
CSC2420: Algorithm Design, Analysis and Theory
Fall 2012

Allan Borodin

September 13, 2012

1 / 18

Lecture 1

Course Organization:

1 Sources: No one text; lots of sources including specialized graduate
textbooks, my posted lecture notes (beware typos), lecture notes
from other Universities, and papers. Very active field and we will
discuss some recent work.

2 Lectures and Tutorials: One two hour lecture per week with
tutorials as needed and requested; TA is

3 Grading: Will depend on how many students are taking this course
for credit. Most likely, like last term there will be three assignments
with an occasional opportunity for some research oriented questions.

4 Office hours: I will be posting regular office hours for my CSC 200
course (with Craig Boutilier) but mainly when I am in (which is most
of the time), my door is open and I welcome questions (unless I am
preoccupied). So feel free to drop by and/or email me to schedule a
time. My office is SF 2303B and my email is bor@cs.toronto.edu. The
course web page is www.cs.toronto.edu/˜bor/2420f12

2 / 18

What is appropriate background?

In short, a course like our undergraduate CSC 373 is essentially the
prerequisite. Upon request, I will make available (hard copy) last
years CSC 373 final exam as one way to test yourself.

Any of the popular undergraduate texts.

It certainly helps to have a good math background and in particular
understand basic probability concepts.

BUT any CS/ECE/Math graduate student (or mathematically oriented
undergrad) should find the course accessible and useful.

3 / 18

Reviewing some basic algorithmic paradigms

The conceptually simplest algorithms

Given an optimization problem, it seems to me that the conceptually
simplest approaches are:

brute force

greedy

local search

Comment

We usually dismiss brute force search as it really isn’t much of an
algorithm approach but for small enough problems it might be the
way to go.

Moreover, sometimes we can combine some aspect of brute force
search with another approach as we will see by combining brute force
and greedy.

4 / 18

Greedy algorithms in CSC373

Some of the greedy algorithms we study in different offerings of CSC 373

The optimal algorithm for the fractional knapsack problem and the
approximate algorithm for the proportional profit knapsack problem.

The optimal unit profit interval scheduling algorithm and
3-approximation algorithm for proportional profit interval scheduling.

The 2-approximate algorithm for the unweighted job interval
scheduling problem and similar approximation for unweighted
throughput maximization.

Kruskal and Prim optimal algorithms for minimum spanning tree.

Huffman’s algorithm for optimal prefix codes.

Graham’s online and LPT approximation algorithms for makespan
minimization on identical machines.

The approximation algorithm for unweighted vertex cover.

The approximation algorithms for (k + 1)-claw free graphs.

The approximation algorithm for set cover.
5 / 18

Greedy algorithms:
Graham’s online and LPT makespan algorithms

Let’s start with these two greedy algorithms that date back to 1966
and 1969 technical reports.

These are good starting points since (preceding NP-completeness)
Graham conjectured that these are hard (requiring exponential time)
problems to compute optimally but for which there were worst case
approximation ratios (although he didn’t use that terminology).

This might then be the start of approximation algorithms. Moreover,
there are some general concepts to be observed in this work and even
after some 45 years still some open questions concerning such
makespan problems.

6 / 18

The makespan problem

The input consists of n jobs J = J1 . . . , Jn that are to be scheduled
on m identical machines.
Each job Jk is described by a processing time (or load) pk .
The goal is to minimize the latest finishing time (maximum load) over
all machines.
That is, the goal is a mapping σ : {1, . . . , n} → {1, . . . ,m} that

minimizes maxk

(∑
`:σ(`)=k p`

)
.

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]
7 / 18

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

We will see that the approximation ratio for this algorithm is 2− 1
m ;

that is, for any set of jobs J , CGreedy (J) ≤ (2− 1
m)COPT (J).

I CA denotes the cost (or makespan) of a schedule A.
I OPT stands for any optimum schedule.

Basic proof idea:

Algorithms Lecture 30: Approximation Algorithms [Fa’10]

Theorem 1. The makespan of the assignment computed by GREEDYLOADBALANCE is at most twice the
makespan of the optimal assignment.

Proof: Fix an arbitrary input, and let OPT denote the makespan of its optimal assignment. The
approximation bound follows from two trivial observations. First, the makespan of any assignment (and
therefore of the optimal assignment) is at least the duration of the longest job. Second, the makespan of
any assignment is at least the total duration of all the jobs divided by the number of machines.

