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Abstract. We consider the sum coloring (chromatic sum) and sum multi-coloring prob-
lems for restricted families of graphs. In particular, we consider the graph classes of
proper intersection graphs of axis-parallel rectangles, proper interval graphs, and unit disk
graphs. All the above mentioned graph classes belong to a more general graph class of
(k + 1)-clawfree graphs (respectively, for k = 4, 2, 5).

We prove that sum coloring is NP-hard for penny graphs and unit square graphs which
implies NP-hardness for unit disk graphs and proper intersection graphs of axis-parallel
rectangles. We show a 2-approximation algorithm for unit square graphs, with the as-
sumption that the geometric representation of the graph is given. For sum multi-coloring,
we confirm that the greedy compact coloring, after ordering vertices by their demands,
achieves k-approximation for the preemptive version of the sum multi-coloring on (k + 1)-
clawfree graphs. Finally, we study priority algorithms as a model for greedy algorithms
(Borodin, Nielsen and Rackoff, 2003) for the sum coloring and sum multi-coloring problems.
We show various inapproximation results under several natural input representations.

Introduction

The sum coloring problem (SC), also known as the chromatic sum problem, was formally
introduced in [4]. For a given graph G = (V,E), a proper coloring of G is an assignment of
positive integers to its vertices φ : V → Z+ such that no two adjacent vertices are assigned
the same color. The sum coloring problem seeks a proper coloring such that the sum of
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colors over all vertices
∑

v∈V φ(v) is minimized. Sum coloring has many applications in job
scheduling and resource allocation. Consider an instance of job scheduling in which one is
given a set of jobs S each requiring unit execution time. We construct the conflict graph G

whose vertex set is in one-to-one correspondence with the set of input jobs S, and an edge
exists between two vertices if and only if the corresponding jobs conflict for resources. The
chromatic sum of the conflict graph G then determines the minimal average job completion
time.

The sum coloring problem has been studied extensively in the literature. The problem is
NP-hard for general graphs [4], and cannot be approximated within n1−ǫ for any ǫ > 0 unless
ZPP=NP [5][7]. The problem is polynomial time solvable for proper interval graphs [9] and
trees [4]; however, it is APX-hard for both bipartite graphs [6] and interval graphs [11]. The
best known approximation algorithm for interval graphs has approximation ratio 1.796 [16]
and for bipartite graphs the best known is a 27

26 -approximation [12].
One well-studied extension of the sum coloring problem is sum multi-coloring (SMC):

given graph G = (V,E) and a demand function x : V → {1, 2, ...}, color each vertex v

with x(v) colors, called the demand of v, so as to minimize the sum of the maximum color
assigned to each vertex while assigning distinct colors to adjacent vertices. There are two
variants to the sum multi-coloring problem, namely the non-preemptive version (npSMC)
where colors assigned to each vertex must be adjacent and the preemptive version (pSMC)
which colors need not be consecutive. One interesting fact about pSMC and npSMC is that
there is a known polynomial time algorithm that solves npSMC for trees [13], while pSMC
remains NP-hard for trees [14]. This is in contrast to the general sense that npSMC is a
more difficult problem [10]. For a more complete review of previous results on sum coloring
and sum multi-coloring, see for example [18].

In this paper, we consider the sum coloring and sum multi-coloring problem for re-
stricted families of graphs with respect to both hardness and approximation algorithms.
The remainder of the paper is organized as follows. In Section 2, we discuss various classes
of (k + 1)-clawfree graphs. We prove the problem is NP-hard for penny graphs and unit
square graphs, and show a 2-approximation for unit square graphs in Section 3. We study
the sum multi-coloring problem for (k + 1)-clawfree graphs in Section 4 and priority inap-
proximations in Section 5. Section 6 concludes with some open problems.

1. (k + 1)-Clawfree Graphs

A graph is (k+1)-clawfree if every vertex has most k independent neighbors. We follow

the notation in [20] and let Ĝ(ISk) denote the class of (k + 1)-clawfree graphs. Similarly,

we let Ĝ(V CCk) denote the class of graphs for which the neighborhood of every vertex has

a clique cover of size at most k. It is easy to see that Ĝ(V CCk) is a subset of Ĝ(ISk).
It turns out many interesting families of geometric intersection graphs are in the class

Ĝ(V CCk) and hence in the class of Ĝ(ISk) for a small parameter k.

