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Abstract

In this survey, we give an overview of a technique used to design and analyze algorithms that
provide approximate solutions to NP -hard problems in combinatorial optimization. Because of
parallels with the primal-dual method commonly used in combinatorial optimization, we call
it the primal-dual method for approximation algorithms. We show how this technique can be
used to derive approximation algorithms for a number of different problems, including network
design problems, feedback vertex set problems, and facility location problems.

1 Introduction

Many problems of interest in combinatorial optimization are considered unlikely to have efficient
algorithms; most of these problems are NP -hard, and unless P = NP they do not have polynomial-

time algorithms to find an optimal solution. Researchers in combinatorial optimization have con-
sidered several approaches to deal with NP -hard problems. These approaches fall into one of two

classes. The first class contains algorithms that find the optimal solution but do not run in polyno-
mial time. Integer programming is an example of such an approach. Integer programmers attempt
to develop branch-and-bound (or branch-and-cut, etc.) algorithms for dealing with particular prob-

lems such that the algorithm runs quickly enough in practice for instances of interest, although the
algorithm is not guaranteed to be efficient for all instances. The second class contains algorithms

that run in polynomial time but do not find the optimal solution for all instances. Heuristics and
metaheuristics (such as simulated annealing or genetic algorithms) are one approach in this class.

Typically researchers develop a heuristic for a problem and empirically demonstrate its effectiveness
on instances of interest. In this survey, we will consider another approach in this second class called

approximation algorithms. Approximation algorithms are polynomial-time heuristics for NP -hard
problems whose solution values are provably close to optimum for all instances of the problem.

More formally, an α-approximation algorithm for an optimization problem is an algorithm that
runs in polynomial time and produces a solution whose value is within a factor of α of the value
of an optimal solution. The parameter α is called the performance guarantee or the approximation

ratio of the algorithm. We assume that the value of any feasible solution is nonnegative for the
problems we consider; extensions of the notion of performance guarantee have been developed in

other cases, but we will not discuss them here. This survey will follow the convention that α ≥ 1 for
minimization problems and α ≤ 1 for maximization problems, so that a 2-approximation algorithm

for a minimization problem produces a solution of value no more than twice the optimal value,
and a 1

2 -approximation algorithm for a maximization problem produces a solution of value at least
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half the optimal value. The reciprocal 1/α is sometimes used in the literature for maximization

problems, so that the examples above would both be referred to as 2-approximation algorithms. We
say that a minimization problem has a polynomial-time approximation scheme if there is a family

{Aǫ} of algorithms such that Aǫ is a (1 + ǫ)-approximation algorithm for any fixed ǫ > 0.
The term “approximation algorithm” appears to have been coined by David Johnson in a

seminal paper in 1974 [51]. In this paper, Johnson gives approximation algorithms for several now-
classical problems, including a polynomial-time approximation scheme for the subset sum problem,
a 1

2 -approximation algorithm for the maximum satisfiability problem, an (lnn + 1)-approximation

algorithm for the set cover problem, as well as heuristics for graph coloring and maximum clique,
though he could find no performance guarantee of O(n1−ǫ) for any ǫ > 0 for the latter two problems,

where n is the number of vertices in the graph. However, approximation algorithms were present
in the literature even before the concept of NP -completeness was introduced. Lovász reports that

a 1967 paper of Erdős [27] contains a proof that the size of maximum cut in a graph with non-
negative edge weights is at least half the sum of the edge weights, and that the proof can easily

be converted into a 1
2 -approximation algorithm for the maximum cut problem. Graham [44] gave

2-approximation algorithms for a number of scheduling problems in 1966. Finally, although it

doesn’t quite fit the definition given above of an approximation algorithm, in 1964 Vizing [68] gave
an algorithm to compute an edge coloring of a graph which uses at most one color more than the
minimum possible.

In the past dozen years there have been a number of exciting developments in the area of
approximation algorithms. It is not possible in the space provided to give a comprehensive overview

of these developments, so in this survey we will focus on one very useful algorithmic technique,
called the primal-dual method, that has been developed and applied to several different problems

in combinatorial optimization. However, we will very briefly touch on one other development in the
following paragraphs. For more details about the area, the reader is invited to consult the excellent

survey of Shmoys [65], the book of surveys edited by Hochbaum [48], or the monograph of Vazirani
[67].

One very exciting development of the past decade is the emergence of proof techniques that show
that many problems do not have approximation algorithms with certain performance guarantees
unless P = NP . In other words, for some problems, finding an approximation algorithm with

a particular performance guarantee is just as difficult as finding a polynomial-time algorithm for
the problem itself. These results have their roots in research in theoretical computer science quite

unrelated to optimization. The connection to optimization was made in a groundbreaking paper
of Feige, Goldwasser, Lovász, Safra, and Szegedy [32], and culminated in two papers of Arora and

Safra [4, 5] and Arora, Lund, Motwani, Sudan, and Szegedy [2, 3] which gave a new characterization
of NP . As a consequence they showed that a collection of optimization problems could have no

polynomial-time approximation scheme unless P = NP . This collection includes such problems
as the symmetric traveling salesman problem with edge costs that obey the triangle inequality,

the maximum cut problem, the minimum vertex cover problem, and the maximum satisfiability
problem.

These results have subsequently been strengthened and extended in a number of different ways.

For instance, a sequence of papers [32, 16], culminating in a paper of H̊astad [46], has shown that for
the maximum clique problem, no performance guarantee of O(n1−ǫ) for any ǫ > 0 is possible unless

NP = RP (where n is the number of vertices in the graph, and RP is randomized polynomial
time). Feige and Kilian extended this result to the minimum chromatic number problem [33].

Another sequence of papers, starting with the work of Lund and Yannakakis [57], and subsequently
refined by other researchers [17, 31], has shown that there can be no c lnn-approximation algorithm

for the set cover problem for c < 1 unless there are O(nO(log logn))-time algorithms for any NP -
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complete problem. Still other papers have shown that one cannot obtain constant performance

guarantees better than certain bounds for particular problems unless P = NP ; for instance, 129
128 for

the symmetric traveling salesman problem with triangle inequality [61], 16
17 ≈ .941 for the maximum

cut problem [45], 7
6 for the minimum-weight vertex cover problem [45], and 7

8 for the maximum
satisfiability problem [45]. It is interesting to note that several of the performance guarantees

obtained in Johnson’s original 1974 paper are shown to be essentially the best possible by these
results.

We do not give an indepth review of the primal-dual method for combinatorial optimization

here; a good overview can be found in the textbook of Papadimitriou and Steiglitz [60] (see also
the survey of Goemans and Williamson [42]). The basic idea was first used by Kuhn [56] to give

the so-called Hungarian algorithm for solving the assignment problem. It was then extended by
Dantzig, Ford, and Fulkerson [22] to a general algorithm for linear programming. The basic idea

is that given a feasible dual solution y, we attempt to find a feasible primal solution x that obeys
the complementary slackness conditions with respect to y. If we can find such an x, we have

optimal solutions. If none exists, this gives a way to modify the dual solution to increase the dual
objective value. For combinatorial problems such as the assignment problem, the method converts

weighted problems into unweighted ones. For instance, determining whether there exists a primal x
obeying complementary slackness with respect to y in the case of the assignment problem reduces to
finding the maximum matching in an unweighted bipartite graph on 2n nodes. Given the maximum

matching it is easy to determine a direction for dual increase such that only O(n2) increases are
necessary before we find optimal solutions.

The primal-dual method for approximation algorithms considers a primal integer programming
formulation of the problem in question and the dual of a linear programming relaxation of the

integer program. The method above is modified by relaxing complementary slackness conditions
related to dual variables; that is, we relax the condition that if yj > 0 the corresponding primal

constraint must be met with equality. As we will see below, relaxing this constraint in appropriate
ways leads to provably good algorithms for NP -hard problems in combinatorial optimization. The

method yields a solution to the primal integer problem that costs no more than α times the value
of the feasible dual solution constructed, which implies that the primal solution is within a factor
of α of optimal. The value of the dual solution is always within some factor of α of the value of

the primal solution, but may from instance to instance be much closer; by comparing the value of
the primal and dual solutions generated, we can give a guarantee for the instance which might be

better than α.
The performance guarantee of an algorithm using the primal-dual method is thus connected

with the integrality gap of the integer programming formulation of the problem. The integrality
gap of a formulation is the worst-case ratio over all instances of the value of the integer program to

the value of the corresponding linear programming relaxation. Since the performance guarantee of
an algorithm using the primal-dual method is proven by comparing the value of a primal solution

against the value of a feasible dual, its performance guarantee can never be shown to be better
than the integrality gap of the formulation used. Conversely, a proof of a performance guarantee
of α obtained in this way implies that the integrality gap is no more than α.

So far the primal-dual method for approximation algorithms usually leads to dual-ascent algo-
rithms in which dual variables are never decreased (though see Section 4 for some intriguing recent

exceptions). Dual-ascent heuristics for hard combinatorial problems are not new; for example, see
papers by Balakrishnan, Magnanti, and Wong [7], Erlenkotter [29], Wong [73], and the thesis of

Raghavan [62]. However, such heuristics are not typically accompanied by performance guarantees,
as is the case here.

As a brief illustration of the primal-dual method, we consider the minimum-weight vertex cover
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problem. In this problem, we are given a graph G = (V, E) with weights wi ≥ 0 for all vertices

i ∈ V , and we must select a minimum-weight subset of vertices such that each edge is covered (that
is, at least one of its endpoints is chosen). This problem can be modelled by the integer program

Min
∑

i∈V

wixi

subject to:

xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V.

