This topic will take us beyond search and optimization problems.

13 / 27

A deterministic exception: estimating the diameter
in a finite metric space

We first conisder an exception of a “sublinear time” algorithm that
does not use randomization. (Comment: “sublinear in a weak sense”.)

Suppose we are given a finite metric space M (with say n points xi)
where the input is given as n2 distance values d(xi , xj). The problem
is to compute the diameter D of the metric space, that is, the
maximum distance between any two points.

For this maximum diameter problem, there is a simple O(n) time
(and hence sublinear) algorithm; namely, choose an arbitrary point
x ∈ M and compute D = maxj d(x , xj). By the triangle inequality, D
is a 2-approximation of the diameter.

I say sublinear time in a weak sense because in an explicitly presented
space (such as d dimensional Euclidean space), the points could be
explicitly given as inputs and then the input size is n and not n2.

14 / 27

Sampling the inputs: some examples

The goal in this area is to minimize execution time while still being
able to produce a reasonable answer with sufficiently high probability.

We will consider the following examples:

1 Finding an element in an (anchored) sorted list [Chazelle,Liu,Magen]
2 Estimating the average degree in a graph [Feige 2006]
3 Estimating the size of some maximal (and maximum) matching

[Nguyen and Onak 2008] in bounded degree graphs.
4 Examples of property testing, a major topic within the area of sublinear

time algorithms. See Dana Ron’s DBLP for many results and surveys.

15 / 27

Finding an element in an (anchored) sorted list
Suppose we have an array A[i] for 1 ≤ i ≤ n where each A[i] is a pair
(xi , pi) with x1 = min{xi} and pi being a pointer to the next smallest
value in the linked list.
That is, xpi = min{xj |xj > xi}. (For simplicity we are assuming all xj
are distinct.)
We would like to determine if a given value x occurs in the linked list
and if so, output the index j such that x = xj .

A
√
n algorithm for searching in anchored sorted linked list

Let R = {ji} be
√
n randomly chosen indices plus the index 1.

Access these {A[ji]} to determine k such that xk is the largest of the
accessed array elements less than or equal to x .
Search forward 2

√
n steps in the linked list to see if and where x exists

Claim:

This is a one-sided error algorithm that (when x ∈ {A[i]}) will fail to
return j such that x = A[j] with probability at most 1/2.

16 / 27

Estimating average degree in a graph

Given a graph G = (V ,E) with |V | = n, we want to estimate the
average degree d of the vertices.

We want to construct an algorithm that approximates the average
degree within a factor less than (2 + ε) with probability at least 3/4 in

time O(
√
n

poly(ε)). We will assume that we can access the degree di of
any vertex vi in one step.

Like a number of results in this area, the algorithm is simple but the
analysis requires some care.

The Feige algorithm

Sample 8/ε random subsets Si of V each of size (say)
√
n
ε3

Compute the average degree ai of nodes in each Si .
The output is the minimum of these {ai}.

17 / 27

The analysis of the approximation

Since we are sampling subsets to estimate the average degree, we might
have estimates that are too low of too high. But we will show that with
high probability these estimates will not be too bad. More precisely, we
need:

1 Lemma 1: Prob[ai <
1
2(1− ε)d̄] ≤ ε

64

2 Lemma 2: Prob[ai > (1 + ε)d̄] ≤ 1− ε
2

The probability bound in Lemma 2 is amplified as usual by repeated trials.
For Lemma 1, we fall outside the desired bound if any of the repeated
trials gives a very small estimate of the average degree but by the union
bound this is no worse than the sum of the probabilities for each trial.

18 / 27

Understanding the input query model

As we initially noted, sublinear time algorithms almost invariably
sample (i.e. query) the input in some way. The nature of these
queries will clearly influence what kinds of results can be obtained.

Feige’s algorithm for estimating the average degree uses only “degree
queries”; that is, “what is the degree of a vertex v”.

Feige shows that in this degree query model, that any algorithm that
acheives a (2− ε) approximation (for any ε > 0) requires time Ω(n).

In contrast, Goldreich and Ron [2008] consider the same average
degree problem in the “neighbour query” model; that is, upon a query
(v , j), the query oracle returns the j th neighbour of v or a special
symbol indicating that v has degree less than j . A degree query can
be simulated by log n neighbour queries.

Goldreich and Ron show that in the neighbour query model, that the
average degree d̄ can be (1 + ε) approximated (with one sided error
probability 2/3) in time O(

√
(n/d̄)poly(log n, 1ε)

They also show that this
√

(n) time bound is essentially optimal.

19 / 27

Approximating the size of a maximum matching in a
bounded degree graph

We recall that the size of any maximal matching is within a factor of
2 of the size of a maximum matching.

Our goal is to compute with high probability a maximal matching in
time depending only on the maximium degree D.

