CSC2420: Algorithm Design, Analysis & Theory

Lecture 9 (Sub-linear time / space (streaming) algorithms)

Professor: Allan Borodin Scribe: Shobhit Jain

1 Sub-linear time algorithms

In last lecture, we looked at some of the problems that can be solved (or approximated)
using sub-linear time algorithms:

e Diameter of a metric space
e Searching in sorted linked-list

e Estimating the average degree of a graph (incomplete)

1.1 Estimating the average degree of a graph
Problem: Given a graph G = (V,E) and |V| = n, we want to estimate the average

degree d of all vertices of G.

The O(y/n/e?%) time algorithm presented in last lecture computes an estimate within
a factor ~ 2 with sufficiently high probability. As the case with most sub-linear time
algorithms, presentation of this algorithm is also simple but the analysis is not trivial.

Algorithm [1]

fori=1 ... 8/edo

Pick a set S; of s =

Compute dg, = average degree of vertices in |S;| = s = \/n/(¢*9)
end for
Output min,; dg,

To prove the correctness of this algorithm we will prove the following claims:
Let d be the true average degree and S be one of these S;
Claim 1: Prob[ds > (1+¢€)d] <1 — 5 (proved in last lecture)
Claim 2: Prob[ds < 3(1—e)d] < &

Theorem (Chernoff’s bound): Let 71,Z, independent “trials” of Z. Let Z; € {0,1}
and Z =3, Z and p=E[Z] =FE[>], Z;]. Then

Prob

iZi <(1- e)u] < emhe/ (1)

=1

Proof of Claim 2: Let H be /en vertices of highest degree in the graph. Assume
that the random selection of samples is done from L where,

L=V-H (2)

By removing high degree vertices from random samples the prob,ability of obtaining an
average degree dg < %(1 — €)d goes up. Now, the expected value of dg when sampling

from L is,
L(dVI-(5)) _1
> (22— Zg—
Blds] > (z S(d—¢) 3)
Therefore,
1
Prob [ds < 5(1 - e)d] = Prob[ds < (1 — €)E[ds]] (4)
Let x; be the degree of vertex choosen,
Problds < (1 —)Elds]] = Prob| 2= < (1— o |25 (5)
di du
< e s Elwil/dn (Chernoff’s bound) (6)
Ifs> 6’2% we will be done; but we want our bound without knowing dg. There are
two cases:

e Case 1: dyg > @

)
Bl = L (7
|H|dy — |H|?
> — (8)
|H|(1 = e)dn
SR/ 9
d V]
— < M (V1> L)) (10)
= \/”_n (11)
Thus,
s> 672671/2\/5 (12)
e Case 2: dyg < @
_9 dyg €2
< B < — 4] (13)
< e *Ven (14)
— eyn (15)

1.2 Property testing

Definition: “ Given the ability to perform (local) queries concerning a particular object
(e.g., a function, or a graph), the task is to determine whether the object has a pre-
determined (global) property (e.g., linearity or bipartiteness), or is far from having the
property. The task should be performed by inspecting only a small (possibly randomly
selected) part of the whole object, where a small probability of failure is allowed [2].”
Property testing grew out of program testing. In program testing the goal is to check
whether the program computes a specified function. One can test whether a program
satisfies a certain property before checking whether the program computes a specified

function. This paradigm has been followed both in theory of program testing and in
practice through debugging. Different types of problems are studied in the context of
property testing: graph properties, algebraic properties of functions, string properties,
clustering, properties of boolean functions and more [2].

1.2.1 Testing an array for monotonicity

Goal: Given an array of length n with distinct values, test whether it is monotone or
e—far away from monotone [3].

Algorithm

for O(1/e¢) trials do
Randomly choose j where 1 < j <n and let v; = A[j]
Perform a binary search to determine whether v; is in A
if not found report A is not monotone

end for

report A is monotone

The complexity of algorithm is O((1/€) logn).
Let S be a set of successful searches.
Lemma: S is a monotone sub-sequence.

Proof: Given, ¢ < j and ¢,5 € S, at some point the binary search for v; must diverge
from the binary search for v;. Let k be that point then at k,

Ai) < A(k) (16)
A(k) < A@) (17)

This implies that,
A(i) < A(j) (18)

Therefore, S is an increasing sub-sequence.

Claim: If A is monotone the algorithm reports it with sufficiently high probability and
if A is e—far from monotone the algorithm rejects with sufficiently high probability.