We relax the integrality constraint xi ∈ {0, 1} to xi ≥ 0; any optimal solution x∗ to this LP will

have x∗
i ≤ 1 for all i ∈ V . If we take the dual of the resulting linear program, we obtain the

following:

Max
∑

(i,j)∈E

y(i,j)

subject to:
∑

k:(i,k)∈E

y(i,k) ≤ wi ∀i ∈ V (1)

y(i,j) ≥ 0 ∀(i, j) ∈ E.

Our primal-dual algorithm starts out with the dual feasible solution in which all y variables are set
to 0, and a primal infeasible solution in which all x variables are set to 0. As long as our primal

solution x is infeasible, there must be some uncovered edge (i, j) for which xi +xj = 0. We increase
its corresponding dual variable y(i,j) as much as possible, maintaining dual feasibility, so that it
must be the case that the dual constraint (1) is met with equality for either i or j (possibly both).

If
∑

k:(i,k)∈E y(i,k) = wi, we set xi = 1 and if
∑

k:(j,k)∈E y(j,k) = wj we set xj = 1. Eventually we
achieve a primal feasible solution x such that

∑

i∈V

wixi =
∑

i∈V





∑

k:(i,k)∈E

y(i,k)



xi (2)

=
∑

(i,j)∈E

(xi + xj) y(i,j) (3)

≤ 2
∑

(i,j)∈E

y(i,j), (4)

where the equality (2) follows since
∑

k:(i,k)∈E y(i,k) = wi for all xi = 1, the equality (3) follows by

rearranging the double sum, and the inequality (4) follows since xi + xj ≤ 2. The dual objective
function

∑

(i,j)∈E y(i,j) is a lower bound on the value of the optimum integer solution. Thus the
inequality above shows that our solution is no more than twice optimal, implying that the algorithm

is a 2-approximation algorithm.
In the next section, we develop the basic ideas given above into a primal-dual algorithm for a

generic problem, and give theorems for its analysis. In Section 3, we give applications of this algo-
rithm and analysis to various NP -hard problems in combinatorial optimization. Then in Section

4, we show how recent papers have modified this central algorithm to obtain new approximation
algorithms for other problems. We conclude in Section 5.

Other surveys on the primal-dual method have been given by Goemans and Williamson [42]
and Bertsimas and Teo [18] (see also the thesis of Teo [66]). Our central exposition in Section 2

closely follows that of [42].
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2 The primal-dual method for approximation algorithms

We now show how the primal-dual method can be used to give approximation algorithms for NP -
hard problems in combinatorial optimization. In order to do this, it will be useful to consider

the hitting set problem: given a ground set of elements E, nonnegative costs ce for all elements
e ∈ E, and subsets T1, . . . , Tp ⊆ E, we want to find a minimum-cost subset A ⊆ E so that A has a

nonempty intersection with each subset Ti. We say that A hits each subset Ti.
The hitting set problem can be used to model a number of NP -hard problems, and we will

consider several in this section. For example, we can formulate the minimum-weight vertex cover

problem as a hitting set problem in which the ground set elements are vertices, and we have a subset
Ti = {u, v} for each edge (u, v) in the graph. In the minimum-weight feedback vertex set problem in

undirected graphs, we are given as input an undirected graph G = (V, E) and nonnegative weights
wi ≥ 0 on the vertices i ∈ V , and the goal is to remove a minimum-weight set of vertices from G

so as to make the remaining graph acyclic. We can view this as a hitting set problem in which
the ground set elements are the vertices of the graph, and we must hit every cycle in the graph;

that is, Ti = Ci, where Ci is the ith cycle of G. In the shortest s-t path problem, we are given an
undirected graph with nonnegative edge costs ce for all e ∈ E, and two distinguished vertices s and

t, and we must find the minimum-cost path from s to t. We can formulate this as a hitting set
problem in which the edges are the ground set elements and we must hit every cut in the graph
separating s from t; that is, for all Si ⊆ V with s ∈ Si and t /∈ Si, we must select an edge from

Ti = δ(Si), where δ(Si) is the set of edges with exactly one endpoint in Si. By the max-flow/min-
cut theorem of Ford and Fulkerson [34], we have selected an edge in every cut separating s from

t iff there is a path from s to t. In the minimum-cost branching problem we are given a directed
graph G = (V, A), nonnegative costs ca for all arcs a ∈ A, and a root vertex r ∈ V , and the goal is

to find a minimum-cost branching (a set of arcs such that for every vertex, there is a path from the
root to the vertex). By using a max-flow/min-cut argument, one can see that the following hitting

set problem models the minimum-cost branching problem: the ground set of elements are the arcs,
and for every set of vertices Si ⊆ V − r, we must hit the set δ−(Si) of arcs, where δ−(Si) is the set

of arcs whose heads are in Si and tails are not in Si. Finally, in the generalized Steiner tree problem

we are given an undirected graph G = (V, E), nonnegative costs ce ≥ 0 on all edges e ∈ E, and k
pairs of vertices sj , tj ∈ V . The goal is to find a minimum-cost set of edges F , such that for each

j = 1, . . . , k, sj and tj are connected in the graph (V, F ). Again, a max-flow/min-cut argument
will show that the problem can be modelled by the hitting set problem in which the ground set

elements are the edges and we must hit every cut that separates some sj-tj pair; in other words,
for each Si such that for some j, |Si ∩ {sj, tj}| = 1, we must hit Ti = δ(Si).

Except for the minimum-cost s-t path problem and the minimum-cost branching problem, all
of the problems above are NP -hard. For many of them, the size of the hitting set formulation is

exponential in the size of the input. For example, in the feedback vertex set problem, the number
of cycles can be exponential in the size of the graph. We will see later that the primal-dual method

can often be used in these cases and still results in a polynomial-time algorithm.
We can model the hitting set problem by the following integer program:

Min
∑

e∈E

cexe

subject to:
∑

e∈Ti

xe ≥ 1 ∀i

xe ∈ {0, 1} ∀e ∈ E.
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We relax the integrality constraint xe ∈ {0, 1} to xe ≥ 0; as in the case of the vertex cover problem,

any optimal solution x∗ to this linear program will have x∗
e ≤ 1 for all e ∈ E. If we take the dual

of the resulting linear program, we obtain the following:

Max

p
∑

i=1

yi

subject to:
∑

i:e∈Ti

yi ≤ ce ∀e ∈ E

yi ≥ 0 ∀i.

Our goal is to construct a feasible solution x̄ to the primal integer program and a feasible
solution y to the dual linear program such that

∑

e∈E cex̄e ≤ α ·
∑p

i=1 yi for some value of α. This

implies that the cost of our primal solution is no more than α times the cost of an optimal solution
to the integer program. If we can construct our solutions in polynomial time, then we have an
α-approximation algorithm. We will sometimes give our primal solution as x̄ or as a subset A ⊆ E,

which implies the solution x̄e = 1 for e ∈ A and x̄e = 0 otherwise.
The development of the primal-dual method for approximation algorithms can be said to start

with a non-primal-dual approximation algorithm for the hitting set problem due to Hochbaum
[47]. Hochbaum’s algorithm obtains an optimal solution y∗ to the dual LP, and then constructs

a primal solution A by choosing all elements e ∈ E such that the corresponding dual inequality
is tight (that is, met with equality). So then A = {e ∈ E :

∑

i:e∈Ti
y∗i = ce}. In terms of the

primal-dual method for combinatorial optimization, we construct a primal solution such that the
complementary slackness conditions are obeyed with respect to the primal variables xe; that is,

xe > 0 implies that
∑

i:e∈Ti
y∗i = ce. We claim that A is a feasible solution to the hitting set

problem, and we will prove this later. Then the cost of this solution is
∑

e∈A

ce =
∑

e∈A

∑

i:e∈Ti

y∗i (5)

=

p
∑

i=1

y∗i |A ∩ Ti|, (6)

where (5) follows since the complementary slackness conditions are obeyed for the primal variables,
and (6) follows by reversing the double sum. If we let f = maxi |Ti|, then certainly |A∩ Ti| ≤ f for

all i, so that
∑

e∈A

ce ≤ f ·

p
∑

i=1

y∗i .

Assuming the claim that A is feasible, we thus have an f -approximation algorithm for the hitting
set problem. As an example of what can be proved in this case, recall that in the minimum-weight

vertex cover problem each subset Ti contained the two endpoints of an edge in a graph, so that
|Ti| = 2 for each i in this case. Thus Hochbaum’s algorithm gives a 2-approximation algorithm for
the minimum-weight vertex cover problem.

We now prove the claim of feasibility. The central idea, as in the case of the standard primal-
dual method, is that if no primal solution obeys the complementary slackness conditions, then a

dual increase is possible.

Lemma 1 (Hochbaum [47]) The set A obtained above is a feasible solution for the hitting set

problem.
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1 y ← 0

2 A← ∅
3 While A is not feasible

4 Find violated Tk (i.e. Tk s.t. A ∩ Tk = ∅)
5 Increase yk until ∃ e ∈ Tk such that

∑

i:e∈Ti
yi = ce

6 A← A ∪ {e}
7 Return A.

Figure 1: The basic primal-dual algorithm.