• Proper Circular Arc Graphs: The vertices are arcs along the circle, two vertices are
adjacent if the two arcs intersects. The properness condition states that no arc is
properly contained inside another arc. Since the containment is proper, for a given
arc, every intersecting arcs intersects it at one of its two end points. Therefore the
underlying graph is in Ĝ(V CC2).
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• Proper Intersection Graphs of Axis-Parallel Rectangles: The vertices are axis-parallel
rectangles, two vertices are adjacent if the two rectangles overlap. Properness im-
plies that no projection (to x or y-axis) of a rectangle is properly contained by that
of another rectangle. Since the containment is proper, for a given rectangle, every
intersecting rectangle intersects it at one of its four corners. Therefore the underly-
ing graph is in Ĝ(V CC4). A special case is unit square graphs, where each rectangle
is a unit square.

Figure 1: Proper Circular Arc Graphs and Proper Intersection of Rectangles

• Unit Disk Graphs: The vertices are disks of unit size and two vertices are adjacent if
the two disks intersect each other (including the boundary). For any disk, there are

Figure 2: Penny Graphs and Unit Disk Graphs

at most five pair-wise non-intersecting disks intersecting a single disk. Therefore
the underlying graph is in Ĝ(IS5). For any given unit disk, we can partition its
conflicting region into six sectors so that any two unit disks whose centers lying in
the same sector must intersect; see Figure 3 below. Therefore unit disk graphs are
in Ĝ(V CC6). It is not hard to show that this bound is tight; i.e., unit disk graphs

are not in Ĝ(V CC5). This gives a natural example which separates Ĝ(V CC5) and

Ĝ(IS5). A special case of unit disk graphs is penny graphs where two disks cannot
have a common interior point and two vertices are adjacent if the two disks touch
each other at the boundary.

• Intersection of k-Sets: The vertices are sets Si of elements from some universe with
|Si| ≤ k, and Si and Sj are adjacent if and only if Si ∩ Sj 6= 0. These graphs are in

Ĝ(V CCk).
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Figure 3: Unit Disk Graphs are in Ĝ(V CC6)

• Line Graphs: The vertices are edges of an underlying graph and two vertices are
adjacent if they share a common vertex in the underlying graph. It is easy to see
that for a particular edge, it can have at most two non-intersecting edges intersect
with it. Therefore, line graphs are in Ĝ(V CC2).

With the exception of unit disk graphs, all the examples of (k+1)-clawfree graphs given

are in the subclass Ĝ(V CCk). However, we note that Ĝ(V CCk) is a substantially different

class of graphs than Ĝ(ISk). In fact, based on a variation of Mycielski’s construction [1],

we can show that for every k, there is a 3-clawfree graph that is not in Ĝ(V CCk). We also

note that for fixed k, determining if G is in Ĝ(ISk) can clearly be decided in time nk+2

whereas it is NP-hard to determine membership in Ĝ(V CCk) for k ≥ 3.

2. Sum Coloring for Unit Square Graphs

We show that the sum coloring problem for unit disk graphs and unit square graphs is
NP-hard, and we develop a 2-approximation sum coloring algorithm for unit square graphs
using a “strip” technique.

The main technical result of this section is that sum coloring problem is NP-hard for
penny graphs. A proof can be found in the appendices and in general missing proofs can
be found in the appendices.

Theorem 2.1. Sum coloring is NP-hard for penny graphs.

It follows immediately that sum coloring is NP-hard for unit disk graphs, since the class
of penny graphs is a subclass of unit disk graphs.

Corollary 2.2. Sum coloring is NP-hard for unit disk graphs.

The transformation in the reduction to penny graphs also works for unit square graphs
with a slight modification.

Theorem 2.3. Sum coloring is NP-hard for unit square graphs.

