
CSC2420: Algorithm Design, Analysis and Theory Nov 3, 2010

Lecture Notes 8: Sublinear Algorithms
Professor: Allan Borodin Scribe: Dai Tri Man L̂e

Before we start with sublinear algorithms, we will finish the proof that we promised in the
previous lecture.

1 Proof of (k + 1)-approximation for maximizing a submodular set function on
k-independence set system

Theorem 1. The natural greedy algorithm achieves(k+1)-approximation for the problem of max-
imizing a submodular set functionf(S) subject toS being independent in ak-independence set
system (k-matroid). �

This result was originally attributed to Nemhauser, Wolsey, and Fisher [4],but they only claimed
this result without a proof. Jenkyns was the first to give a full proof ofthis result. We will discuss a
simplified proof due to Calinescu et al [1].

Proof. If we have(α+1)-approximation for incremental oracle then approximation bound isαk+1.
Let β ≤ 1 andβ = 1/α. Then we want

f(Greedy) ≥ β

k + β
f(OPT).

Assume the sequence of sets produced as each iteration of the greedy algorithm is

S1, S2, . . . , St,

whereSi = Si−1 ∪ {ei} andSt = Greedy . We let

δi := pei(Si−1) = f(Si)− f(Si−1)

denote the improvement in the solution value whenei is added intoSi−1.

The goal for us now is to construct a partition ofOPT = O1 ∪ O2 ∪ . . . ∪ Ot so that we can
charge profit inOi to δi. For this purpose, we need the following importantCharging Lemma.

Lemma 1 (Charging Lemma).We can construct a partion ofOPT = O1 ∪ O2 ∪ . . . ∪ Ot such
that

δi ≥
β

k
fOi

(St)

for every1 ≤ i ≤ t. �

Sketch of proof (of Charging Lemma).Then we can construct the partition ofO using the following
algorithm.

8 - 1

Algorithm:

Tt ← 0
for i = t to 2do

Bi ← {e ∈ Ti | Si−1 ∪ {e} is independent}
if |Bi| ≤ k then
Oi ← Bi

else
Oi is anyk-subset ofBi.

end if
Ti−1 = Ti \Bi

end for
O1 = T1

Clearly,|Oi| ≤ k for i ≥ 2. Thus it only remains to show|O1| ≤ k. For this purpose, they showed
by induction oni = t, . . . , 1 that |Ti| ≤ i · k. The proof needs thek-independence property even in
the base case. For a more detailed proof of this lemma, the reader is referred to [1, page 28]. ⊓⊔

Using the Charging Lemma, we can complete the proof of the theorem as follows.

f(Greedy) = f(St) =
t
∑

i=1

δi

≥ β

k

(

t
∑

i=1

fOi
(St)

)

≥ β

k
fOPT (St) (by submodularity)

≥ β

k
[f(OPT)− f(Greedy)] (by submodularity)

⊓⊔

2 An overview of computational complexity

The content of this “bonus” section is adapted from a distinguished Fields lecture given by Avi
Wigderson in Sept 14th, 2010. Since we use randomness extensively when designing sublinear
algorithms, it would be useful to review the role of randomness in computational complexity theory.
We also review briefly theP vs.NP question.

2.1 Hard vs. easy problems

Consider the problem of multiplying two integers. This is clearly an easy problem since the simple
grade school multiplication algorithm can return the product of two twon digit numbers inO(n2)
steps. Thus a problem iseasyif it can be solved by a polynomial time algorithm, i.e., algorithm that

8 - 2

runs in polynomial steps with respect to the size of the input. The class of all problems that can be
solved using a polynomial time algorithm is denoted byP.

Next consider the FACTORING problem, where we want to split an integer into two smaller
non-trivial divisors, which when multiplied together equal the original integer. The best known
algorithm for factoring takesO(exp(

√
n)) steps on ann digit input. It is open whether factoring has

a polynomial time algorithm or not. So we don’t know if factoring is a hard problem. However, it
is widely believe that factoring is hard since the theory of public key cryptography depends on the
hardness of factoring. We call a problemhard if there is no polynomial time algorithm solving it.