Proof: Suppose not. Then there is some set Ti such that A ∩ Ti = ∅. By the choice of

A, it follows that for all e ∈ Ti,
∑

i:e∈Ti
y∗i < ce. Since the dual inequalities for e ∈ Ti are

the only ones in which the variable y∗i participates, we can feasibly increase y∗i by ǫ > 0, where

ǫ = mine∈Ti

(

ce −
∑

k:e∈Tk
y∗k

)

. This contradicts the optimality of y∗. 2

The first algorithm using the primal-dual method for approximation algorithms is due to Bar-
Yehuda and Even [12]. Essentially, they realized that an optimal dual solution y∗ was not needed;
the proof above goes through for any feasible dual solution y such that A = {e ∈ E :

∑

i:e∈Ti
yi = ce}

is a feasible solution to the hitting set problem. Furthermore, if A is not feasible, then the proof
of Lemma 1 shows how to improve a current dual feasible solution so that the dual objective

function increases, and so that there is one more tight dual inequality. Thus given an initial dual
feasible solution, this process gives a polynomial-time algorithm that eventually finds a feasible dual

solution y and a feasible primal solution A = {e ∈ E :
∑

i:e∈Ti
yi = ce}; by the reasoning above,

∑

e∈A ce ≤
∑p

i=1 yi|A∩Ti| ≤ f
∑p

i=1 yi. Since all costs ce are non-negative, the dual solution yi = 0

for all i can be used as an initial feasible dual solution. We summarize Bar-Yehuda and Even’s
algorithm in Figure 1. The argument above shows that it is an f -approximation algorithm for

the hitting set problem. The 2-approximation algorithm for the vertex cover problem given in the
introduction is this algorithm specialized to the vertex cover problem.

We now turn to a slightly more complicated application of the primal-dual algorithm: the

feedback vertex set problem for undirected graphs. Let A and y be the primal and dual solution
created by the algorithm. Recall from equations (5) and (6) that if for any yi > 0 it is the case that

|A ∩ Ti| ≤ α, then the algorithm is an α-approximation algorithm. Recall now that for the hitting
set problem modelling this problem, each ground element e is a vertex j, the cost ce is the vertex

weight wj, and the sets Ti are the cycles in the graph. In this case, Bar-Yehuda, Naor, Geiger,
and Roth [14] obtain a performance guarantee of 4 log2 n (where n = |V |) by carefully choosing

the violated cycle in line 4 of the algorithm, and by noticing that one can succesfully ignore some
vertices since their corresponding dual inequalities will always be satisfied. In order to choose the

violated cycle, Bar-Yehuda et al. invoke the following lemma of Erdős and Pósa [28].

Lemma 2 (Erdős and Pósa [28]) Given a graph G′ = (V ′, E ′) with no degree 1 vertices and

with every vertex of degree 2 adjacent to two vertices of higher degree, there exists a cycle of length

no longer than 4 log2 |V
′|, and it can be found in polynomial time.

Of course, the given input graph might not meet the conditions of the lemma. Thus we show
that we can ignore some vertices; the remaining vertices we call special vertices. We map the graph

onto a graph G′ that contains exactly the special vertices, such that there is a bijective mapping
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between cycles of G and of G′. Then by applying the lemma to G′ we can find in G a violated cycle

of at most 4 log2 n special vertices, and since we only add special vertices to A, we get that for any
yi > 0 (corresponding to some violated cycle Ti chosen in line 4), |A ∩ Ti| ≤ 4 log2 n, implying the

desired performance guarantee.
Now we need to specify which vertices we can ignore, and why their dual inequalities will remain

feasible. Suppose that as we add a vertex j to A in line 6 of the algorithm, we remove j and its
incident edges from the graph. Certainly we can ignore any vertex in the remaining graph that is
no longer in a cycle; since we only add vertices from the chosen violated set (line 5), we only add

vertices that are in some cycle. Now consider any path of vertices that all have degree 2. Since any
cycle that goes through one of these vertices must go through all of them, it must be the case that

when the reduced cost w̃j = wj −
∑

i:j∈Ti
yi of a vertex j on this path decreases by ǫ, the reduced

cost of all vertices on this path also decreases by ǫ. Thus we can safely ignore all vertices in this

path except for one special vertex j with the smallest reduced cost, since no dual inequality for any
vertex on the path will become tight unless the dual inequality for j becomes tight. Furthermore,

if j is added to A, then all cycles containing the vertices on this path will be hit, and so no other
vertex from the path need by added to A.

Since we can ignore any vertex not on a cycle, and ignore all but one vertex on a path of
vertices of degree 2, we obtain the desired graph G′ from G by removing all vertices currently in
A, recursively removing all degree 1 vertices, and replacing any path of degree 2 vertices with the

special vertex for that path. This yields a graph G′ obeying the properties of the lemma, such that
any cycle in G′ has a one-to-one mapping to a cycle of G. Thus we can find a cycle of at most

4 log2 n special vertices in G.
This argument yields a (4 log2 n)-approximation algorithm for the minimum-weight feedback

vertex set problem in undirected graphs. In fact, as we will discuss in Section 3.2, one can obtain
a 2-approximation algorithm for this problem using the primal-dual method, but one must use a

different integer programming formulation of the problem. It has been shown that the integrality
gap for the hitting set formulation of the problem is Ω(logn) [30].

We now turn to modifications of the basic primal-dual algorithm of Bar-Yehuda and Even. The
first is a relatively simple idea: once a feasible solution A has been obtained, we should examine
the elements of A and delete any that are not needed for a feasible solution. This idea was first

introduced by Goemans and Williamson [41], but we will present here a refinement discovered
independently by Klein and Ravi [53] and Saran, Vazirani, and Young [64]. They showed that it

is useful for the analysis of the algorithm to examine the elements of A for possible deletion in a
certain order; in particular, in the reverse of the order in which the elements of A were added. This

part of the algorithm is sometimes called the reverse delete. We present the modified algorithm in
Figure 2.

To see why the reverse delete step is useful for the analysis, consider the set Til chosen in the
lth iteration of the algorithm. Let Al be the set of elements in A at the beginning of the lth

iteration, let el be the element added in the lth iteration, and let A′ be the final set returned by
the algorithm. By the analysis at the beginning of the section (Equations (5) and (6)), if we can
show that |A′∩Til| ≤ α for all iterations l, we have an α-approximation algorithm. Note that since

Til is chosen as a violated set, it is the case that Til ∩ Al = ∅, so if B = A′ − Al, then we only
need prove that |B ∩ Til | ≤ α. Furthermore, when el is considered for deletion, no element ej for

j < l has been considered for deletion, so the contents of A at that point in time in the reverse
delete step must be precisely Al ∪ B. Finally, because each element in B was added after the lth

iteration, it must be the case that each of them was already considered by the reverse delete step
and is necessary for the feasibility of Al ∪ B. Thus for any e ∈ B, Al ∪ B − e is not a feasible

solution. We call any set of elements D such that Al ∪D is feasible an augmentation of Al, and
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y ← 0

A1 ← ∅
l ← 1 (l is a counter)

While Al is not feasible
Choose violated Tk

Increase yk until ∃ el ∈ Tk such that
∑

i:el∈Ti
yi = cel

Al+1 ← Al ∪ {el}
l← l + 1

A′ ← Al−1

For j ← l − 1 down to 1
If A′ − {ej} is still feasible

A′ ← A′ − {ej}
Return A′.

Figure 2: The primal-dual algorithm with reverse delete step added.

any augmentation D such that for any e ∈ D, Al ∪D− e is not feasible, a minimal augmentation.
We have shown above that B is a minimal augmentation of Al. We are trying to bound |B ∩ Til |,
and certainly this is dominated by the maximum of |D ∩ Til | over all minimal augmentations D of
Al. Thus we have shown the following theorem.

Theorem 3 If for all iterations l of the algorithm in Figure 2,

max
D:min. aug. of Al

|D ∩ Til| ≤ α,

the algorithm is an α-approximation algorithm.

To illustrate the use of this analysis, we consider the shortest s-t path problem and the minimum-
cost branching problem. Recall that for the minimum-cost s-t path problem, we need to hit the

sets Ti = δ(Si) for all sets Si with s ∈ Si, t /∈ Si, where δ(Si) is the set of edges with exactly one
endpoint in Si. To apply the primal-dual algorithm of Figure 2, we need to specify which violated
set Til is chosen for a given infeasible solution Al. Here we invoke a principle that turns out to be

useful for a number of problems of this sort: we choose the minimal violated set Ti = δ(Si), where
by this we mean a set Si such that there is no other set Sj ⊂ Si with Tj = δ(Sj) also violated.

For the minimum-cost s-t path problem, this principle implies that for an infeasible solution Al,
we find the connected component Sil containing s in the graph (V, Al), and choose the violated set

Til = δ(Sil). It is not difficult to see that for any augmentation D of Al, if |D ∩ δ(Sil)| > 1, then
an edge of D ∩ δ(Sil) can be removed with the remaining edges still containing an s-t path. Thus

for any minimal augmentation D, it is the case that |D ∩ δ(Sil)| = 1, which implies by the analysis
of the preceding paragraph that the primal-dual method gives a 1-approximation algorithm, or an

optimal algorithm, for the shortest s-t path problem. In fact, one can show that this algorithm is
just Dijsktra’s algorithm [23, 69].

For the minimum-cost branching problem, we need to hit the sets Ti = δ−(Si) for all Si ⊆ V −r.

