CSC2420: Algorithm Design, Analysis \& Theory
 Lecture 9 (Sub-linear time / space (streaming) algorithms)
 Professor: Allan Borodin
 Scribe: Shobhit Jain

1 Sub-linear time algorithms

In last lecture, we looked at some of the problems that can be solved (or approximated) using sub-linear time algorithms:

- Diameter of a metric space
- Searching in sorted linked-list
- Estimating the average degree of a graph (incomplete)

1.1 Estimating the average degree of a graph

Problem: Given a graph $G=(V, E)$ and $|V|=n$, we want to estimate the average degree d of all vertices of G.

The $O\left(\sqrt{n} / \epsilon^{2.5}\right)$ time algorithm presented in last lecture computes an estimate within a factor ~ 2 with sufficiently high probability. As the case with most sub-linear time algorithms, presentation of this algorithm is also simple but the analysis is not trivial.

Algorithm [1]

```
for i=1 ... 8/\epsilon do
    Pick a set Si of s=
    Compute d}\mp@subsup{d}{\mp@subsup{S}{i}{}}{}=\mathrm{ average degree of vertices in }|\mp@subsup{S}{i}{}|=s=\sqrt{}{n}/(\mp@subsup{\epsilon}{}{2.5}
end for
Output min}\mp@subsup{\mp@code{m}}{\mp@subsup{S}{S}{}}{
```

To prove the correctness of this algorithm we will prove the following claims:
Let d be the true average degree and S be one of these S_{i}
Claim 1: $\operatorname{Prob}\left[d_{S}>(1+\epsilon) d\right] \leq 1-\frac{\epsilon}{2}$ (proved in last lecture)
Claim 2: $\operatorname{Prob}\left[d_{S}<\frac{1}{2}(1-\epsilon) d\right] \leq \frac{\epsilon}{64}$
Theorem (Chernoff's bound): Let $Z_{1}, \ldots . Z_{s}$ independent "trials" of Z. Let $Z_{i} \in\{0,1\}$ and $Z=\sum_{i=1}^{s} Z_{i}$ and $\mu=E[Z]=E\left[\sum_{i=1}^{s} Z_{i}\right]$. Then

$$
\begin{equation*}
\operatorname{Prob}\left[\sum_{i=1}^{s} Z_{i}<(1-\epsilon) \mu\right] \leq e^{-\mu \epsilon^{2} / 4} \tag{1}
\end{equation*}
$$

Proof of Claim 2: Let H be $\sqrt{\epsilon n}$ vertices of highest degree in the graph. Assume that the random selection of samples is done from L where,

$$
\begin{equation*}
L=V-H \tag{2}
\end{equation*}
$$

By removing high degree vertices from random samples the prob,ability of obtaining an average degree $d_{S}<\frac{1}{2}(1-\epsilon) d$ goes up. Now, the expected value of d_{S} when sampling from L is,

$$
\begin{equation*}
E\left[d_{S}\right] \geq \frac{1}{2}\left(\frac{d .|V|-\binom{H}{2}}{|L|}\right)=\frac{1}{2}(d-\epsilon) \tag{3}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\operatorname{Prob}\left[d_{S}<\frac{1}{2}(1-\epsilon) d\right]=\operatorname{Prob}\left[d_{S}<(1-\epsilon) E\left[d_{S}\right]\right] \tag{4}
\end{equation*}
$$

Let x_{i} be the degree of vertex choosen,

$$
\begin{align*}
\operatorname{Prob}\left[d_{S}<(1-\epsilon) E\left[d_{S}\right]\right] & =\operatorname{Prob}\left[\frac{\sum x_{i}}{d_{H}} \leq(1-\epsilon) E\left[\frac{\sum x_{i}}{d_{H}}\right]\right] \tag{5}\\
& \leq e^{-\epsilon^{2} s \cdot E\left[x_{i}\right] / d_{H}} \quad \text { (Chernoff's bound) } \tag{6}
\end{align*}
$$

If $s \geq \epsilon^{-2} \frac{d_{H}}{E\left[x_{i}\right]}$ we will be done; but we want our bound without knowing d_{H}. There are two cases:

- Case 1: $d_{H} \geq \frac{|H|}{\epsilon}$

$$
\begin{align*}
E\left[x_{i}\right] & =\sum_{v \in L} \frac{d(v)}{|L|} \tag{7}\\
& \geq \frac{|H| d_{H}-|H|^{2}}{|L|} \tag{8}\\
& \geq \frac{|H|(1-\epsilon) d_{H}}{|L|} \tag{9}\\
\Longrightarrow \frac{d_{H}}{E\left[x_{i}\right]} & \leq \frac{|V|}{|L|} \quad(|V|>|L|) \tag{10}\\
& =\frac{n}{\sqrt{\epsilon n}} \tag{11}
\end{align*}
$$

Thus,

$$
\begin{equation*}
s \geq \epsilon^{-2} \epsilon^{-1 / 2} \sqrt{n} \tag{12}
\end{equation*}
$$

- Case 2: $d_{H}<\frac{|H|}{\epsilon}$

$$
\begin{align*}
\epsilon^{-2} \frac{d_{H}}{E\left[x_{i}\right]} & \leq \frac{\epsilon^{-2}}{\epsilon}|H| \tag{13}\\
& \leq \epsilon^{-3} \sqrt{\epsilon n} \tag{14}\\
& =\epsilon^{-2.5} \sqrt{n} \tag{15}
\end{align*}
$$

1.2 Property testing

Definition: " Given the ability to perform (local) queries concerning a particular object (e.g., a function, or a graph), the task is to determine whether the object has a predetermined (global) property (e.g., linearity or bipartiteness), or is far from having the property. The task should be performed by inspecting only a small (possibly randomly selected) part of the whole object, where a small probability of failure is allowed [2]."

Property testing grew out of program testing. In program testing the goal is to check whether the program computes a specified function. One can test whether a program satisfies a certain property before checking whether the program computes a specified
function. This paradigm has been followed both in theory of program testing and in practice through debugging. Different types of problems are studied in the context of property testing: graph properties, algebraic properties of functions, string properties, clustering, properties of boolean functions and more [2].

1.2.1 Testing an array for monotonicity

Goal: Given an array of length n with distinct values, test whether it is monotone or ϵ-far away from monotone [3].

Algorithm

```
for \(O(1 / \epsilon)\) trials do
    Randomly choose \(j\) where \(1 \leq j \leq n\) and let \(v_{j}=A[j]\)
    Perform a binary search to determine whether \(v_{j}\) is in \(A\)
    if not found report \(A\) is not monotone
end for
report \(A\) is monotone
```

The complexity of algorithm is $O((1 / \epsilon) \log n)$.
Let S be a set of successful searches.

Lemma: S is a monotone sub-sequence.
Proof: Given, $i<j$ and $i, j \in S$, at some point the binary search for v_{i} must diverge from the binary search for v_{j}. Let k be that point then at k,

$$
\begin{align*}
A(i) & \leq A(k) \tag{16}\\
A(k) & \leq A(j) \tag{17}
\end{align*}
$$

This implies that,

$$
\begin{equation*}
A(i) \leq A(j) \tag{18}
\end{equation*}
$$

Therefore, S is an increasing sub-sequence.
Claim: If A is monotone the algorithm reports it with sufficiently high probability and if A is ϵ-far from monotone the algorithm rejects with sufficiently high probability.
Proof: If A is monotone then all the binary searches will succeed and the algorithm always reports that A is monotone. Suppose A is ϵ-far away from monotone. This implies $|S|<(1-\epsilon) n$ since S is a monotone sub-sequence and if $|S| \geq(1-\epsilon) n$, then changing at most $n \epsilon$ coordinates $j \notin S$ would make the input monotone. That would make $A \epsilon$-close to monotone. Hence the probability with which the algorithm reports A as monotone is,

$$
\begin{align*}
\operatorname{Prob}[A L G \text { accepts }] & <(1-\epsilon)^{1 / \epsilon} \tag{19}\\
& =\left(1-\frac{1}{\delta}\right)^{\delta}, \delta=\frac{1}{\epsilon} \tag{20}\\
& \Longrightarrow e^{-1} \tag{21}
\end{align*}
$$

Thus if A is ϵ-far from monotone, the algorithm rejects with probability $1-e^{-1}$.

1.2.2 Testing for element distinctness

Goal: Given unsorted array A of length n, test if all $A(i)$ are distinct.

Algorithm

Randomly choose set X with \sqrt{n} / ϵ elements
if X has a repeated element report failure
else report success
The complexity of algorithm is $O((\sqrt{n} / \epsilon) \log n)$. If we use hashing the we can get rid of the $\log n$ factor. Proof of correctness is based on "birthday paradox".