Since polynomial-time optimal algorithms are unlikely, we seek good approximations.
For unit square graphs, we have the following observation: given a unit strip {(x, y)|y ∈
[i, i + 1)}, consider the unit squares whose center lines lie inside this strip. Let H be the
intersection graph induced by those unit squares, it is easy to observe the following lemma:

Lemma 2.4. H is a unit interval graph.
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It is a known fact that unit interval graphs are exactly proper interval graphs. Since
sum coloring for proper interval graphs can be optimally solved in polynomial time [9] 1, we
can optimally sum color H in polynomial time. Without loss of generality, we can assume
that for a given geometric representation of a unit square graph G, the y-coordinates of
all centers of the squares are in the range of [0, h), so the plane can be partitioned into h

horizontal strips. We now describe an algorithm which colors the graph G.
For each of the strips, color the graph induced by the strip with minimum sum. For

each odd strip, and each color c used, use the new color 2c. For each even strip, and each
color c used, use the new color 2c−1. This modified coloring is a valid coloring of the whole
graph. This is because:

(1) no two squares can intersect each other between two strips with the same parity,
(2) the new coloring is a proper coloring within each strip,
(3) the new coloring does not create any violation between two adjacent strips.

Theorem 2.5. Given a geometric representation, there is a simple greedy algorithm that
achieves a 2-approximation to sum color a unit square graph. The running time is O(n log n).

Proof. We use the above algorithm and first divide the graph into h strips; without loss of
generality, we can assume h is bounded by the total number of unit squares. We optimally
sum color each strip and let si be the chromatic sum of the graph induced by strip i. It
is clear that the optimal solution ≥

∑
i si. Note that after the modification as described

above, the chromatic sum ≤
∑

i 2si. Therefore the algorithm achieves a 2-approximation.
Note that this algorithm is very efficient. The running time is O(n log n) if we are

given the set of centers (in x and y coordinates) of the unit squares. The running time is
dominated by sorting the x and y-coordinates.

Extending an observation by Roberts [2], we show that the classes of proper intersection
graphs of axis-parallel rectangles and unit square graphs coincide.

Theorem 2.6. Proper intersection graphs of axis-parallel rectangles is the same class as
that of unit square graphs.

By Theorem 2.6, we immediately have the following corollary.

Corollary 2.7. Given a geometric representation, there is an algorithm that achieves 2-
approximation to sum color a proper axis parallel rectangle graph. The running time is
O(n2).

3. Sum Multi-Coloring for (k + 1)-Clawfree Graphs

A (k + 1)-approximation to pSMC for the class of Ĝ(ISk) was stated in [16] and a
k-approximation was stated in [18]. Both refer to [10]. However, the proof in [10] seems

only to extend to the class of Ĝ(V CCk) as defined in Section 1. In this section, we provide

a proof to confirm a k-approximation to pSMC for the class of Ĝ(ISk). We follow the
notation of [10]. For a given graph G = (V,E), we denote

S(G) =
∑

v∈V

x(v)

1In fact, proper interval graphs can be optimally sum colored by a greedy algorithm running in time
O(n log n) or just O(n) if the intervals are already sorted by non decreasing finishing time.
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and

Q(G) =
∑

(u,v)∈E

min(x(u), x(v))

In [10], the authors use the following greedy algorithm for pMSC: given a graph G =
(V,E), sort the vertices of G by non-decreasing demand and color the vertices in a first-fit
manner. Bar-Noy et al. show that the sum of the multi-coloring obtained using this method
is bounded above by S(G)+Q(G) as an edge in the graph can only cause the incident vertex
that is colored later to be given a higher color. We now seek to bound from below the cost
of pSMC for a graph in Ĝ(ISk) in terms of S(G) and Q(G).

Lemma 3.1. For any graph G = (V,E) in Ĝ(ISk), the cost of a minimal sum multi-coloring
of G is at least 1

k
· (S(G) + Q(G)).

Proof. Let G = (V,E) be any graph in Ĝ(ISk) and let φ be a multi-coloring of G with
minimal sum. For a vertex v, denote by fφ(v) the largest color assigned to v by φ. Again,
we consider reconstructing G by adding back vertices in non-decreasing order of fφ, breaking
tie lexicographically. In other words, we define a total ordering ≺, such that u ≺ v if and
only if fφ(u) < fφ(v) or fφ(u) = fφ(v) and u is lexicographically before v. We consider
a sequence of n distinct induced subgraphs of G in order of proper containment, with the
vertex and edge sets growing based on a total ordering defined by ≺. When a vertex v

is added to the graph, let N ′(v) denote the subset of N(v) that is in the current induced
subgraph. In other words:

N ′(v) = {u|u ∈ N(v) and u ≺ v}

The number of colors assigned to vertices in N ′(v) is equal to
∑

u∈N ′(v) x(u)

which indicates that the total number of distinct colors is at least

1
k
· (

∑
u∈N ′(v) x(u))

From the above bound on the number of distinct colors, we may conclude:

fφ(v) ≥ x(v) +
1

k
·

∑

u∈N ′(v)

x(u)

≥ x(v) +
1

k
·

∑

u∈N ′(v)

min(x(u), x(v))

Summing over all vertices and letting SMC(G) represent the multi-coloring sum, we
obtain:
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SMC(G) =
∑

v∈V

fφ(v)

≥
∑

v∈V

(x(v) +
1

k
·

∑

u∈N ′(v)

min(x(u), x(v)))

≥
1

k
· (

∑

v∈V

x(v) +
∑

v∈V

∑

u∈N ′(v)

min(x(u), x(v)))

=
1

k
· (S(G) +

∑

(u,v)∈E

min(x(u), x(v)))

=
1

k
· (S(G) + Q(G))

In conjunction with the bound given by Bar-Noy et al. for greedy first-fit coloring, we
conclude the following.
Theorem 3.2. [10] For a graph G ∈ Ĝ(ISk) , k ≥ 2, any multi-coloring obtained by a
greedy first-fit coloring with respect to vertex demands is a k-approximation to pSMC on G.

We note that Theorem 3.2 immediately implies the following corollary.

Corollary 3.3. For a graph G ∈ Ĝ(ISk) , k ≥ 2, any greedy compact coloring is a k-
approximation to SC on G.

4. Priority Inapproximation for SC and SMC

By Theorem 3.2, the greedy first-fit algorithm achieves a 2-approximation for proper
interval graphs. It remains an open question whether or not these problems are NP-hard.
Since the class of proper interval graphs is a very restricted family, it is natural to ask
whether or not there is any greedy algorithm that can solve pSMC optimally or with an
improved approximation. In what follows, we provide inapproximation results in the priority
model as defined in [15]. An input instance of pSMC or npSMC on interval graphs consists
of a set of data items, each is represented by a time interval [si, fi) and its demand xi,
where si is its starting time and fi its finishing time. We consider the adaptive priority
algorithm model for which at each step the algorithm sees the data item with the highest
priority based on a local ordering2 and makes an irrevocable decision on it. We have the
following result for proper interval graphs.

Theorem 4.1. There is no adaptive priority algorithm in the interval input model for pSMC
or npSMC on proper interval graphs that can achieve approximation ratio better than 5

4 .

For general (i.e. non proper) interval graphs, we have the following theorem.

Theorem 4.2. There is no adaptive priority algorithm in the interval model for pSMC or
npSMC on interval graphs that can achieve approximation ratio 3

2 .

2For the precise definition of a local ordering, please refer to [15].
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The above two inapproximation results assume an interval representation of interval
graphs. A common representation of graphs is the vertex adjacency representation [19]
where an input item is a vertex, its weight (if any) and a list of adjacent vertices. Under
such a vertex adjacency model, we have the following two inapproximation results.

Theorem 4.3. There is no adaptive priority algorithm in the vertex adjacency model for
SC (and hence for pSMC and npSMC) on planar 4-clawfree bipartite graphs that can achieve
approximation ratio better than 11

10 .

Proof. We borrow the example in [21], see figure 4 below. The graph 1 on the left has 7
vertices: five vertices have degree two and two vertices have degree three. The optimal
solution for graph 1 is 10 by giving color 1 to B, F, G, D and 2 to everything else. The
graph 2 on the right has 7 vertices; three vertices have degree two and four vertices have
degree three. The optimal solution for graph 2 is also 10 by giving color 1 to A, G, F, E
and 2 to everything else. The key vertex for each graph is the vertex A.

Figure 4: Graph 1 to the left and graph 2 to the right

In the vertex adjacency model, any adaptive priority algorithm has to have an initial
ordering on all possible data items. In particular, it has to rank in between vertices of
degree 2 and 3. There are four cases:

• If the algorithm considers vertices of degree 2 first and is going to assign color 1 to
it, then the adversary chooses graph 1 and presents vertex A to the algorithm. The
solution obtained by the algorithm is at least 11.