OPT≥max
j

T[j] and OPT≥ 1

m

n�
j=1

T[j]

Now consider the assignment computed by GREEDYLOADBALANCE. Suppose machine i has the largest
total running time, and let j be the last job assigned to machine i. Our first trivial observation implies
that T[j] ≤ OPT. To finish the proof, we must show that Total[i]− T[j] ≤ OPT. Job j was assigned
to machine i because it had the smallest finishing time, so Total[i]− T[j] ≤ Total[k] for all k. (Some
values Total[k] may have increased since job j was assigned, but that only helps us.) In particular,
Total[i]− T[j] is less than or equal to the average finishing time over all machines. Thus,

Total[i]− T[j]≤ 1

m

m�
i=1

Total[i] =
1

m

n�
j=1

T[j]≤ OPT

by our second trivial observation. We conclude that the makespan Total[i] is at most 2 ·OPT. �

j ! OPT

! OPT

i

m
a

k
es

p
a

n

Proof that GREEDYLOADBALANCE is a 2-approximation algorithm

GREEDYLOADBALANCE is an online algorithm: It assigns jobs to machines in the order that the jobs
appear in the input array. Online approximation algorithms are useful in settings where inputs arrive
in a stream of unknown length—for example, real jobs arriving at a real scheduling algorithm. In this
online setting, it may be impossible to compute an optimum solution, even in cases where the offline
problem (where all inputs are known in advance) can be solved in polynomial time. The study of online
algorithms could easily fill an entire one-semester course (alas, not this one).

In our original offline setting, we can improve the approximation factor by sorting the jobs before
piping them through the greedy algorithm.

SORTEDGREEDYLOADBALANCE(T[1 .. n], m):
sort T in decreasing order
return GREEDYLOADBALANCE(T, m)

Theorem 2. The makespan of the assignment computed by SORTEDGREEDYLOADBALANCE is at most 3/2
times the makespan of the optimal assignment.

2

[picture taken from Jeff Erickson’s lecture notes]

8 / 18

Graham’s online greedy algorithm

Consider input jobs in any order (e.g. as they arrive in an online setting)
and schedule each job Jj on any machine having the least load thus far.

Recall that the approximation ratio for this algorithm is 2− 1
m ; that

is, for any set of jobs J , CGreedy (J) ≤ (2− 1
m)COPT (J).

In the online “competitive analysis” literature the ratio CA
COPT

is called
the competitive ratio and it allows for this ratio to just hold in the
limit as COPT increases. This is the analogy of asymptotic
approximation ratios.

NOTE: I will usually not provide proofs in the lecture notes but rather will
do most proofs in class.

The approximation ratio for the online greedy is “tight” in that there
is a sequence of jobs forcing this ratio.

This bad input sequence suggests a better algorithm, namely the LPT
(offline or sometimes called semi-online) algorithm.

9 / 18

Graham’s LPT algorithm

Sort the jobs so that p1 ≥ p2 . . . ≥ pn and then greedily schedule jobs on
the least loaded machine.

The (tight) approximation ratio of LPT is
(
4
3 −

1
3m

)
.

It is believed that this is the best “greedy” algorithm but how would
one prove such a result? This of course raises the question as to what
a greedy algorithm is. We will present the priority model for greedy
(and greedy-like) algorithms. I claim that all the algorithms
mentioned on slide 5 can be formulated within the priority model.

Asssuming we maintain a priority queue for the least loaded machine,
I the online greedy algorithm would have time complexity O(n log m)
I the LPT algorithm would have time complexity O(n log n) since we can

assume n ≥ m.

10 / 18

Brute force plus greedy

Combining the LPT greedy algorithm with a brute force approach
improves the approximation ratio but at a significant increase in time
complexity.

Optimally schedule the largest k jobs (for 0 ≤ k ≤ n) and then greedily
schedule the remaining jobs (in any order).

The algorithm has approximation ratio no worse than

(
1 +

1− 1
m

1+bk/mc

)
.

Graham also shows that this bound is tight for k ≡ 0 mod m.

The running time is O(mk + n log n).

Setting k = 1−ε
ε m gives a ratio of at most (1 + ε) so that for any

fixed m, this is a PTAS (polynomial time approximation scheme) for
any fixed m. with time O(mm/ε + n log n).

11 / 18

Makespan: Some additional comments

There are many refinements and variants of the makespan problem.

There was significant interest in the best competitive ratio (in the
online setting) that can be achieved for the makespan problem.