2.2 TheP vs.NP question

Consider the MAP COLORING problem, where we take input as a planar mapM with n countries.
We observe the following questions:

– 2-COLORING: IsM 2-colorable?
– 3-COLORING: IsM 3-colorable?
– 4-COLORING: IsM 4-colorable?

The 2-COLORING problem is clearly easy since we answer using a simple greedy algorithm.
The 4-COLORING problem is extremely easy since the answer is always yes for every planar graph
by the four color theorem. However, it remains unknown if the 3-COLORING problem is easy or
not, but we know the following theorem:

Theorem 2 (Cook-Levin ’71, Karp ’72). 3-COLORING is NP-complete. �

HereNP stands fornondeterministic polynomial time. Intuitively, NP is the class of problems
whose solutions can be verified easily. For example, for 3-COLORING, once given a coloring of the
mapM , we can easily check in polynomial time if that coloring is valid by checking if anytwo
adjacent countries have different color.

A problem inNP is calledNP-complete if and only if we can reduce any otherNP problems
to it by a polynomial time transformation of the inputs. In fact, many problems in all sciences and
engineering areNP-complete.

Note that we know FACTORING is inNP since we can easily check if the product of two integers
is equal to another integer. But it remains open whether or not FACTORING is NP-complete.

The most fundamental question, i.e., theP vs.NP question, in computational complexity can be
stated as following: is the 3-COLORING problem (or any otherNP-complete problem) easy? Most
of complexity theorists believe that allNP-complete problems are hard, i.e., they believe that

Conjecture 1.P 6= NP. �

2.3 The power of randomness in saving time

The main idea is to introduce randomness into the polynomial time algorithm, and we only require
good probabilistic algorithm to succeed with high probability, e.g., with 99.99% probability. But
one might ask why we tolerate errors? The reasons are:

– We tolerate errors in life.

8 - 3

– We can make the probability of errors exponentially small by repetition.
– To compensate, we can achieve much more. . .

We will next see two famous problems, for which we haveprobabilistic polynomial timealgo-
rithms, but no deterministic polynomial time algorithms are known.

PRIMES . Consider the following problem asked by Gauss: givenx ∈ [2n, 2n+1], is x prime?
Two simple and fast probabilistic algorithms were invented in 1975 by Solovay-Strassen and Ra-
bin. In fact, Solovay-Strassen and Rabin are the first to introduce randomness into algorithms. A
later breakthrough is the discovery of polynomial time deterministic algorithm, akaAKS algorithm,
for primality testing in 2002 due to Agrawal, Kayal and Saxena, but the AKS algorithm is not as
efficient, and thus rarely used in practice.

However, no deterministic polynomial time algorithm is known for the following closely related
problem: given n, find a prime in[2n, 2n+1]. But we can solve the problem using the following
simple probabilistic algorithm: pick at random a sequence of random numbersx1, x2, . . . , x100n
from [2n, 2n+1], and for eachxi apply primality test. By theprime number theorem, we can easily
show that thatProb[∃i, xi is a prime] is very high.

POLYNOMIAL I DENTITIES . For example, we want to check if

det

1 x1 x21 . . . xn−1
1

1 x2 x22 . . . xn−1
2

1 x3 x23 . . . xn−1
3

...
...

...
. ..

...
1 xn x2n . . . xn−1

n

−
∏

1≤i<j≤n

(xj − xi) ≡ 0?

We know from a theorem by Vandermonde, the answer is yes. But assumethat we don’t know
this theorem, how do we check if this identity is true?