• If the algorithm considers vertices of degree 2 first and is going to assign color
other than 1 to it, then the adversary chooses graph 1 and presents vertex B to the
algorithm. The solution obtained by the algorithm is at least 11.

• If the algorithm considers vertices of degree 3 first and is going to assign color 1 to
it, then the adversary chooses graph 1 and presents vertex C to the algorithm. The
solution obtained by the algorithm is at least 11.

• If the algorithm considers vertices of degree 3 first and is going to assign color
other than 1 to it, then the adversary chooses graph 2 and presents vertex A to the
algorithm. The solution obtained by the algorithm is at least 11.

In all above cases, the algorithm cannot achieve approximation ratio better than 11
10 .
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Theorem 4.4. There is no adaptive priority algorithm in the vertex adjacency model for
pSMC or npSMC on proper interval graphs that can achieve approximation ratio better than
11
10 .

For (proper) interval graphs, a stronger priority model is to combine the two repre-
sentations above; i.e., each data item is composed of a starting time, finishing time, its
demand, and a list of its neighbors. We show that, even for such a more powerful “interval
with vertex adjacency input” priority model, we can prove an inapproximation bound for
pSMC or npSMC on proper interval graphs. This inapproximation is in contrast to the
existence of an optimal priority algorithm for SC on proper interval graphs.

Theorem 4.5. There is no adaptive priority algorithm in the interval with vertex adjacency
model for pSMC or npSMC on proper interval graphs that can achieve approximation ratio
better than 14

13 .

Proof. We construct an instance with three types of intervals; see Figure 5 below. The

Figure 5: Three types of data items

adversary initially keeps a set of data items as shown in Figure 6. Note that the data items
the adversary initially has is not a valid input instance, but the final instance constructed
will be a proper interval graph. There are five cases:

Figure 6: The initial set of data items of the adversary

(1) Suppose the algorithm first selects the blue interval with start time 1.
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• If it is assigned any colors other than 1 and 3, the adversary presents the graph
shown in Figure 7 below, making it interval A. Since the graph has a unique
sum multi-coloring of 13 (shown in the picture), we get an approximation ratio
of at least 14

13 .

Figure 7: The first case

• If it is assigned colors 1 and 3, the adversary presents the mirror image of the
graph in Figure 7, making it interval B, and we again get an approximation
ratio of at least 14

13 .
(2) Suppose the algorithm first selects the yellow interval with start time 1.5.

• If it is assigned any color other than 2, the adversary presents the graph in
Figure 7, making it interval C, and we get approximation ratio of at least 14

13 .
• If it is assigned the color 2, the adversary presents the mirror image of the

graph in Figure 7, making it interval D, and we get approximation ratio of at
least 14

13 .
(3) Suppose the algorithm first selects the blue interval with start time 1.5.

• If it is assigned any color other than 2 and 3, the adversary makes it interval
A in the graph shown in Figure 8. The graph has a min sum multi-coloring of
10, but if interval A is not assigned colors 2 and 3 we can get at best 11, so we
get an approximation ratio of 11

10 .

Figure 8: The second case
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• If it is assigned colors 2 and 3, the adversary makes it interval A in the graph
shown in Figure 9. The min sum multi-coloring is 12, but the lowest value we
can get if interval A is assigned 2 and 3 is 14, so we get an approximation ratio
of 7

6 .

Figure 9: The third case

(4) The algorithm first selects the yellow interval with start time 2.
• If it is assigned any color other than 2, the adversary makes it interval B in the

graph shown in Figure 8, resulting in an approximation ratio of at least 11
10 .

• If it is assigned color 2, the adversary makes it interval E in the graph shown
in Figure 7, resulting in an approximation ratio of at least 14

13 .
(5) The algorithm first selects the red interval with start time 2.

• If it is assigned any colors other than 2 and 3, the adversary makes it interval
F in the mirror image of the graph shown in Figure 7, resulting in an approxi-
mation ratio of at least 14

13 .
• If it is assigned the colors 2 and 3, the adversary makes it interval B in the

graph shown in Figure 9, resulting in an approximation ratio of at least 7
6 .

All other cases are symmetric to one of the cases discussed above.