Nguyen and Onak Algorithm

Choose a random permutation p of the edges {ej}
% Note: this will be done “on the fly” as needed
The permutation determines a maximal matching M as given by the

greedy algorithm that adds an edge whenever possible.
Choose r = O(d/ε2) nodes {vi} at random
Using an “oracle” let Xi be the indicator random variable for whether

or not vertex vi is in the maximal matching.
Output m̃ =

∑
i=1...r Xi

20 / 27

Performance and time for maximal matching

Claims

1 m ≤ m̃ ≤ m + ε n where m = |M|.
2 The algorithm runs in time 2O(D)/ε2

This immediately gives an approximation of the maximum matching
m∗ such that m∗ ≤ m̃ ≤ 2m∗ + εn

A more involved algorithm by Nguyen and Onak yields the following
result:

Nguyen and Onak maximum matching result

Let δ, ε > 0 and let k = d1/δe. There is a randomized one sided algorithm

(with probability 2/3) running in time 2O(Dk)

ε2k+1 that outputs a maximium

matching estimate m̃ such that m∗ ≤ m̃ ≤ (1 + δ)m∗ + εn.

21 / 27

Property Testing

Perhaps the most prevalent and useful aspect of sublinear time
algorithms is for the concept of property testing. This is its own area
of research with many results.

Here is the concept: Given an object G (e.g. a function, a graph),
test whether or not G has some property P (e.g. G is bipartite).

The tester determines with sufficiently high probability (say 2/3) if G
has the property or is “ε-far” from having the property. The tester
can answer either way if G does not have the property but is
“ε-close” to having the property.

We will usually have a 1-sided error in that we will always answer YES
if G has the property.

We will see what it means to be “ε-far” (or close) from a property by
some examples.

22 / 27

Tester for linearity of a function

Let f : Zn− > Zn; f is linear if ∀x , y f (x + y) = f (x) + f (y) .

Note: this will really be a test for group homomorphism

f is said to be ε-close to linear if its values can be changed in at most
a fraction ε of the function domain arguments (i.e. at most εn
elements of Zn) so as to make it a linear function. Otherwise f is said
to be ε-far from linear.

The tester

Repeat 4/ε times
Choose x , y ∈ Zn at random

If f (x) + f (y) 6= f (x + y)
then Output f is not linear

End Repeat If all these 4/ε tests succeed then Output linear

Clearly if f is linear, the tester says linear.

If f is ε-far from being linear then the probability of detecting this is
at least 2/3.

23 / 27

Testing a list for monotonicity

Given a list A[i] = xi , i = 1 . . . n of distinct elements, determine if A is
a monotone list (i.e. i < j ⇒ A[i] < A[j]) or is ε-far from being
monotone in the sense that more than ε ∗ n list values need to be
changed in order for A to be monotone.

The algorithm randomly chooses 2/ε random indices i and performs
binary search on xi to determine if xi in the list. The algorithm reports
that the list is monotone if and only if all binary searches succeed.

Clearly the time bound is O(log n/ε) and clearly if A is monotone
then the tester reports monotone.

If A is ε-far from monotone, then the probability that a random binary
search will succeed is at most (1− ε) and hence the probability of the

algorithm failing to detect non-monotonicity is at most (1− ε)
2
ε ≤ 1

e2

24 / 27

Graph Property testing

Graph property testing is an area by itself. There are several models
for testing graph properties.

Let G = (V ,E) with n = |V | and m = |E |.
Dense model: Graphs represented by adjacency matrix. Say that
graph is ε-far from having a property P if more than εn2 matrix
entries have to be changed so that graph has property P.

Sparse model, bounded degree model: Graphs represented by vertex
adjacency lists. Graph is ε-far from property P is at least εm edges
have to be changed.

In general there are substantially different results for these two graph
models.

25 / 27

The property of being bipartite

In the dense model, there is a constant time one-sided error tester.
The tester is (once again) conceptually what one might expect but
the analysis is not at all immediate.

Goldreich, Goldwasser,Ron bipartite tester

Pick a random subset S of vertices of size r = Θ(
log(1

ε
)

ε2
)

Output bipartite iff the induced subgraph is bipartite

Clearly if G is bipartite then the algorithm will always say that it is
bipartite.

The claim is that if G is ε-far from being bipartite then the algorithm
will say that it is not bipartite with probability at least 2/3.

The algorithm runs in time quadratic in the size of the induced
subgraph (i.e. the time needed to create the induced subgraph).

26 / 27

Testing bipartiteness in the bounded degree model

Even for degree 3 graphs, Ω(
√
n) queries are required to test for being

bipartite or ε-far from being being bipartite. Goldreich and Ron [1997]

There is a nearly matching algorithm that uses O(
√
npoly(log n/ε))

queries. The algorithm is based on random walks in a graph and
utilizes the fact that a graph is bipartite iff it has no odd length cycles.

Goldreich and Ron [1999] bounded degree algorithm

Repeat O(1/ε) times
Randomly select a vertex s ∈ V
If algorithm OddCycle(s) returns cylce found then REJECT

End Repeat
If case the algorithm did not already reject, then ACCEPT

OddCycle performs poly(log n/ε) random walks from s each of length
poly(log n/ε). If some vertex v is reached by both an even length and
an odd length prefix of a walk then report cycle found; else report odd
cycle not found

27 / 27