Proof: If A is monotone then all the binary searches will succeed and the algorithm al-
ways reports that A is monotone. Suppose A is e—far away from monotone. This implies
|S| < (1 —¢e)n since S is a monotone sub-sequence and if |S| > (1 — €)n, then changing at
most ne coordinates j ¢ S would make the input monotone. That would make A e—close
to monotone. Hence the probability with which the algorithm reports A as monotone is,

Prob[ALG accepts] < (1 —e)t/c (19)
- (1-1p =1 (20)

) €
— et (21)

Thus if A is e—far from monotone, the algorithm rejects with probability 1 — e~ 1.

1.2.2 Testing for element distinctness

Goal: Given unsorted array A of length n, test if all A(¢) are distinct.

Algorithm

Randomly choose set X with \/n/e elements
if X has a repeated element report failure
else report success

The complexity of algorithm is O((y/n/€)logn). If we use hashing the we can get rid
of the logn factor. Proof of correctness is based on “birthday paradox”.

1.2.3 Graph property testing

There are several models for testing properties of graphs. Let G = (V, E), n = |V, and
m = |E|7

1. Dense model: These graphs are represented by its n x n adjacency matrix. We
say that a graph is e—far from having a property in this model if more than an
e—fraction (en?) of its adjacency matrix need to be modified in order to obtain the

property.

2. Sparse/bounded degree model: In this model there is an upper bound d (some
constant) on the degree of vertices. The graph is represented by an n x d matrix.
We say that a graph is e—far from having a property in this model if more than an
e—fraction (edn) of its adjacency matrix should be modified in order to obtain the

property.
Testing K-colorability
Given a dense graph G = (V, E) test,
e (G is k—colorable.

e G is e—far from k—colorable, i.e. need to remove at least en? edges to make it
k—colorable.

For k = 2, the problem reduces to testing the bipartiteness of graph. Given a dense graph
G = (V, E), determine with high probability if it is bipartite or e—far from it.

Algorithm

log(1/¢)

Randomly selects © () vertices

Accept if the sub-graph induced on them is bipartite

In dense model 3 constant time algorithm (with the constant C, . depending on k and
€) such that the algorithm tests for k—colorability (i.e. whether the graph is bipartite or
¢ far from being biparitite).

In sparse model, for constant degree d and e, testing bipartiteness requires Q(1/n) queries
of the “incidence vector”.

Algorithm

for © (%) times

Select a vertex v € V

if 3 odd length cycle of v, report graph is not bipartite
end for

report graph is bipartite

In bipartite graph all cycles are of even length.

2 Sub-linear space (streaming) algorithms

In streaming model input is a sequence of data A(1), A(2),, A(m), ... which is too large
to be stored in memory. The space available is less than linear space << m. Common
types of problems analyzed by streaming algorithms are:

1. Computing frequency (moments) statistics [4]: Let A = (a1, az,a,) be a sequence
of elements, where each a; is a member of N = {1,2,3,...n}. Let m; denote the
number of occurrences of a; in the sequence A, then,

Fp =Y _mf (22)

Fy, are called the frequency moments of A and provide useful statistics on the
sequence. Fy is the number of distinct elements appearing in the sequence, Fj is
the length of the sequence, and F5 is the repeat rate or Gini’s index of homogeneity
needed in order to compute the surprise index of the sequence. Surprise index for

event (i),
Ej Pj2
P;

where, P; = 4. Alon, Matias, and Szegedy [4] showed that for every k > 0, Fj
can be approximated randomly using at most O(nl_l/k log n) memory bits.

Si (23)

2. Finding k “heavy hitters”: Heavy hitters are the items occurring with frequency
above a given threshold. E.g. those a; : a; occurs at least m/k times in the stream.

3. Finding rare or unique values.

References

[1] Di Tri Man Le, Lecture notes 8 - Sublinear Algorithms, CSC2420: Algorithm Design,
Analysis and Theory.

[2] Dana Ron, Property Testing, Handbook of Randomized Computing, p597-649, 2000.

[3] Funda Erg?n , Sampath Kannan , S. Ravi Kumar , Ronitt Rubinfeld , Mahesh
Viswanathan, Spot-checkers, Journal of Computer and System Sciences, v.60 n.3,
p.717-751, June 2000.

[4] Noga Alon , Yossi Matias , Mario Szegedy, The space complexity of approximating
the frequency moments, Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing, p.20-29, May 22-24, 1996.

