
CSC2420: Algorithm Design, Analysis & TheoryLeture 9 (Sub-linear time / spae (streaming) algorithms)Professor: Allan Borodin Sribe: Shobhit Jain1 Sub-linear time algorithmsIn last leture, we looked at some of the problems that an be solved (or approximated)using sub-linear time algorithms:
• Diameter of a metri spae
• Searhing in sorted linked-list
• Estimating the average degree of a graph (inomplete)1.1 Estimating the average degree of a graphProblem: Given a graph G = (V,E) and |V | = n, we want to estimate the averagedegree d of all verties of G.The O(

√
n/ǫ2.5) time algorithm presented in last leture omputes an estimate withina fator ∼ 2 with su�iently high probability. As the ase with most sub-linear timealgorithms, presentation of this algorithm is also simple but the analysis is not trivial.Algorithm [1℄for i = 1 .... 8/ǫ doPik a set Si of s =Compute dSi

= average degree of verties in |Si| = s =
√
n/(ǫ2.5)end forOutput mini dSiTo prove the orretness of this algorithm we will prove the following laims:Let d be the true average degree and S be one of these SiClaim 1: Prob [dS > (1 + ǫ)d] ≤ 1− ǫ

2 (proved in last leture)Claim 2: Prob
[

dS < 1
2 (1− ǫ)d

]

≤ ǫ
64Theorem (Cherno�'s bound): Let Z1, .....Zs independent �trials� of Z. Let Zi ∈ {0, 1}and Z =

∑s
i=1 Zi and µ = E[Z] = E [

∑s
i=1 Zi]. Then

Prob

[

s
∑

i=1

Zi < (1 − ǫ)µ

]

≤ e−µǫ2/4 (1)Proof of Claim 2: Let H be √
ǫn verties of highest degree in the graph. Assumethat the random seletion of samples is done from L where,

L = V −H (2)1



By removing high degree verties from random samples the prob,ability of obtaining anaverage degree dS < 1
2 (1 − ǫ)d goes up. Now, the expeted value of dS when samplingfrom L is,

E[dS ] ≥
1

2

(

d.|V | −
(

H
2

)

|L|

)

=
1

2
(d− ǫ) (3)Therefore,

Prob

[

dS <
1

2
(1− ǫ)d

]

= Prob [dS < (1− ǫ)E[dS ]] (4)Let xi be the degree of vertex hoosen,
Prob [dS < (1− ǫ)E[dS ]] = Prob

[∑

xi

dH
≤ (1 − ǫ)E

[∑

xi

dH

]] (5)
≤ e−ǫ2s.E[xi]/dH (Cherno�'s bound) (6)If s ≥ ǫ−2 dH

E[xi]
we will be done; but we want our bound without knowing dH . There aretwo ases:

• Case 1: dH ≥ |H|
ǫ

E[xi] =
∑

v∈L

d(v)

|L| (7)
≥ |H |dH − |H |2

|L| (8)
≥ |H |(1− ǫ)dH

|L| (9)
=⇒ dH

E[xi]
≤ |V |

|L| (|V | > |L|) (10)
=

n√
ǫn

(11)Thus,
s ≥ ǫ−2ǫ−1/2

√
n (12)

• Case 2: dH < |H|
ǫ

ǫ−2 dH
E[xi]

≤ ǫ−2

ǫ
|H | (13)

≤ ǫ−3
√
ǫn (14)

= ǫ−2.5√n (15)1.2 Property testingDe�nition: � Given the ability to perform (loal) queries onerning a partiular objet(e.g., a funtion, or a graph), the task is to determine whether the objet has a pre-determined (global) property (e.g., linearity or bipartiteness), or is far from having theproperty. The task should be performed by inspeting only a small (possibly randomlyseleted) part of the whole objet, where a small probability of failure is allowed [2℄.�Property testing grew out of program testing. In program testing the goal is to hekwhether the program omputes a spei�ed funtion. One an test whether a programsatis�es a ertain property before heking whether the program omputes a spei�ed2



funtion. This paradigm has been followed both in theory of program testing and inpratie through debugging. Di�erent types of problems are studied in the ontext ofproperty testing: graph properties, algebrai properties of funtions, string properties,lustering, properties of boolean funtions and more [2℄.1.2.1 Testing an array for monotoniityGoal: Given an array of length n with distint values, test whether it is monotone or
ǫ−far away from monotone [3℄.Algorithmfor O(1/ǫ) trials doRandomly hoose j where 1 ≤ j ≤ n and let vj = A[j]Perform a binary searh to determine whether vj is in Aif not found report A is not monotoneend forreport A is monotoneThe omplexity of algorithm is O((1/ǫ) logn).Let S be a set of suessful searhes.Lemma: S is a monotone sub-sequene.Proof: Given, i < j and i, j ∈ S, at some point the binary searh for vi must divergefrom the binary searh for vj . Let k be that point then at k,

