
CSC2420: Algorithm Design, Analysis & TheoryLe
ture 9 (Sub-linear time / spa
e (streaming) algorithms)Professor: Allan Borodin S
ribe: Shobhit Jain1 Sub-linear time algorithmsIn last le
ture, we looked at some of the problems that 
an be solved (or approximated)using sub-linear time algorithms:
• Diameter of a metri
 spa
e
• Sear
hing in sorted linked-list
• Estimating the average degree of a graph (in
omplete)1.1 Estimating the average degree of a graphProblem: Given a graph G = (V,E) and |V | = n, we want to estimate the averagedegree d of all verti
es of G.The O(

√
n/ǫ2.5) time algorithm presented in last le
ture 
omputes an estimate withina fa
tor ∼ 2 with su�
iently high probability. As the 
ase with most sub-linear timealgorithms, presentation of this algorithm is also simple but the analysis is not trivial.Algorithm [1℄for i = 1 .... 8/ǫ doPi
k a set Si of s =Compute dSi

= average degree of verti
es in |Si| = s =
√
n/(ǫ2.5)end forOutput mini dSiTo prove the 
orre
tness of this algorithm we will prove the following 
laims:Let d be the true average degree and S be one of these SiClaim 1: Prob [dS > (1 + ǫ)d] ≤ 1− ǫ

2 (proved in last le
ture)Claim 2: Prob
[

dS < 1
2 (1− ǫ)d

]

≤ ǫ
64Theorem (Cherno�'s bound): Let Z1, .....Zs independent �trials� of Z. Let Zi ∈ {0, 1}and Z =

∑s
i=1 Zi and µ = E[Z] = E [

∑s
i=1 Zi]. Then

Prob

[

s
∑

i=1

Zi < (1 − ǫ)µ

]

≤ e−µǫ2/4 (1)Proof of Claim 2: Let H be √
ǫn verti
es of highest degree in the graph. Assumethat the random sele
tion of samples is done from L where,

L = V −H (2)1



By removing high degree verti
es from random samples the prob,ability of obtaining anaverage degree dS < 1
2 (1 − ǫ)d goes up. Now, the expe
ted value of dS when samplingfrom L is,

E[dS ] ≥
1

2

(

d.|V | −
(

H
2

)

|L|

)

=
1

2
(d− ǫ) (3)Therefore,

Prob

[

dS <
1

2
(1− ǫ)d

]

= Prob [dS < (1− ǫ)E[dS ]] (4)Let xi be the degree of vertex 
hoosen,
Prob [dS < (1− ǫ)E[dS ]] = Prob

[∑

xi

dH
≤ (1 − ǫ)E

[∑

xi

dH

]] (5)
≤ e−ǫ2s.E[xi]/dH (Cherno�'s bound) (6)If s ≥ ǫ−2 dH

E[xi]
we will be done; but we want our bound without knowing dH . There aretwo 
ases:

• Case 1: dH ≥ |H|
ǫ

E[xi] =
∑

v∈L

d(v)

|L| (7)
≥ |H |dH − |H |2

|L| (8)
≥ |H |(1− ǫ)dH

|L| (9)
=⇒ dH

E[xi]
≤ |V |

|L| (|V | > |L|) (10)
=

n√
ǫn

(11)Thus,
s ≥ ǫ−2ǫ−1/2

√
n (12)

• Case 2: dH < |H|
ǫ

ǫ−2 dH
E[xi]

≤ ǫ−2

ǫ
|H | (13)

≤ ǫ−3
√
ǫn (14)

= ǫ−2.5√n (15)1.2 Property testingDe�nition: � Given the ability to perform (lo
al) queries 
on
erning a parti
ular obje
t(e.g., a fun
tion, or a graph), the task is to determine whether the obje
t has a pre-determined (global) property (e.g., linearity or bipartiteness), or is far from having theproperty. The task should be performed by inspe
ting only a small (possibly randomlysele
ted) part of the whole obje
t, where a small probability of failure is allowed [2℄.�Property testing grew out of program testing. In program testing the goal is to 
he
kwhether the program 
omputes a spe
i�ed fun
tion. One 
an test whether a programsatis�es a 
ertain property before 
he
king whether the program 
omputes a spe
i�ed2



fun
tion. This paradigm has been followed both in theory of program testing and inpra
ti
e through debugging. Di�erent types of problems are studied in the 
ontext ofproperty testing: graph properties, algebrai
 properties of fun
tions, string properties,
lustering, properties of boolean fun
tions and more [2℄.1.2.1 Testing an array for monotoni
ityGoal: Given an array of length n with distin
t values, test whether it is monotone or
ǫ−far away from monotone [3℄.Algorithmfor O(1/ǫ) trials doRandomly 
hoose j where 1 ≤ j ≤ n and let vj = A[j]Perform a binary sear
h to determine whether vj is in Aif not found report A is not monotoneend forreport A is monotoneThe 
omplexity of algorithm is O((1/ǫ) logn).Let S be a set of su

essful sear
hes.Lemma: S is a monotone sub-sequen
e.Proof: Given, i < j and i, j ∈ S, at some point the binary sear
h for vi must divergefrom the binary sear
h for vj . Let k be that point then at k,