5. Conclusion

We have considered the sum coloring and sum multi-coloring problem for restricted
families of graphs in this paper. We conclude by suggesting a few open questions:

(1) The sum coloring problem can be optimally solved for proper interval graphs.
Can sum multi-coloring (pSMC or npSMC) be optimally solved for proper inter-
val graphs?

(2) The best known sum coloring algorithm for chordal graphs is a 4-approximation
derived from the repeated MIS approach. Can this bound be improved?

(3) Is there a reduction of sum coloring to coloring in terms of approximability? Is there
an APX hardness result for (k+1)-clawfree graphs and more generally how well can
we sum color all (k + 1)-clawfree graphs.

(4) The best known sum coloring algorithm for unit disk graphs is a 5-approximation
from 6-clawfreeness. This bound seems quite weak; can it be improved?
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Appendix A. NP-Hardness for Sum Coloring of Penny Graphs

In this section, we show sum coloring is NP-hard for penny graphs and unit square
graphs. The reduction is from the maximum independent set problem on planar graphs
with maximum degree 3. We combine ideas in [17] and [13] and first show that sum coloring
for penny graphs is NP-hard. We make use of the following observation from Valiant [3].
Lemma A.1. [3] A planar graph G with maximum degree 4 can be embedded in the plane
using O(|V |2) area units in such a way that its vertices are at integer coordinates and its
edges are drawn so that they are made up of line segments of the form x = i or y = j, for
integers i and j.

Given a planar graph G with maximum degree 3, we first apply the above lemma to
draw its embedding onto integer coordinates, and without loss of generality we assume those
coordinates are multiple of 8 units. We replace each vertex with a unit disk (a circle of
diameter 1 unit), and for each edge uv, we replace it with luv tangent unit disks where luv

is the Manhattan distance between u and v. We call the resulting penny graph G′. See
figure 10. Note that there are three types of adjacent pair of unit disks. A corner pair
refers two adjacent disks such that one of them is at the corner; an uneven pair refers two
adjacent disks such that the center of one of them does not lie on the grid; the rest of the
pairs are straight pairs. Let α(·) denote the size of the maximum independent set. It is not
hard to observe the following relationship between the maximum independent sets of the
two graphs.

Figure 10: Transformation from planar graphs with maximum degree 3 to penny graphs

Lemma A.2. α(G′) = α(G) +
∑

uv∈E
luv

2 .

Proof. We first show that α(G′) is at least α(G)+
∑

uv∈E
luv

2 . Given a maximum independent
set I of G, then for any edge uv, at least one of u and v are not in I, hence we can
add luv

2 alternating disks for each edge uv to form an independent set of G′. Therefore,

α(G′) ≥ α(G)+
∑

uv∈E
luv

2 . On the other hand, given a maximum independent set I ′ of G′,
we can do the following modifications to I ′ without changing the size of I ′. For each edge
uv in G, if both u and v are in I ′, then the number of disks along the edge uv which are
in I ′ must be less than luv

2 , we can then remove, say v, from I ′ and increase the number of
disks along the edge uv which are in I ′ by at least one. We keep doing that until for any
edge uv in G there is at most one vertex in I ′.
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It is clear that after such modification, the vertices in I ′ ∩ G is an independent set for
G, and hence α(G′) ≤ α(G) +

∑
uv∈E

luv

2 .

We now do a second transformation. For each straight pair of adjacent unit disks, we
do a transformation as shown in Fig. 11; for each uneven pair of adjacent unit disks, we do
a transformation as shown in Fig. 12 and for each corner pair of adjacent unit disks, we do
a transformation as shown in Fig. 13.

Figure 11: Transformation for straight pairs

Figure 12: Transformation for uneven pairs

The purpose of the second transformation is that for each edge uv in G′, we want
to add an edge gadget as shown in Fig 14. Because the original graph is a planar graph
with maximum degree 3, we can add these edge gadget in such a way that there are no
overlapping disks and two disks in different gadgets does not touch each other. We call the
resulting graph G′′. Let m be the the number of edges in G′′ and n the number of vertices,
let SC(G′′) denote its chromatic sum. We now prove the following lemma to complete the
reduction.

Lemma A.3. SC(G′′) = 8m + 2n − α(G′).