A(i) ≤ A(k) (16)
A(k) ≤ A(j) (17)This implies that,
A(i) ≤ A(j) (18)Therefore, S is an inreasing sub-sequene.Claim: If A is monotone the algorithm reports it with su�iently high probability andif A is ǫ−far from monotone the algorithm rejets with su�iently high probability.Proof: If A is monotone then all the binary searhes will sueed and the algorithm al-ways reports that A is monotone. Suppose A is ǫ−far away from monotone. This implies

|S| < (1− ǫ)n sine S is a monotone sub-sequene and if |S| ≥ (1− ǫ)n, then hanging atmost nǫ oordinates j /∈ S would make the input monotone. That would make A ǫ−loseto monotone. Hene the probability with whih the algorithm reports A as monotone is,
Prob[ALG aepts] < (1 − ǫ)1/ǫ (19)

= (1 − 1

δ
)δ , δ =

1

ǫ
(20)

=⇒ e−1 (21)Thus if A is ǫ−far from monotone, the algorithm rejets with probability 1− e−1.1.2.2 Testing for element distintnessGoal: Given unsorted array A of length n, test if all A(i) are distint.Algorithm 3



Randomly hoose set X with √
n/ǫ elementsif X has a repeated element report failureelse report suessThe omplexity of algorithm is O((

√
n/ǫ) logn). If we use hashing the we an get ridof the logn fator. Proof of orretness is based on �birthday paradox�.1.2.3 Graph property testingThere are several models for testing properties of graphs. Let G = (V,E), n = |V |, and

m = |E|,1. Dense model: These graphs are represented by its n × n adjaeny matrix. Wesay that a graph is ǫ−far from having a property in this model if more than an
ǫ−fration (ǫn2) of its adjaeny matrix need to be modi�ed in order to obtain theproperty.2. Sparse/bounded degree model: In this model there is an upper bound d (someonstant) on the degree of verties. The graph is represented by an n × d matrix.We say that a graph is ǫ−far from having a property in this model if more than an
ǫ−fration (ǫdn) of its adjaeny matrix should be modi�ed in order to obtain theproperty.Testing K-olorabilityGiven a dense graph G = (V,E) test,

• G is k−olorable.
• G is ǫ−far from k−olorable, i.e. need to remove at least ǫn2 edges to make it
k−olorable.For k = 2, the problem redues to testing the bipartiteness of graph. Given a dense graph

G = (V,E), determine with high probability if it is bipartite or ǫ−far from it.AlgorithmRandomly selets Θ( log(1/ǫ)
ǫ2

) vertiesAept if the sub-graph indued on them is bipartiteIn dense model ∃ onstant time algorithm (with the onstant Ck,ǫ depending on k and
ǫ) suh that the algorithm tests for k−olorability (i.e. whether the graph is bipartite or
ǫ far from being biparitite).In sparse model, for onstant degree d and ǫ, testing bipartiteness requires Ω(√n) queriesof the �inidene vetor�.Algorithmfor Θ

(

1
ǫ

) timesSelet a vertex v ∈ Vif ∃ odd length yle of v, report graph is not bipartiteend for 4



report graph is bipartiteIn bipartite graph all yles are of even length.2 Sub-linear spae (streaming) algorithmsIn streaming model input is a sequene of data A(1), A(2), ......, A(m), ... whih is too largeto be stored in memory. The spae available is less than linear spae << m. Commontypes of problems analyzed by streaming algorithms are:1. Computing frequeny (moments) statistis [4℄: Let A = (a1, a2, .....an) be a sequeneof elements, where eah ai is a member of N = {1, 2, 3, ...n}. Let mi denote thenumber of ourrenes of ai in the sequene A, then,
Fk =

n
∑

i=1

mk
i (22)

Fk are alled the frequeny moments of A and provide useful statistis on thesequene. F0 is the number of distint elements appearing in the sequene, F1 isthe length of the sequene, and F2 is the repeat rate or Gini's index of homogeneityneeded in order to ompute the surprise index of the sequene. Surprise index forevent (i),
Si =

∑

j P
2
j

Pj
(23)where, Pj =

mj

m . Alon, Matias, and Szegedy [4℄ showed that for every k > 0, Fkan be approximated randomly using at most O(n1−1/k log n) memory bits.2. Finding k �heavy hitters�: Heavy hitters are the items ourring with frequenyabove a given threshold. E.g. those ai : ai ours at least m/k times in the stream.3. Finding rare or unique values.Referenes[1℄ Di Tri Man Le, Leture notes 8 - Sublinear Algorithms, CSC2420: Algorithm Design,Analysis and Theory.[2℄ Dana Ron, Property Testing, Handbook of Randomized Computing, p597-649, 2000.[3℄ Funda Erg?n , Sampath Kannan , S. Ravi Kumar , Ronitt Rubinfeld , MaheshViswanathan, Spot-hekers, Journal of Computer and System Sienes, v.60 n.3,p.717-751, June 2000.[4℄ Noga Alon , Yossi Matias , Mario Szegedy, The spae omplexity of approximatingthe frequeny moments, Proeedings of the twenty-eighth annual ACM symposiumon Theory of omputing, p.20-29, May 22-24, 1996.
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