In general, given (implicitly, e.g. as a formula) a polynomialp(x1, . . . , xn) of degreed, we want
to known ifp(x1, . . . , xn) ≡ 0. The following probabilistic algorithm by Schwartz-Zippel from ’80
solves the problem: pickri independently at random from1, 2, , 100d. Then

p ≡ 0⇒ Prob[p(r1, . . . , rn) = 0] = 1

p 6≡ 0⇒ Prob[p(r1, . . . , rn) 6= 0] > .99

Again no polynomial time deterministic algorithm is known for this problem.

This leads us to the second most fundamental question of computational complexity. We want
to know whether or not randomness helps in saving time. In other words, are there problems with
probabilistic polynomial time algorithm but no deterministic one? One might conjecture that:

Conjecture 2.There exists a problem that can be solved with a probabilistic polynomial time algo-
rithm but not with a deterministic polynomial time one. Formally,BPP 6= P. �

Surprisingly, recent progress in computational complexity suggests that Conjecture 2 might be
false! There are, essentially, two general arguments to support this belief thatBPP = P. The first

8 - 4

argument is empirical: a large number of randomized algorithms use existing random sources (with
no guarantees as to their properties) and the results do not seem to be adversely impacted. It is also
the case that many randomized algorithms have been dererandomized withoutaccess to any source
of randomness. The second argument (and perhaps more compelling argument) is that, under some
plausible (what many believe to be more plausible thanBPP 6= P) complexity assumption (namely,
that there exists a problem, say SAT, in exponential time that requires exponential size circuits),
we can build devices, calledpseudorandom generators, which can be used to derandomize any
probabilistic polynomial time algorithm to get a deterministic polynomial time one. To learn more
about the area ofderandomization, the reader is referred to the surveys [3,2].

3 What are sublinear algorithms?

By sublinear algorithms, we meansublinear time algorithmsand sublinear space algorithms. It
seems that what can be achieved must be simple since we can’t see the wholeinput in sublinear
time/space. To solve more nontrivial problems, we allow approximation and the use of random-
ness in the computation. Note that, in contrast to the complexity theory world, we seem to need
randomness in the design of sublinear time/space algorithms.

Sublinear space algorithms.For sublinear space algorithms, we assume that the Turing machine
has a read-only tape, a sublinear working space, and a write-only output tape. The “gold standard”
isO(log n) working space.

Similar to time complexity, we can also define complexity classes in term of working space. We
let L denote the class of problems that can be solved by a deterministic machines using O(logn)
space. The classL also has complete problem with respect to log-space reducibility. An interesting
complete problem forL is the following UNDIRECTEDREACHABILITY problem: given aundirected
graph and two vertices on the graphs andt, decide wether or nott is reachable froms?

We letNL denote the class of problems that can be solved by anon-deterministicmachines using
O(logn) space. The classNL also has complete problem with respect to log-space reducibility. The
standard complete problem forNL is the DIRECTED REACHABILITY problem: given adirected
graph and two vertices on the graphs andt, decide wether or nott is reachable froms?

The only connection we know betweenL andNL is the following theorem due to Savitch. Let
DSPACE(log2 n) denote the class of problems that can be solved by deterministic machines using
O(log2 n) space. Then Savitch’s theorem can be stated as following.

Theorem 3 (Savitch).NL ⊆ DSPACE(log2 n). �

However, it remains open whetherNL 6= L. The classNL and its complementcoNL exhibit a very
surprising relationship.

Theorem 4 (Immerman-Szelepcśenyi).NL = coNL. �

This theorem is counter-intuitive since it seems that we have to check all possible paths of the non-
deterministic computation to decide acoNL problem.

One important subclass of sublinear algorithms arestream algorithms. For stream algorithms,
we look at input as a stream of items, and we can’t backtrack on input, andwe can use only a “small”
working space, where “gold standard” isO(logn) space. Again to do more useful things with stream

8 - 5

algorithms, we usually allow randomness in our computation. The main goal is to study when we
can and cannot get answers with stream algorithms, i.e., we want to prove positive (upper-bound)
and negative (lower-bound) results about this model.