1.2.3 Graph property testing

There are several models for testing properties of graphs. Let $G=(V, E), n=|V|$, and $m=|E|$,

1. Dense model: These graphs are represented by its $n \times n$ adjacency matrix. We say that a graph is ϵ-far from having a property in this model if more than an ϵ-fraction $\left(\epsilon n^{2}\right)$ of its adjacency matrix need to be modified in order to obtain the property.
2. Sparse/bounded degree model: In this model there is an upper bound d (some constant) on the degree of vertices. The graph is represented by an $n \times d$ matrix. We say that a graph is ϵ-far from having a property in this model if more than an ϵ-fraction ($\epsilon d n$) of its adjacency matrix should be modified in order to obtain the property.

Testing K-colorability

Given a dense graph $G=(V, E)$ test,

- G is k-colorable.
- G is ϵ-far from k-colorable, i.e. need to remove at least ϵn^{2} edges to make it k-colorable.

For $k=2$, the problem reduces to testing the bipartiteness of graph. Given a dense graph $G=(V, E)$, determine with high probability if it is bipartite or ϵ-far from it.

Algorithm
Randomly selects $\Theta\left(\frac{\log (1 / \epsilon)}{\epsilon^{2}}\right)$ vertices
Accept if the sub-graph induced on them is bipartite
In dense model \exists constant time algorithm (with the constant $C_{k, \epsilon}$ depending on k and $\epsilon)$ such that the algorithm tests for k-colorability (i.e. whether the graph is bipartite or ϵ far from being biparitite).

In sparse model, for constant degree d and ϵ, testing bipartiteness requires $\Omega(\sqrt{n})$ queries of the "incidence vector".

Algorithm

```
for }\Theta(\frac{1}{\epsilon})\mathrm{ times
        Select a vertex v\inV
        if \exists odd length cycle of }v\mathrm{ , report graph is not bipartite
end for
```

report graph is bipartite
In bipartite graph all cycles are of even length.

2 Sub-linear space (streaming) algorithms

In streaming model input is a sequence of data $A(1), A(2), \ldots \ldots, A(m), \ldots$ which is too large to be stored in memory. The space available is less than linear space $\ll m$. Common types of problems analyzed by streaming algorithms are:

1. Computing frequency (moments) statistics [4]: Let $A=\left(a_{1}, a_{2}, \ldots . . a_{n}\right)$ be a sequence of elements, where each a_{i} is a member of $N=\{1,2,3, \ldots n\}$. Let m_{i} denote the number of occurrences of a_{i} in the sequence A, then,

$$
\begin{equation*}
F_{k}=\sum_{i=1}^{n} m_{i}^{k} \tag{22}
\end{equation*}
$$

F_{k} are called the frequency moments of A and provide useful statistics on the sequence. F_{0} is the number of distinct elements appearing in the sequence, F_{1} is the length of the sequence, and F_{2} is the repeat rate or Gini's index of homogeneity needed in order to compute the surprise index of the sequence. Surprise index for event (i),

$$
\begin{equation*}
S_{i}=\frac{\sum_{j} P_{j}^{2}}{P_{j}} \tag{23}
\end{equation*}
$$

where, $P_{j}=\frac{m_{j}}{m}$. Alon, Matias, and Szegedy [4] showed that for every $k>0, F_{k}$ can be approximated randomly using at most $O\left(n^{1-1 / k} \log n\right)$ memory bits.
2. Finding k "heavy hitters": Heavy hitters are the items occurring with frequency above a given threshold. E.g. those $a_{i}: a_{i}$ occurs at least m / k times in the stream.
3. Finding rare or unique values.

References

[1] Di Tri Man Le, Lecture notes 8 - Sublinear Algorithms, CSC2420: Algorithm Design, Analysis and Theory.
[2] Dana Ron, Property Testing, Handbook of Randomized Computing, p597-649, 2000.
[3] Funda Erg?n , Sampath Kannan , S. Ravi Kumar , Ronitt Rubinfeld , Mahesh Viswanathan, Spot-checkers, Journal of Computer and System Sciences, v. 60 n.3, p.717-751, June 2000.
[4] Noga Alon, Yossi Matias, Mario Szegedy, The space complexity of approximating the frequency moments, Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, p.20-29, May 22-24, 1996.