Recall that δ−(Si) is the set of arcs with their heads in Si and their tails not in Si. Given an infeasible
set Al, we find a strongly connected component Sil in the graph (V, Al) which does not contain the
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root r and for which Al∩δ−(Sil) = ∅. We choose as our violated set Til = δ−(Sil). It is not hard to

show that such a strongly connected component must exist if Al is infeasible. Then again it is easy
to see that for any augmentation D of Al, only one arc in D ∩ δ−(Sil) is necessary, since the strong

connectivity of Sil implies all the vertices of Sil can be reached through that arc. Hence for any
minimal augmentation D of Al, |D ∩ δ−(Sil)| = 1, and we again have an optimal algorithm. One

can show that this algorithm is the same as Edmonds’ algorithm for the minimum-cost branching
problem [25].

We now introduce another modification to our primal-dual algorithm. To motivate the mod-

ification, we consider the generalized Steiner tree problem. Recall that this can be modelled by
a hitting set problem in which we must hit all Ti = δ(Si) such that |Si ∩ {sj, tj}| = 1 for some

sj -tj pair that must be connected. Suppose we try to apply the algorithm in Figure 2 and the
analysis above to this problem. As with the shortest s-t path problem, we will invoke the principle

of finding a minimal violated set and choose some connected component Sil of (V, Al) such that
|Sil ∩ {sj, tj}| = 1, and choose as our violated set Til = δ(Sil). However, consider the problem in

which s = s1 = s2 = · · · = sk, and t1, . . . , tk are distinct vertices. Then for A1 = ∅, the vertex s
and each tj is a possible minimal violated set. Without loss of generality, suppose we choose the vi-

olated set T = δ({s}). Then one possible minimal augmentation is D = {(s, t1), (s, t2), . . . , (s, tk)},
and |D ∩ T | = k. Thus the algorithm and analysis we have developed so far would only give a
k-approximation algorithm.

However, if we consider the number of times this augmentation hits these minimal violated sets
averaged over the number of minimal violated sets, we get something better: |D ∩ δ({s})| = k,

but |D ∩ δ({tj})| = 1, with k + 1 minimal violated sets, leading to an average of 2k/(k + 1) ≈ 2.
This leads to the following idea: suppose we choose multiple violated sets and increase their dual

variables simultaneously and uniformly. It turns out that this gives good approximation algorithms
for a number of problems, including a 2-approximation algorithm for the generalized Steiner tree

problem. We give the modified algorithm in Figure 3. The idea of increasing multiple duals was
introduced implicitly by Agrawal, Klein, and Ravi [1] (who did not refer to LP duality), and was

made explicit by Goemans and Williamson [41]. Bertsimas and Teo [18] reduce this algorithm to
the one in Figure 2 by observing that the constraints corresponding to the multiple violated sets
chosen in a given iteration can be aggregated into a single constraint, whose corresponding dual

can be increased as in the previous algorithm in Figure 2.
We now show how we can analyze the algorithm in Figure 3 via the following theorem. Notice

that this algorithm and its analysis generalize the algorithm of Figure 2, in which only one violated
set is chosen in each iteration.

Theorem 4 If for every iteration l of the algorithm in Figure 3,

max
D:min. aug. of Al

∑

Tk∈Vl

|D ∩ Tk| ≤ α|Vl|,

the algorithm is an α-approximation algorithm.

Proof: Let A′ be the final solution returned by the algorithm. We wish to prove that
∑

e∈A′ ce ≤
α
∑p

i=1 yi. As before, we have that

∑

e∈A′

ce =
∑

e∈A′

∑

i:e∈Ti

yi =

p
∑

i=1

|A′ ∩ Ti|yi.

10



y ← 0

A1 ← ∅
l ← 1 (l is a counter)

While Al is not feasible
Choose a subset Vl of violated sets
Increase yk uniformly for all Tk ∈ Vl until ∃ el /∈ Al

such that
∑

i:el∈Ti
yi = cel

Al+1 ← Al ∪ {el}
l← l + 1

A′ ← Al−1

For j ← l − 1 down to 1

If A′ − {ej} is still feasible
A′ ← A′ − {ej}

Return A′.

Figure 3: The general primal-dual algorithm.

So we need to prove that
p
∑

i=1

|A′ ∩ Ti|yi ≤ α

p
∑

i=1

yi.

Let ǫl be the amount by which the duals are increased in iteration l of the algorithm. Then clearly,
for the solution y at the end of the algorithm,

p
∑

i=1

yi =
∑

l

|Vl|ǫl.

Similarly,
p
∑

i=1

|A′ ∩ Ti|yi =

p
∑

i=1

|A′ ∩ Ti|
∑

l:Ti∈Vl

ǫl =
∑

l





∑

Tk∈Vl

|A′ ∩ Tk|



 ǫl.

Thus certainly the inequality follows if for all iterations l,
∑

Tk∈Vl

|A′ ∩ Tk| ≤ α|Vl|.

As in the proof of Theorem 3,
∑

Tk∈Vl
|A′∩Tk| is dominated by maxD:min. aug. of Al

∑

Tk∈Vl
|D∩Tk|.

Thus the theorem follows. 2

To illustrate the use of the algorithm and the theorem, we show how we can obtain a 2-
approximation algorithm for the generalized Steiner tree problem. As suggested above, in each
iteration l we choose all the minimal violated sets; that is, we choose the sets Ti = δ(Si) for all

connected components Si in (V, Al) such that for some j, Si contains exactly one of sj or tj. Thus

Vl = {Ti = δ(Si) : Si a connected component of (V, Al), |Si ∩ {sj, tj}| = 1 for some j}.

Theorem 5 Using the algorithm in Figure 3 with the choice of Vl as given above yields a 2-

approximation algorithm for the generalized Steiner tree problem.
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Proof: To prove this, we show that the statement of Theorem 4 holds for α = 2. To do this, we

consider the graph in which each connected component of (V, Al) has been shrunk to a single node;
let V ′ be this set of vertices. Let D be any minimal augmentation of Al, and consider the graph

H = (V ′, D). Note first that H is a forest, otherwise D is not minimal. Observe also that some
of the vertices in V ′ correspond to connected components Si that are in Vl and some do not. Let

R ⊆ V ′ be the first type of vertex, which we will call red, and B = V ′−R be the second type, which
we will call blue. Observe that |R| = |Vl|. Also, if deg(v) is the degree of v ∈ V ′ in the graph H ,
and v corresponds to the connected component Si in (V, Al), then |D ∩ Ti| = |D ∩ δ(Si)| = deg(v).

Thus the desired inequality
∑

Tk∈Vl

|D ∩ Tk| ≤ 2|Vl|

reduces to proving that
∑

v∈R deg(v) ≤ 2|R|. If we can show that no blue vertex has degree 1, then
the statement would follow, since (ignoring blue vertices of degree 0),

∑

v∈R

deg(v) =
∑

v∈R∪B

deg(v)−
∑

v∈B

deg(v)

≤ 2(|R|+ |B|)− 2|B|

= 2|R|.

The inequalities follow since the sum of degrees of the vertices in the forest H is no more than twice

the number of vertices, and every blue vertex in the sum has degree at least 2. To show that no
blue vertex has degree 1, assume the opposite: let v be a blue vertex of degree 1, let e ∈ D be the

adjacent edge in H , and let S be the connected component corresponding to v in (V, Al). Because
D is a minimal augmentation, e is necessary for feasibility. Since e is the only edge in D ∩ δ(S)

there must be some j such that either sj or tj is in S and the other is not in S. But then T = δ(S)
would be in Vl, and v would be red, which is a contradiction. 2

Thus the algorithm in Figure 3 gives a 2-approximation algorithm for the generalized Steiner
tree problem. The first 2-approximation algorithm for this problem was given by Agrawal, Klein,

and Ravi [1]. Its use of the primal-dual method was made explicit by Goemans and Williamson
[41].

Approximation algorithms for many NP -hard problems can be derived from the framework
above, as we will see in the following section. However, it is important to remember that the
algorithm and analysis given above is only one potential way of applying the primal-dual technique,

the one that developed historically from papers in the 80s and early 90s. A few recent papers have
used their own variations of the primal-dual method; we will discuss these in Section 4.

3 Some applications of the primal-dual framework

In this section, we describe some of the results that can be obtained directly from the algorithm of
Figure 3 and its analysis in Theorem 4.

3.1 Network design problems

The first application of the primal-dual algorithm of Figure 3 was to network design problems. It
was first applied (implicitly) to the generalized Steiner tree problem by Agrawal, Klein, and Ravi

[1], and was then generalized to apply to a number of other network design problems by Goemans
and Williamson [41, 40], Klein and Ravi [53], Williamson, Goemans, Mihail, and Vazirani [71],
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Gabow, Goemans, and Williamson [36], and Goemans, Goldberg, Plotkin, Shmoys, Tardos, and

Williamson [39]. This line of work is summarized in the survey of Goemans and Williamson [42].
Given an undirected graph G = (V, E) and nonnegative costs ce for all e ∈ E, consider the

following integer programming formulation:

Min
∑

e∈E

cexe

subject to:

(ND)
∑

e∈δ(S)

xe ≥ f(S) ∀S : ∅ 6= S ⊂ V

xe ∈ {0, 1},

where f : 2V → {0, 1}. This integer program corresponds to a hitting set problem in which the edge
set E is the set of ground elements, and we must hit all sets T = δ(S) for which f(S) = 1. Clearly

this models the generalized Steiner tree problem in the case that f(S) = 1 iff |S ∩ {sj, tj}| = 1 for
some j.