The online greedy gives the best online ratio for m = 2,3 but better
bounds are known for m ≥ 4.
Basic idea: leave some room for a possible large and this forces the
online algorithm to be non-greedy in some sense but still within the
priority model which subsumes online algorithms.

Randomization can provide somewhat better competitive ratios.

Makespan has been actively studied with respect to three other
machine models.

12 / 18

The uniformly related machine model

Each machine i has a speed si

Recall that each job Jj is described by a processing time or load pj .

The processing time to schedule job Jj on machine i is pj/si .

There is an online algorithm that achieves a constant competitive
ratio.

I think the best known online ratio is 5.828 due to Berman et al
following the first constant ratio by Aspnes et al., and recently
Ebenlendr and Sgall establish an online inapproximation of 2.564
following the 2.428 inapproximation of Berman et al.

13 / 18

The restricted machines model

Every job Jj is described by a pair (pj , Sj) where Sj ⊆ {1, . . . ,m} is
the set of machines on which Jj can be scheduled.
This (and the next model) have been the focus of a number of papers
(for both online and offline) and there has been some recent progress
in the offline restricted machines case.
Even for the case of two allowable machines per job, this is an
interesting problem and we will probably look at recent work later in
the term.
Azar et al show that log2(m) (resp. ln(m)) is (up to ±1) the best
competitive ratio for deterministic (resp. randomized) online
algorithms with the upper bounds obtained by the natural greedy
algorithm.
It is not known if there is an offline greedy-like algorithm for this
problem that achieves a constant approximation ratio. Regev [IPL
2002] shows that an Ω(logm

log logm) inapproximation for fixed order
priority algorithms for the restricted case when every job has 2
allowable machines (i.e. the graph orientation problem).

14 / 18

The unrelated machines model

The most general of the machine models.

Now a job Jj is represented by a vector (pj ,1, . . . , pj ,m) where pj ,i is
the time to process job Jj on machine i .

A classic result of Lenstra, Shmoys and Tardos [1990] shows how to
solve the (offline) makespan problem in the unrelated machine model
with approximation ratio 2 using LP rounding.

The LST algorithm is still the best known algorithm even for the
restricted machines model although there has been some progress
made in this regard (which we will discuss later).

15 / 18

The knapsack problem

Input: A knapsack size capacity C and n items I = {I1, . . . , In} where
Ij = (vj , sj) with vj (resp. sj) the profit value (resp. size) of item Ij .
Output: A feasible subset S ⊆ {1, . . . , n} satsifying

∑
j∈S sj ≤ C so as to

maximize V (S) =
∑

j∈S vj .
Note: I will usually use approximation ratios r ≥ 1 (so that we can talk
unambiguously about upper and lower bounds on the ratio) but many
people use approximation ratios ρ ≤ 1 for maximization problems; i.e.
ALG ≥ ρOPT .
It is easy to see that the most natural greedy methods (sort by
non-increasing profit densities

vj
sj

, sort by non-increasing profits vj , sort by

non-decreasing size sj) will not yield any constant ratio.

16 / 18

The partial enumeration greedy PTAS for knapsack

PGreedyk Algorithm:
Sort I so that v1

s1
≥ v2

s2
. . . ≥ vn

sn
For every feasible subset H ⊆ I with |H| ≤ k

Let R = I − H and let SH := H
Consider items in R (in the order of profit densities)
and greedily add items to SH that do not exceed knapsack capacity C .

% It is sufficient to stop as soon as the first item is too large to fit
End For
Choose the maximum profit SH .

17 / 18

Sahni’s PTAS result

Theorem (Sahni 1975): V (OPT) ≤ (1 + 1
k)V (PGreedyk).

This algorithm takes time knk and setting k = 1
ε yields a (1 + ε)

approximation (i.e. a PTAS) running in time 1
εn

1
ε .

An FPTAS is an algorithm achieving a (1 + ε) approximation with
running time poly(n, 1ε). There is an FPTAS for the knapsack
problem (using dynamic programming and scaling the input values) so
that this algorithm was quickly subsumed but still the partial
enumeration technique is important.

In particular, more recently this technique (for k = 3) was used to
achieve an e

e−1 ≈ 1.58 approximation for monotone submodular
maximization subject to a knapsack constraint. It is NP-hard to do
better than a e

e−1 approximation for submodular maximization subject
to a cardinality constraint and hence this is also the best possible
ratio for submodular maximization subject to a knapsack constraint.

18 / 18

	Lecture 1