Proof. We first show that the chromatic sum of G′′ is at most 8m + 2n − α(G′). To see
that we give an explicit coloring of G′′. Let I be the maximum independent set of G′, we
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Figure 13: Transformation for corner pairs

Figure 14: The edge gadget

coloring all vertices in I with color 1. We then color the remaining vertices in G′ with color
2. Consider an edge gadget as depicted in figure 14. Since at least one of u and v is colored
with 2, without loss of generality, assume u has color 2. We then color y with 3, z with 1,
x with 2 and p, q with 1. Therefore the chromatic sum of G′′ is at most 8m + 2n − α(G′).

We now show the chromatic sum of G′′ is at least 8m+2n−α(G′). Assume an optimal
sum coloring, we first claim that all vertices in G′ colored with 1 must form an independent
set of G′. Suppose this is not the case and assume both u and v are colored with 1. There
are two cases, the best possible choices of colors lead to Fig. 15 and 16, which achieves the
sum of 13 and 12 respectively. If we recolor v with 2, we achieves the sum 11 as show in
Fig. 17. However, recolor v might lead to recolor its other adjacent edge gadgets. We claim
that we can coloring every other edge gadgets adjacent to v to maintain at least its original
sum. Let u′ be any other vertex adjacent to v in G′, and y′, z′, x′, p′, q′ be the corresponding
vertices in the gadget, there are two cases:

(1) If u′ is not colored with 2, then color z′ with 1, y′ with 2, x′ with 3, p′, q′ with 1.
This is the minimum possible, so it cannot exceed the original.

(2) If u′ is colored with 2, then color z′ with 1, y′ with 3, x′ with 2, p′, q′ with 1. This
is also the minimum possible, so it cannot exceed the original.

Therefore by recoloring v with 2 and proper recoloring its neighborhood gadgets, we reduce
the total sum, hence, all vertices in G′ colored with 1 must form an independent set of G′.
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Figure 15: Recoloring case 1

Figure 16: Recoloring case 2

Figure 17: Result coloring

For the remaining vertices in G′, we at least color them with 2 and for each gadgets, 8 is
the best possible. Therefore the chromatic sum is at most 8m + 2n − α(G′).

The NP-hardness follows immediately from Lemma A.1, A.2 and A.3.

Appendix B. Equivalence of Unit Square Graphs and Proper Intersection

of Axis-Parallel Rectangles

Proof. It is clear that unit square graphs are contained in the class of proper intersection
graphs of axis-parallel rectangles. We only need to show the reverse direction. It is known
by a result of Roberts [2] that the classes of proper interval graphs and unit interval graphs
coincide. The proof of Bogart and West [8] gives an actual realization from a proper interval
representation to a unit interval representation. This transformation can be done on both
the x-axis and y-axis resulting in proper interval graphs, and then a unit square graph can be
constructed by considering the unit intervals on both axes. Note that such a transformation
can be done efficiently in O(n2) time.
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Appendix C. Proof of Theorem 4.1

Proof. We consider the following instance, see figure below:

...

...

2q
q+4

q+3
q+2

q+1
q

q+1
q+2

q+3
q+4

2q

All intervals are closed-open intervals with length 1 + δ, for a very small δ. There is
one interval with demand q starting at 1, and two intervals each for every 1 ≤ i ≤ q with
demand q + i. For i odd, we have two intervals with demand q + i, one starting at 1

2i , which

we will refer to as the top interval, and one starting at 1 + 1
2i , which we will refer to as

the bottom interval. For i even, we have two intervals with demand q + i, a “bottom” one
starting at 2− 1

2i and a “top” one starting at 1− 1
2i . Let f(I) be the highest color assigned

to item I, there are three cases:

(1) The algorithm first picks the interval I with demand q. If f(I) ≥ 2q, the adversary
removes all other intervals and we get an approximation ratio of 2. Otherwise, the
adversary removes all items other than the top interval with demand q + 1, and the
bottom interval with demand q + 2, which both intersect I, but not each other. We
get 5q+3, and the optimal value is 4q+5. For large q, we can get an approximation
ratio arbitrarily close to 5

4 .
(2) The algorithm first picks one of intervals with demand 2q, 2q − 1 or 2q − 2, call

it I. If f(I) ≥ demand(I) + q, the adversary removes all other intervals to get an
approximation ratio of at least 3

2 . Otherwise, it removes all intervals other than the

one with demand q, and we get an approximation ratio arbitrarily close to 5
4 for

large q.
(3) The algorithm first picks an interval I other than those mentioned above. If f(I) ≥

2·demand(I), the adversary removes all other intervals and we get an approximation
ratio of 2. Otherwise, there are four cases:

• The interval I is a top interval which has demand q + i with odd i. Then the
adversary removes all items other than the top interval with demand q + i + 2,
and the bottom interval with demand q + i.