In fact, the integer program can be used to model a number of network design problems. It

models the minimum spanning tree problem when f(S) = 1 for all S ⊆ V , S 6= ∅. In the Steiner tree

problem, we are given a set of terminals T ⊆ V , and must return a minimum-cost tree connecting

all the vertices in T . The integer program models this problem when f(S) = 1 iff 0 < |S∩T | < |T |;
that is, the cut S separates a pair of terminals. It models the shortest s-t path problem when

f(S) = 1 iff |S ∩ {s, t}| = 1. The T -join problem is one of finding a minimum-cost forest such
that all vertices in T have odd degree and all other vertices have even degree (clearly, |T | must be

even). This can be modelled by the integer program when f(S) = 1 iff |S ∩T | is odd. Consider the
problem of finding a minimum-cost set of edges such that every connected component has 0(mod k)

vertices for any k such that |V | ≡ 0(mod k). We call this a tree partitioning problem, and it can
be modelled by the integer program by setting f(S) = 1 iff |S| 6≡ 0(mod k).

All of the functions f used for these problems are proper functions. We say a function f :

2V → N is proper if f(V ) = 0, f(S) = f(V − S) for all S ⊆ V , and for any disjoint A and B,
f(A ∪ B) ≤ max(f(A), f(B)). Goemans and Williamson [41] show that the algorithm in Figure 3

gives a 2-approximation algorithm for (ND) for any proper function with range {0, 1}. To apply the
algorithm, they use the principle of finding minimal violated sets, which for any infeasible solution

A is the set of connected components C of (V, A) such that f(C) = 1. That is, in every iteration l
of the algorithm Vl = {Ti = δ(Si) : Si a connected component of (V, Al), f(Si) = 1}. We can apply

Theorem 4 with α = 2 to show that this gives us a 2-approximation algorithm. In fact, the proof
of this is almost identical to the proof above of Theorem 5 for the generalized Steiner tree problem.

We only need to modify the last part of the proof to show that for any proper function, no blue
node has degree 1; we leave this as an exercise for the reader. This algorithm can be implemented
in O(n2 logn) time for these problems using simple data structures, and somewhat faster running

times by using more complicated data structures (see Klein [54], Gabow et al. [36]).
Thus we get a number of 2-approximation algorithms for various problems. For the minimum

spanning tree, we get an optimal algorithm, since in this case the primal-dual algorithm emulates
Kruskal’s algorithm [55]. In the case of the Steiner tree problem, we get an algorithm which emulates

a number of previously known 2-approximation algorithms for the Steiner tree problem (see the
survey of Winter [72]). In the case of the shortest s-t path problem, we get an optimal algorithm.

In the case of the T -join problem, a polynomial-time algorithm is known, due to Edmonds and
Johnson [26]. The primal-dual algorithm gives a 2-approximation algorithm with a running time

faster than the best known running time of the Edmonds-Johnson algorithm on dense graphs. And
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in the case of the tree partitioning problem, we get a 2-approximation algorithm. In fact, given that

edge costs obey the triangle inequality, we can use this algorithm to get approximation algorithms
for a number of other problems. By partitioning the graph into trees of even size (using k = 2),

we can obtain a matching of the graph by doubling each tree, shortcutting the tree to a tour of
its vertices, then choosing the cheaper of the two matchings imposed by the tour. This gives us

a 2-approximation algorithm of the minimum-cost perfect matching problem whose running time
is faster than the best known matching algorithm on dense graphs. Williamson and Goemans [70]
have implemented the matching algorithm and found that it is typically within 4% of optimal.

In a similar manner, we can get 2-approximation algorithms in the case that the function
f : 2V → {0, 1} is downwards monotone [40]. We say that f is downwards monotone if f(S) ≤ f(T )

for all S ⊇ T 6= ∅. We can use this to model the problem of partitioning the graph into trees each
of which has at least k vertices (with f(S) = 1 if 0 < |S| < k), and some location-design and

location-routing problems [40].
The most sophisticated use of the primal-dual method for network design problems is an ap-

proximation algorithm that works for any proper function f . One problem that can be modelled
by (ND) with such a function is the survivable network design problem (SNDP). In this problem,

a value rij is given for every pair of nodes i, j, and one must find a minimum-cost set of edges such
that for every i, j pair there are at least rij edge-disjoint paths between i and j. This problem
arises in the design of low-cost fault-tolerant networks, since it implies that i and j will still be

connected even after rij − 1 edge failures. By using the function f(S) = maxi∈S,j /∈S rij, the integer
program (ND) models the SNDP. Work on approximation algorithms for (ND) with any proper

function started with a paper of Klein and Ravi [53], who gave a 3-approximation algorithm in
the case that the proper function has range {0, 2}. Williamson, Goemans, Mihail, and Vazirani

[71] gave the first approximation algorithm for general proper f ; it has performance guarantee 2k,
where k = maxS f(S) (for SNDP k = maxi,j rij). Goemans, Goldberg, Plotkin, Shmoys, Tardos,

and Williamson [39] improved this to a 2Hk-approximation algorithm, where Hn = 1+ 1
2 + · · ·+ 1

n .
All of these algorithms use the primal-dual method in a sequence of k phases. To illustrate, we

consider the algorithm of Goemans et al. Let F be the set of edges selected in phases 1 through j−1,
and suppose we are now in phase j. In phase j, we form a hitting set problem in which we must
hit all sets T = δ(S) with maximum deficiency, where the deficiency of a set S is f(S)−|δ(S)∩F |.
We use the algorithm of Figure 3 to produce a set of edges A′. We add these to F , and start the
next phase. Notice that each phase reduces the maximum deficiency by at least one, so that the

maximum deficiency is at most k − j + 1 in phase j. Initially the deficiency is k, and when the
deficiency of all sets is nonpositive, we have a feasible solution since F will contain at least f(S)

edges from δ(S) for each S. Roughly speaking, because the optimal solution to the SNDP has at
least k−j+1 edges of E−F hitting each set of maximum deficiency in phase j, the optimal solution

to the hitting set problem in phase j costs at most 1
k−j+1 times the optimum solution to SNDP.

Goemans et al. prove that the primal-dual algorithm gives a hitting set solution of no more than

twice the hitting set optimal. Thus the cost of the overall set of edges F the algorithm produces
is at most

∑k
j=1

2
k−j+1 times the SNDP optimal, for a 2Hk-approximation algorithm. Goemans

et al. [39] show that their algorithm extends to the case of weakly supermodular functions f , a

generalization of proper functions, when the minimally violated sets can be found in polynomial
time (as they can for proper f); a function f is weakly supermodular if f(V ) = 0 and for all

A, B ⊆ V , either f(A) + f(B) ≤ f(A ∩B) + f(A ∪ B) or f(A) + f(B) ≤ f(A− B) + f(B − A).
Mihail, Shallcross, Dean and Mostrel [58] implemented a variation of this algorithm for use in

a telephone network design toolkit, and found that it works well in practice.
Recently, Jain [49] gave a non-primal-dual 2-approximation algorithm for (ND) for any weakly

supermodular function f (assuming a certain polynomial-time separation oracle for f) by showing
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that any basic solution to the LP relaxation will always contain some e ∈ E for which xe ≥ 1/2.

The performance guarantee is obtained by rounding the value for this edge up to 1, then recursing
on the remaining subproblem.

Although the performance guarantee of Jain’s algorithm is much stronger than that given for
the primal-dual algorithm above, the primal-dual algorithm is still of interest. Jain’s algorithm

requires solving the linear programming relaxation of (ND) with the integer constraints xe ∈ {0, 1}
replaced by 0 ≤ xe ≤ 1, which is a nontrivial computational task. The primal-dual algorithm is
likely to be more efficient in practice.

3.2 Feedback vertex set problems

Another application of the primal-dual method has been to feedback vertex set problems, as we
saw in Section 2. However, as we remarked in that section, the integrality gap for the hitting set

formulation of the problem is at least Ω(logn), and so we will not be able to obtain better perfor-
mance guarantees unless we consider special cases of the problem, or different integer programming

formulations. We consider both in turn in this section.
Goemans and Williamson [43] consider feedback vertex problems in planar graphs. They con-

sider a class of hitting set problems, in which one must hit a select set of cycles C of a graph. Their
class includes the feedback vertex set problem, the feedback vertex set problem in directed graphs

(in which C is the set of directed cycles), the subset feedback vertex set problem (in which one
is given a set of vertices S, and C is the set of cycles which contain some vertex of S), and the
graph bipartization problem (in which C is the set of odd cycles; thus removing a solution set of

vertices causes the remaining graph to be bipartite). They apply the algorithm of Figure 3 to these
problems to obtain a 9

4-approximation algorithm for these problems. To choose the collection of

violated sets in the algorithm, they consider the face-minimal violated sets. Suppose each time the
algorithm selects a vertex to add to A, we remove the vertex and incident edges from the graph,

leaving a planar graph. Given a plane embedding, for any simple cycle C ∈ C, let F (C) be the set
of faces of the graph interior to C. Then we say C ∈ C is face-minimal if there is no C′ ∈ C such

that F (C′) ⊂ F (C). The class of cycles C is such that in the collection of face-minimal cycles F
F (C) ∩ F (C′) = ∅ for any two C, C′ ∈ F ; the reader can verify this for the four problems given

above. Goemans and Williamson [43] show that for any minimal solution D to these hitting set
problems (that is, for any v ∈ D, D − v does not hit all cycles in C)

∑

C∈F

|C ∩D| ≤ 3|F |,

giving a 3-approximation algorithm for these problems in planar graphs via Theorem 4. By carefully

selecting a subset F ′ ⊆ F , they are able to replace the factor of 3 with 9
4 , leading to the claimed

approximation algorithms.