A(i) ≤ A(k) (16)
A(k) ≤ A(j) (17)This implies that,
A(i) ≤ A(j) (18)Therefore, S is an in
reasing sub-sequen
e.Claim: If A is monotone the algorithm reports it with su�
iently high probability andif A is ǫ−far from monotone the algorithm reje
ts with su�
iently high probability.Proof: If A is monotone then all the binary sear
hes will su

eed and the algorithm al-ways reports that A is monotone. Suppose A is ǫ−far away from monotone. This implies

|S| < (1− ǫ)n sin
e S is a monotone sub-sequen
e and if |S| ≥ (1− ǫ)n, then 
hanging atmost nǫ 
oordinates j /∈ S would make the input monotone. That would make A ǫ−
loseto monotone. Hen
e the probability with whi
h the algorithm reports A as monotone is,
Prob[ALG a

epts] < (1 − ǫ)1/ǫ (19)

= (1 − 1

δ
)δ , δ =

1

ǫ
(20)

=⇒ e−1 (21)Thus if A is ǫ−far from monotone, the algorithm reje
ts with probability 1− e−1.1.2.2 Testing for element distin
tnessGoal: Given unsorted array A of length n, test if all A(i) are distin
t.Algorithm 3



Randomly 
hoose set X with √
n/ǫ elementsif X has a repeated element report failureelse report su

essThe 
omplexity of algorithm is O((

√
n/ǫ) logn). If we use hashing the we 
an get ridof the logn fa
tor. Proof of 
orre
tness is based on �birthday paradox�.1.2.3 Graph property testingThere are several models for testing properties of graphs. Let G = (V,E), n = |V |, and

m = |E|,1. Dense model: These graphs are represented by its n × n adja
en
y matrix. Wesay that a graph is ǫ−far from having a property in this model if more than an
ǫ−fra
tion (ǫn2) of its adja
en
y matrix need to be modi�ed in order to obtain theproperty.2. Sparse/bounded degree model: In this model there is an upper bound d (some
onstant) on the degree of verti
es. The graph is represented by an n × d matrix.We say that a graph is ǫ−far from having a property in this model if more than an
ǫ−fra
tion (ǫdn) of its adja
en
y matrix should be modi�ed in order to obtain theproperty.Testing K-
olorabilityGiven a dense graph G = (V,E) test,

• G is k−
olorable.
• G is ǫ−far from k−
olorable, i.e. need to remove at least ǫn2 edges to make it
k−
olorable.For k = 2, the problem redu
es to testing the bipartiteness of graph. Given a dense graph

G = (V,E), determine with high probability if it is bipartite or ǫ−far from it.AlgorithmRandomly sele
ts Θ( log(1/ǫ)
ǫ2

) verti
esA

ept if the sub-graph indu
ed on them is bipartiteIn dense model ∃ 
onstant time algorithm (with the 
onstant Ck,ǫ depending on k and
ǫ) su
h that the algorithm tests for k−
olorability (i.e. whether the graph is bipartite or
ǫ far from being biparitite).In sparse model, for 
onstant degree d and ǫ, testing bipartiteness requires Ω(√n) queriesof the �in
iden
e ve
tor�.Algorithmfor Θ

(

1
ǫ

) timesSele
t a vertex v ∈ Vif ∃ odd length 
y
le of v, report graph is not bipartiteend for 4



report graph is bipartiteIn bipartite graph all 
y
les are of even length.2 Sub-linear spa
e (streaming) algorithmsIn streaming model input is a sequen
e of data A(1), A(2), ......, A(m), ... whi
h is too largeto be stored in memory. The spa
e available is less than linear spa
e << m. Commontypes of problems analyzed by streaming algorithms are:1. Computing frequen
y (moments) statisti
s [4℄: Let A = (a1, a2, .....an) be a sequen
eof elements, where ea
h ai is a member of N = {1, 2, 3, ...n}. Let mi denote thenumber of o

urren
es of ai in the sequen
e A, then,
Fk =

n
∑

i=1

mk
i (22)

Fk are 
alled the frequen
y moments of A and provide useful statisti
s on thesequen
e. F0 is the number of distin
t elements appearing in the sequen
e, F1 isthe length of the sequen
e, and F2 is the repeat rate or Gini's index of homogeneityneeded in order to 
ompute the surprise index of the sequen
e. Surprise index forevent (i),
Si =

∑

j P
2
j

Pj
(23)where, Pj =

mj

m . Alon, Matias, and Szegedy [4℄ showed that for every k > 0, Fk
an be approximated randomly using at most O(n1−1/k log n) memory bits.2. Finding k �heavy hitters�: Heavy hitters are the items o

urring with frequen
yabove a given threshold. E.g. those ai : ai o

urs at least m/k times in the stream.3. Finding rare or unique values.Referen
es[1℄ Di Tri Man Le, Le
ture notes 8 - Sublinear Algorithms, CSC2420: Algorithm Design,Analysis and Theory.[2℄ Dana Ron, Property Testing, Handbook of Randomized Computing, p597-649, 2000.[3℄ Funda Erg?n , Sampath Kannan , S. Ravi Kumar , Ronitt Rubinfeld , MaheshViswanathan, Spot-
he
kers, Journal of Computer and System S
ien
es, v.60 n.3,p.717-751, June 2000.[4℄ Noga Alon , Yossi Matias , Mario Szegedy, The spa
e 
omplexity of approximatingthe frequen
y moments, Pro
eedings of the twenty-eighth annual ACM symposiumon Theory of 
omputing, p.20-29, May 22-24, 1996.
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