• The interval I is a bottom interval which has demand q + i with odd i. Then
the adversary removes all items other than the top interval with demand q + i,
and the bottom interval with demand q + i + 1.

• The interval I is a top interval which has demand q + i with even i. Then the
adversary removes all items other than the top interval with demand q + i + 1,
and the bottom interval with demand q + i.
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• The interval I is a bottom interval which has demand q + i with even i. Then
the adversary removes all items other than the top interval with demand q + i,
and the bottom interval with demand q + i + 2.

For all the above cases, it is not hard to see that we get an approximation ratio
arbitrarily close to 5

4 for large q.

In all cases above, the algorithm would not get a better value by assigning non-consecutive
colors to any interval, and the optimal solution assigns consecutive colors to each interval.
Therefore, the statement holds for both pSMC and npSMC.

Appendix D. Proof of Theorem 4.2

Proof. We start with an interval with demand q. We proceed inductively: for each interval
with demand i, q ≤ i ≤ pq − 1, we add m intervals with demand i + 1, which are contained
in it and does not intersect each other. Depending on the local ordering of the priority
algorithm, there are two cases:

(1) An item I with demand d, less than pq, has the highest priority. If f(I) ≥ 2d, the
adversary removes all other items and we get an approximation ratio of 2. Otherwise,
we know there exist m intervals with demand d + 1 which intersect I but not each
other. If f(I) < 2d, the adversary removes all items other than these m intervals.

We get an approximation ratio of d+m(2d+1)
m(d+1)+2d+1 = 2md+d+m

md+m+2d+1 , which is arbitrarily

close to 2 for large m and d.
(2) The item with highest priority has demand pq, call it I. If f(I) ≥ 3

2pq, the adversary

removes all other items, and we get an approximation ratio of 3
2 . Otherwise, if

f(I) < pq + q, the adversary removes all items except for the one with demand
q. We get at least q(2p + 1), while the optimal value is q(p + 2), which gives
us an approximation ratio of 2, since both p and q can be arbitrarily large. If
f(I) ≥ pq + q, there exists some item with demand f(I) − pq + 1 which intersects
I. The adversary removes all items except this one. We get an approximation ratio

of 2f(I)+1
2f(I)−pq+2 > 3pq+1

2pq+2 , as f(I) < 3
2pq. This approaches to 3

2 for large pq.

As in the proof of the previous theorem, the algorithm would not get a better value by
assigning non-consecutive colors to any interval, and the optimal solution assigns consecutive
colors to each interval. Therefore, the statement holds for both pSMC and npSMC.

Appendix E. Proof of Theorem 4.4

Proof. We start with two graphs, solid vertices have demand 1 and hallow vertices have
demand 2. The graph 1 on the left has 5 vertices, three of them have degree 2 and demand
1, two of them have degree 1 and demand 2. The graph 2 on the right has 2 vertices, both
have degree 1 and demand 2. Note that there is a unique optimal solution of 10 for both
pSMC and npSMC on graph 1. For any adaptive priority algorithm, there are two cases:

• The algorithm first picks a vertex with demand 1 (and degree 2). If it is assigned
color 1, we make it vertex A in the graph 1 above. If it is assigned color greater
than 1, we make it vertex B in the graph 1 above. In any case, the algorithm cannot
obtain the unique optimal multicoloring, so it will get a sum of at least 11, resulting
in an approximation of at least 11

10 .
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Figure 18: Graph 1 to the left and graph 2 to the right

• The algorithm first picks a vertex with demand 2 (and degree 1). If it is assigned
any colors other than 2 and 3, we make it vertex C in the graph 1 above, resulting
in an approximation ratio of at least 11

10 . If it is assigned the colors 2 and 3, we make

it vertex F in the graph 2 above, resulting in an approximation ratio of at least 7
6 .

In any case, the algorithm cannot get an approximation ratio better than 11
10 .
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