Becker and Geiger [15] and Bafna, Berman, and Fujito [6] independently gave the first 2-
approximation algorithms for the feedback vertex set problem in general undirected graphs. Because
it will simplify our exposition somewhat, we will focus on the algorithm of Bafna et al. Their

algorithm chooses vertices in a series of iterations, building up a feasible solution, and then removes
excess vertices in a reverse delete step as in the algorithms of Figures 2 and 3. In a given iteration,

the algorithm first checks to see whether the graph contains any semi-disjoint cycles. A semi-
disjoint cycle is a cycle in which at most one vertex has degree greater than two. If the graph

has a semi-disjoint cycle, the algorithm selects the cheapest vertex from the cycle. Otherwise, the
algorithm selects the vertex that minimizes the ratio of weight to the vertex’s degree minus one;

that is, it chooses the argminv∈V
wv

d(v)−1 , where d(v) is the degree of the vertex. It then reduces
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the weight of every vertex in the graph by ǫ = minv∈V
wv

d(v)−1
. After the vertex is selected, it and

all incident edges are removed from the graph, and all degree 1 vertices and incident edges are
removed until none are left.

Chudak, Goemans, Hochbaum, and Williamson [20] have shown that this algorithm can be
viewed as a primal-dual algorithm on a different integer programming formulation of the feed-

back vertex set problem. Here we give the formulation and show how a primal-dual algorithm is
equivalent. To get the integer program, we first need the following lemma.

Lemma 6 For any feedback vertex set F of a graph G = (V, E),

∑

v∈F

(d(v)− 1) ≥ |E| − |V |+ 1.

Proof: By the definition of a feedback vertex set, the removal of F leaves an acyclic graph.

Therefore, once F and edges incident to F are removed from the graph, at most |V | − |F | − 1
edges remain. We remove at most

∑

v∈F d(v) edges from the graph. Therefore, we have that
|E| ≤ (|V | − |F | − 1) +

∑

v∈F d(v), and rearranging terms gives the statement of the lemma. 2

Note that the lemma must still hold for the graph induced by any subset of vertices S; that is, if
G[S] = (V, E[S]) is the graph induced by the subset of vertices S, and dS(v) is the degree of vertex

v in G[S], then for any feedback vertex set F , we have that
∑

v∈F (dS(v)− 1) ≥ |E[S]| − |S|+ 1.
We can use this to get the following integer programming formulation of the problem:

Min
∑

v∈V

wvxv

subject to:

(FV S)
∑

v∈S

(dS(v)− 1)xv ≥ b(S) S ⊆ V

xv ∈ {0, 1} v ∈ V,

where b(S) = |E[S]| − |S| + 1. By the reasoning above, any feedback vertex set gives a feasible
solution to the integer program (FV S). We can also show that any feasible solution x to (FV S)

must be a feedback vertex set. Suppose not, and suppose there is some cycle C such that xv = 0
for all v ∈ C. Consider the constraint of the integer program corresponding to C. Since there are

at least |C| edges in E[C] (since it contains a cycle), the right-hand side of the constraint is at least
1, while the left-hand side is 0, which contradicts the feasibility of x.

We now give a primal-dual algorithm for the problem based on this integer programming for-
mulation. First, we give the dual of a linear programming relaxation of (FV S):

Max
∑

S

b(S)yS

subject to:

(FV S −D)
∑

S:v∈S

(dS(v)− 1)yS ≤ wv v ∈ V

yS ≥ 0 S ⊆ V.

We give the primal-dual algorithm in Figure 4. It follows precisely the same format as the algorithm

of Figure 2; here we increase the dual variable corresponding to a semi-disjoint cycle (if one exists)
or the dual variable corresponding to the vertex set of the remaining graph. When some dual

constraint becomes tight, we add the corresponding vertex to our solution. It is not difficult to see
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that the vertex selected by the primal-dual algorithm is exactly the same as that selected by the

Bafna et al. algorithm. The cost of the vertices returned is

∑

v∈F ′

wv =
∑

v∈F ′

∑

S:v∈S

(dS(v)− 1)yS =
∑

S

∑

v∈S∩F ′

(dS(v)− 1)yS.

To obtain a performance guarantee of 2, we wish to show that

∑

S

∑

v∈S∩F ′

(dS(v)− 1)yS ≤ 2
∑

S

b(S)yS,

since the right-hand side is twice the dual objective function. We can do this if we can show that

for any S such that yS > 0,
∑

v∈S∩F ′(dS(v)− 1) ≤ 2b(S). By the properties of the reverse delete,
it can be shown that S ∩ F ′ is a minimal feedback vertex set for G[S]. If S is a semidisjoint

cycle, clearly the inequality holds since a minimal feedback vertex set for G[S] consists of a single
vertex v, dS(v)− 1 = 1, and b(S) = 1. Now suppose S is the vertex set of a graph which contains

no semidisjoint cycle. Then the performance guarantee of 2 for the algorithm is implied by the
following lemma.

Lemma 7 (Bafna et al. [6], Chudak et al. [20]) For any minimal feedback vertex set F of a

graph G = (V, E) which contains no semidisjoint cycles,

∑

v∈F

(d(v)− 1) ≤ 2b(V ).

Fujito [35] has extended this work to a primal-dual algorithm for node-deletion problems for
hereditary graph properties derived from matroids. A property is hereditary if for any graph G
that has the property, every subgraph of G also has the property. The property is derived from a

matroid if the edge subsets satisfying the property correspond to independent sets of some matroid.
Fujito studies the problem of deleting a minimum-weight set of nodes so that the remaining graph

satisfies such a property. Consider the property of having no cycles: certainly this is hereditary, and
it derives from the graphic matroid. The feedback vertex set problem is the corresponding node

deletion problem. Fujito shows that if rd is the rank function of the dual matroid, the following is
an integer programming formulation of the problem:

Min
∑

v∈V

wvxv

subject to:
∑

v∈S

rd(δ(v))xv ≥ rd(E[S]) S ⊆ V

xv ∈ {0, 1} v ∈ V.

Note that in the case of the graphic matroid, rd(E[S]) = |E[S]|−|S|+c(G[S]), where c(G[S]) is the
number of connected components of S, and rd(δ(v)) is the degree of v minus the number of blocks
containing v. Thus Fujito’s integer program is almost the same as (FV S). He also gives a primal-

dual 2-approximation algorithm for the feedback vertex set problem (as well as some others), and
it is somewhat simpler than the one above in that the algorithm does not need a separate case for

semi-disjoint cycles.
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y ← 0

F ← ∅
l← 0

V ′ ← V ; E ′← E
While F is not feasible

l← l + 1

Recursively remove degree one vertices and edges from V ′ and E ′

If (V ′, E ′) contains a semi-disjoint cycle C

S ← C
Else

S ← V ′

Increase yS until ∃vl ∈ S :
∑

T :vl∈T (dT (vl)− 1)yT = cvl

F ← F ∪ {vl}
Remove vl from V ′ and attached edges from E ′.

For j ← l downto 1
If F − {vj} is feasible then F ← F − {vj}

F ′ ← F
Output F ′ (and y)

Figure 4: A primal-dual version of the Bafna-Berman-Fujito algorithm for the feedback vertex set

problem.

3.3 Prize-collecting problems

In this section, we consider a variation of prize-collecting problems introduced by Balas [8]. We

will focus on the prize-collecting Steiner tree problem (PCST). In this problem we are given an
undirected graph G = (V, E), nonnegative costs on edges ce, a root vertex r, and nonnegative

penalties πi on the vertices i. The goal is to find a tree T which includes r such that the cost of
the edges in T plus the cost of the penalties of vertices not in T is minimized. Johnson, Minkoff,

and Phillips [52] study this problem in the context of deciding which customers to connect to a
cable system, forgoing the profits of customers who are not connected. The objective function given
above minimizes the total cost of the cables and total profit lost.

The problem can be modelled as a hitting set problem in the following way. We have two
different types of ground elements: each edge e is a ground element, and each subset X ⊆ V − r is

also a ground element. The cost of each edge is ce, and the cost of a subset X is π(X) =
∑

i∈X πi.
For all S ⊆ V − r, we must hit the set δ(S)∪{X : X ⊇ S}; that is, either we must select an edge of

δ(S), or we must choose some subset X that is a superset of S. We can show that this models the
prize-collecting Steiner tree problem. If we have a tree T that is a solution for the PCST spanning

the vertices V (T ), we can get a solution to the hitting set problem of no greater cost by including
all edges from T and the subset X of the vertices V −V (T ). Clearly this hits all sets S ⊆ V −V (T ),

and all other subsets S ⊆ V − r must include some vertices of T , and thus δ(S) is hit by some edge
of T . Similarly, given a solution to the hitting set problem, we construct a solution to PCST of no
greater cost by taking as our tree T any tree spanning the connected component containing r. The

hitting set solution must contain some X ⊇ V − V (T ) to hit the set S = V − V (T ), and thus the
cost of the hitting set solution includes the penalties on vertices not spanned by T .

18



Thus we can model the PCST by the following integer program:

Min
∑

e∈E

cexe +
∑

X⊆V

π(X)zX

subject to:
∑

e∈δ(S)

xe +
∑

X :X⊇S

zX ≥ 1 S ⊆ V − r

xe ∈ {0, 1} e ∈ E

zX ∈ {0, 1} X ⊆ V.

Taking the dual of the linear programming relaxation, we obtain:

Max
∑

S⊆V −r

yS

subject to:
∑

S:e∈δ(S)

yS ≤ ce e ∈ E

∑

S:S⊆X

yS ≤ π(X) X ⊆ V

yS ≥ 0 S ⊆ V − r.

We can apply the algorithm of Figure 3 and the analysis of Theorem 4 in a more or less

straightforward fashion to obtain a 2-approximation algorithm for the PCST. Notice that the two
types of ground elements in the hitting set formulation lead to two different types of packing

constraints in the dual, one on edges and one on subsets of vertices. Thus as we increase dual
variables, either an edge constraint can become tight (in which case we add the edge to our current

solution), or a subset constraint can become tight (in which case we add the subset to our current
solution). The minimal violated sets chosen in the algorithm of Figure 3 are connected components

C of the set of selected edges such that r /∈ C and such that the subset C itself has not been selected
by the algorithm (since then the primal constraint corresponding to the set C is not violated). One
can use the analysis of Theorem 4 to show the following:

Theorem 8 (Goemans and Williamson [41]) The algorithm of Figure 3 returns a tree T , a

set of unspanned vertices X , and a feasible dual solution y such that
∑

e∈T

ce + 2
∑

i∈X

πi ≤ 2
∑

S⊆V −r

yS.

Johnson, Minkoff, and Phillips [52] have implemented this algorithm and found that it is usually
within 5% of optimal on the instances they examined.

The algorithm for PCST can be used as a subroutine to obtain a 2-approximation algorithm
for the prize-collecting traveling salesman problem, in which we must find a tour containing r that
minimizes the cost of the tour plus the sum of the penalties of the vertices not visited by the tour.

4 Recent developments of the primal-dual method

We now turn to recent applications of the primal-dual method that do not fit so easily in the

framework developed in Section 2. Interestingly, these developments give performance guarantees
on variations of some dual-ascent heuristics considered earlier in the literature by Erlenkotter [29]

for the uncapacitated facility location problem and Wong [73] for the Steiner tree problem.
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4.1 Uncapacitated facility location

In the uncapacitated facility location problem (UFL), we are given as input a finite set of locations

V , a subset F ⊂ V of facilities, a set of facility costs fi ≥ 0 for all i ∈ F , a set of clients D = V −F ,
and a set of assignment costs cij ≥ 0 for assigning client j ∈ D to facility i ∈ F . We assume that
these assignment costs obey the triangle inequality, in the sense that for clients j, k and facilities

h, i, chk ≤ chj + cij + cik. The goal is to select a set of facilities to open and to assign clients to
these open facilities so as to minimize the total cost of open facilities and cost of the assignment.

The following integer programming formulation of the problem is due to Balinski [9]. We let
the indicator variable yi denote whether facility i is open, and the indicator variable xij denote

whether client j has been assigned to facility i. Then the following IP models UFL:

Min
∑

i∈F

fiyi +
∑

i∈F,j∈D

cijxij

subject to:
∑

i∈F

xij = 1 j ∈ D (7)

(UFL) xij ≤ yi i ∈ F, j ∈ D (8)

yi ∈ {0, 1} i ∈ F

xij ∈ {0, 1} i ∈ F, j ∈ D.

The constraints (7) guarantee that each client is assigned to some facility, and those in (8) guarantee
that a client is only assigned to an open facility. If we drop the integrality constraints and take the

dual, we obtain

Max
∑

j∈D

vj

subject to:

(UFLD)
∑

j∈D

wij ≤ fi i ∈ F (9)

vj − wij ≤ cij i ∈ F, j ∈ D (10)

wij ≥ 0 i ∈ F, j ∈ D.

We cannot apply the algorithm of Figure 3 in the most straightforward way here. So far all of

our integer programming formulations have been covering IPs whose associated duals have been
packing LPs, which is not the case for UFL. However, Jain and Vazirani [50] show that it is possible

to get a 3-approximation algorithm by modifying the primal-dual algorithm somewhat. They set
all the wij and vj variables of (UFLD) to zero, then increase the variables vj uniformly. If for some
i, j vj ≥ cij, they also increase wij at the same rate to maintain the feasibility of the constraints

(10). Eventually for some facility i a constraint (9) becomes tight; to maintain feasibility, they
stop increasing the variables vj such that vj ≥ cij for that facility i. This process continues until

it is not possible to increase any vj. Now consider the graph G of edges (i, j) such that for xij

the corresponding dual inequality is tight (that is, when vj = cij + wij, which occurs whenever

vj ≥ cij). Rather than creating an assignment of clients to facilities solely from edges in this graph
(as the primal-dual method developed so far would do), Jain and Vazirani carefully choose a subset

of facilities to open of those whose corresponding dual constraint (9) is tight. The subset they open
is such that no open facility is within a path of length two of any other open facility in G, but such

that every client is within a path of length three of an open facility. Then by using the triangle
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inequality they are able to show that assigning client j to the nearest open facility does not cost

more than vj − wij if j is next to an open facility i, and no more than 3vj otherwise. Thus they
are able to prove the following theorem, which implies that the algorithm is a 3-approximation

algorithm.

Theorem 9 (Jain and Vazirani [50]) The algorithm finds a feasible solution (x̄, ȳ) to the IP

(UFL) such that
∑

i∈F,j∈D

cijx̄ij + 3
∑

i∈F

fiȳi ≤ 3
∑

j∈D

vj.

Proof sketch: Suppose we divide the clients D into two sets: D1, the clients that are next to

an open facility in G, and D3, the clients that are not. Note by the argument above that any client
in D1 is next to only one open facility. Then for the clients in D1,

∑

j∈D1,i∈F

cijx̄ij =
∑

j∈D1

(

vj −
∑

i∈F

wijx̄ij

)

=
∑

j∈D1

vj −
∑

i∈F

fiȳi. (11)

The first equality follows since for clients j in D1, the constraint corresponding to i, j such that

x̄ij = 1 is tight, and cij = vj − wij. The second equality follows since all neighbors j of an open
facility i are in D1 and assigned to i, we have that fi =

∑

j∈D wij =
∑

j∈D wijx̄ij. Multiplying the

left-hand side of (11) by 3 gives the inequality

∑

j∈D1,i∈F

cijx̄ij ≤ 3





∑

j∈D1

vj −
∑

i∈F

fiȳi



 (12)

We know from above that
∑

j∈D3,i∈F cijx̄ij ≤ 3
∑

j∈D3
vj. Adding this inequality to (12) and

rearranging terms gives
∑

i∈F,j∈D

cijx̄ij + 3
∑

i∈F

fiȳi ≤ 3
∑

j∈D

vj,

as desired. 2

4.2 Lagrangean relaxation and the k-median problem

The technique of Lagrangean relaxation has long been used in combinatorial optimization; the
central idea is roughly that given a difficult integer or linear program to solve, one can often reduce

the IP/LP to an easier IP/LP by removing some complicating constraints, but adding penalties for
their violation to the objective function. Recently Jain and Vazirani [50] applied this technique to

give an approximation algorithm for the k-median problem. The k-median problem has the same
input as UFL, except that there are no costs for facilities, but rather an upper bound k on the

number of facilities that can be opened. The goal is to open at most k facilities so as to minimize
the cost of assigning clients to facilities.

We can give an integer programming formulation for the k-median problem much like that for
the uncapacitated facility location problem:

Min
∑

i∈F,j∈D

cijxij

subject to:
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∑

i∈F

xij = 1 j ∈ D

(kM) xij ≤ yi i ∈ F, j ∈ D
∑

i∈F

yi ≤ k (13)

yi ∈ {0, 1} i ∈ F

xij ∈ {0, 1} i ∈ F, j ∈ D.

The additional constraint (13) guarantees that no more than k facilities will be chosen.

Notice that if we apply Lagrangean relaxation to the complicating constraint (13), we obtain
the following:

Min
∑

i∈F,j∈D

cijxij + λ(
∑

i∈F

yi − k)

subject to:
∑

i∈F

xij = 1 j ∈ D

(kMR) xij ≤ yi i ∈ F, j ∈ D

yi ∈ {0, 1} i ∈ F

xij ∈ {0, 1} i ∈ F, j ∈ D.

This is a relaxation of (kM) since any feasible solution for (kM) will also be feasible and will have

no greater cost (assuming λ ≥ 0). The IP (kMR) is identical to the UFL formulation in which
every facility cost is λ, except for the constant term −λk in the objective function. If we relax the

integrality conditions and take the dual we obtain

Max
∑

j∈D

vj − kλ

subject to:

(kMRD)
∑

j∈D

wij ≤ λ i ∈ F

vj −wij ≤ cij i ∈ F, j ∈ D

wij ≥ 0 i ∈ F, j ∈ D.

Observe any dual solution (v, w) for the facility location dual LP (UFLD) with facility costs λ is

feasible for (kMRD). Furthermore, since (kMRD) is the dual of the linear programming relaxation
of (kMR), and (kMR) is a relaxation of the k-median formulation (kM), the objective function

value of any feasible solution to (kMRD) gives a lower bound on the cost of an optimal solution
to the k-median problem.

Jain and Vazirani [50] use their UFL algorithm and the similarities between (UFL) and the
Lagrangean relaxation for (kM) to obtain an approximation algorithm for the k-median problem.

They observe that for facility cost λ = 0 their UFL algorithm will open all facilities, and for
λ = n maxi,j cij the algorithm will only open one facility. So they perform a binary search on the
value of λ, running the UFL algorithm each time in hopes of obtaining a solution (x̄, ȳ) for (UFL)

with
∑

i∈F ȳi = k. Suppose that this occurs. Then by Theorem 9, we know that

∑

i∈F,j∈D

cijx̄ij ≤ 3





∑

j∈D

vj −
∑

i∈F

λȳi
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= 3





∑

j∈D

vj − λk





Since the constructed dual solution (v, w) is feasible for (UFLD) with facility costs λ, (v, w) is

feasible for (kMRD), and thus
∑

j∈D vj − λk is a lower bound on the value of the optimal k-
median. Hence if we can find a value of λ such that the UFL algorithm opens exactly k facilities,

the solution is within a factor of 3 of optimal for the k-median problem.
However, in general such a value of λ may not exist. In this case, Jain and Vazirani find two

solutions for two values of λ sufficiently close, one which opens more than k facilities, and one

which opens fewer than k facilities. They then show that an appropriate convex combination of
the inequalities of Theorem 9 for the two solutions gives an inequality showing that the convex

combination of the primal solutions is no more than 3 times the value of a feasible dual solution
for (kMRD). Jain and Vazirani then show that by using the two solutions they can find a solution

to the k-median problem that costs no more than twice the cost of the convex combination of the
two solutions. In this way they obtain a 6-approximation algorithm for the k-median problem.

Charikar and Guha [19] are able to improve this algorithm to a 4-approximation algorithm by
carefully considering the differences in solutions produced by the algorithm for UFL for values of

λ sufficiently close together.
Garg [37] implicitly used the technique above for solving the problem of finding a minimum tree

spanning k vertices. In this problem, given an undirected graph with nonnegative costs ce on the

edges, a root vertex r ∈ V , and a positive integer k, one must find a minimum-cost tree including
r that spans at least k vertices. Garg uses the prize-collecting Steiner tree algorithm mentioned in

Section 3.3 as subroutine while doing a binary search on a parameter λ. Chudak, Roughgarden, and
Williamson [21] make explicit Garg’s use of Lagrangean relaxation. Consider the following integer

program which models the problem of finding a minimum tree spanning k vertices:

Min
∑

e∈E

cexe

subject to:
∑

e∈δ(S)

xe +
∑

X :X⊇S

zX ≥ 1 S ⊆ V − r

∑

X⊆V

|X |zX ≤ |V | − k (14)

xe ∈ {0, 1} e ∈ E

zX ∈ {0, 1} X ⊆ V.

By using Lagrangean relaxation on the complicating constraint (14), we get an integer program

of the same form as that for the prize-collecting Steiner tree, in which each penalty πi is the
Lagrangean variable λ. Garg [37] gives a simple 5-approximation for the problem, and a more

complicated 3-approximation algorithm that depends on understanding the changes in the solution
generated by the prize-collecting Steiner tree algorithm for small perturbations of λ. Chudak et

al. [21] show that these proofs can be made to follow an outline similar to that for the k-median
problem above.

4.3 The Steiner tree problem

In Section 3.1, we described a primal-dual 2-approximation algorithm for the Steiner tree problem.

One unsatisfying aspect of this algorithm is that the integer programming formulation (ND) with
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the appropriate function f for the Steiner tree problem has an integrality gap of two, even in the

case when the set of terminals T = V ; that is, when the problem is a minimum spanning tree
problem. In this case there are exact integer programming formulations. Pick an arbitrary root

vertex r, and let G′ = (V, A) be a directed graph formed from the undirected graph G by replacing
each undirected edge e = (i, j) of cost ce with two oppositely oriented arcs a = (i, j) and a′ = (j, i),

both of cost ca = ca′ = ce. Then the following linear program models the minimum spanning tree
problem:

Min
∑

a∈A

caxa

subject to:
∑

a∈δ−(S)

xa ≥ 1 S ⊆ V − r

xa ≥ 0 a ∈ A.

Recall that δ−(S) is the set of arcs in a digraph with their heads in S ⊆ V , and tails not in S.

The proof of correctness of Edmonds’ branching algorithm given in Section 2 shows that this is an
exact formulation.

We can modify the formulation to give a integer programming formulation of the Steiner tree
problem. Let T be the set of terminals to be joined, and let r be an arbitrary member of T . Then
the following integer program models the Steiner tree problem:

Min
∑

a∈A

caxa

subject to:
∑

a∈δ−(S)

xa ≥ 1 S ⊆ V − r, S ∩ T 6= ∅

xa ∈ {0, 1} a ∈ A.

This is sometimes called the bidirected formulation of the Steiner tree problem. Notice that this
formulation corresponds to a hitting set problem in which we must hit every set δ−(S) for which

S ⊆ V − r, S ∩ T 6= ∅. The dual of the linear programming relaxation is

Max
∑

S:S⊆V −r,S∩T 6=∅

yS

subject to:
∑

S:a∈δ−(S)

yS ≤ ca a ∈ A

yS ≥ 0 S ⊆ V − r, S ∩ T 6= ∅.

We could apply the algorithm of Figure 3 in some fashion to the problem, but it has not been clear

how to obtain a good performance guarantee via Theorem 4. Heuristically some variant of the
algorithm seems to give good results, however; Wong [73] shows that choosing any single violated

set (as in the algorithm of Figure 2) gives solutions within 1% of optimal on small random instances.
Rajagopalan and Vazirani [63] give a modification to the primal-dual method that gives a

( 3
2 + ǫ)-approximation algorithm for the Steiner tree problem on quasi-bipartite graphs. They call

a graph quasi-bipartite if every edge has at least one endpoint that is a terminal. Their algorithm

combines a local search algorithm with a primal-dual algorithm. Given the set T of terminals and
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some subset X of non-terminals, they use a variation of the algorithm of Figure 3 in which they

increase the duals of all minimal sets S that contain some but not all vertices of T ∪X , and such
that δ−(S) contains no edge of the current solution. Observe that this algorithm may increase

dual variables yS that do not contribute to the dual objective function, either because T ∩ S = ∅
or r ∈ S. If the primal solution obtained ends up using a vertex v not in T ∪ X , they show that

adding v to X can only improve the cost of the resulting solution, so v is added to X and they
iterate. If no such v is added, then they show that the cost of their solution F equals the value
of the sum of the dual variables; that is,

∑

a∈F ca =
∑

S yS . Rajagopalan and Vazirani show that

the total value of duals that do not contribute to the objective is no more than 1
3

∑

S yS , so that
∑

a∈F ca ≤
3
2

∑

S:S⊆V −r,S∩T 6=∅ yS , and therefore the cost of F is no more than 3
2 times the optimal

value. Măndoiu, Vazirani, and Ganley [59] give experimental results with this algorithm.

5 Conclusion and Open Questions

Even in this lengthy survey, it has not been possible to be comprehensive. For example, Bar-Noy,

Bar-Yehuda, Freund, Naor, and Schieber [10] give an application of the primal-dual method to
scheduling problems, Garg, Vazirani, and Yannakakis [38] to cut problems in trees, and Bertsimas

and Teo [18] to several different problems. Interestingly, the paper of Bar-Noy et al. gives the first
primal-dual approximation algorithm for a natural maximization problem; all previous applications

have been to minimization problems.
In addition, we have not been able to describe the connection of the primal-dual method to

the local-ratio theorem [13, 6, 11]. The two methods appear to be strongly related, though as of
the writing of this survey no formal connection has been shown. In some cases, an approximation

algorithm has been designed first using the local-ratio theorem, and then shown to have a primal-
dual approximation algorithm; for example, this was the case for the feedback vertex set problem
described in Section 3.2 [6, 20], and the scheduling problem of Bar-Noy et al. [10]. In the first case,

the integer program modelling the problem had to be inferred from the design of the local-ratio
algorithm.

We close this survey by listing several open problems of interest in this area.

1. The algorithm of Jain [49] shows that the integrality gap is 2 for the network design for-

mulation (ND) of Section 3.1 for any weakly supermodular function f . Thus it is possible
that there is also a primal-dual algorithm for any weakly supermodular function that has a
performance guarantee of 2. Such an algorithm would be very interesting, and possibly more

practical than Jain’s. It would even be interesting to provide a primal-dual 2-approximation
algorithm for the survivable network design problem in which one is allowed to have multiple

copies of edges (that is, xe ∈ N rather than xe ∈ {0, 1}).

2. It would be interesting to have a primal-dual approximation algorithm for the Steiner tree
problem with performance guarantee better than 2 by using the bidirected formulation. On

the other hand, perhaps no such performance guarantee is possible because the integrality
gap of the formulation is at least 2 − ǫ for any ǫ > 0. A proof of this fact would also be of
interest.

3. The primal-dual method for approximation algorithms shown in this survey are essentially

dual ascent algorithms. The standard primal-dual method for combinatorial optimization
problems can sometimes result in very complicated dual adjustment schemes (for example,
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Edmonds’ blossom algorithm for weighted non-bipartite matching [24]). Can a more compli-

cated scheme result in new or improved approximation algorithms for NP -hard problems in
combinatorial optimization?
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