Sublinear time algorithms. An algorithm issublinear timeif its running time iso(n). As such
an algorithm must provide an answer without reading the entire input. Thus toachieve non-trivial
tasks, we also allow randomness in sublinear time algorithms.

4 Sublinear time algorithm

For the rest of this lecture, we will focus only on sublinear time algorithms. We will discuss some
interesting problems that can be solved (or approximated) using sublinear timealgorithms

4.1 Diameter of a metric space

Problem: Given pointsx1, . . . , xn in an arbitrarily metric spaceM and distancesd(xi, xj) satis-
fying the following condition:

d(x, x) = 0

d(x, y) = d(y, x)

d(x, z) ≤ d(z, y) + d(y, z)

Goal: computediameter(M) = maxx,y∈M d(x, y). �

Note that since we haveO(n2) distances, the input “genuinely” hasO(n2) items. We claim
that the following algorithmO(n)-time algorithm guarantees a2-approximation for this problem:
choosex ∈M arbitrarily (i.e.,x = x1), and then letd′ = maxy d(x, y). We next prove this claim.

Proof. We recall thatdiameter(M) = d(u, v) for some pointsu andv. And the property of dis-
tances, we have

d(u, v) ≤ d(u, x) + d(x, v).

Thus, we haved′ ≤ diameter(M) ≤ 2d′ as desired. ⊓⊔

4.2 Searching in a sorted linked-list

Problem: Assume thatn elements are stored in a linked-list, where each list element has access to
the next element of the list, and the linked-list is sorted (i.e, ifx follows y in the linked-list, then
y < x). We also assume that alln linked-list elements are stored in an arrayA (but the array is not
sorted and we do not impose any order for the array elements).
Goal: givenx, determine ifx ∈ A, and if so outputi such thatx = A(i). �

8 - 6

Algorithm: If we know where list starts, says atA(i), then we searchA(i), . . . , A(i+ 2
√
n). If x

is found, then report. Else, choose
√
n randomj’s and searchA(j1), . . . , A(j√n) to get ani such

that
A(i) = max

ℓ∈{j1,...j√n
}

A(i)≤x

A(i).

Then, starting from the linked list node stored atA(i), search forward on the linked list for2
√
n

steps. If found, then report success, else report failure. �

To show that the algorithm is a correct randomized algorithm with one-sided error for our prob-
lem, we want to show the following proposition.

Proposition 1. For all x, we have

1. if x ∈ A, then with probability at least6/7 the algorithm will findi such thatA(i) = x.
2. if x 6∈ A, then the algorithm will always report failure.

Proof. The condition (2) is clear since ifx is not on the list, then the algorithm will never find any
i such thatA(i) = x, and the algorithm will always fail to findx. It remains to show condition (1).
Assumex ∈ A. Since the algorithm basically samples intervals,

Prob[x is not in any of the randomly chosen intervals] ≤ (1− t/n)
√
n,

wheret is the size of each chosen interval and for our algorithmt = 2
√
n. Before proceeding, we

need the following facts that we use very often when analyzing randomizedalgorithms.

Fact 1.
(

1− 1

m

)m

<
1

e
lim

m→∞

(

1− 1

m

)m

=
1

e

Thus, we have

Prob[x is not in any of the randomly chosen intervals] ≤
(

1− 2
√
n

n

)

√
n

=

(

1− 2√
n

)

√

n

2
·2

<

(

1

e

)2

<
1

7
.

Thus the probability that the algorithm will findx is at least6/7. ⊓⊔

4.3 Estimating the average degree of a graph

Problem: Given a graphG = (V,E) and|V | = n, we want to estimate the average degreed of all
vertices ofG. �

We want to construct an algorithm that approximates the average degree with approximation
ratio less than(2 + ǫ) with probability at least3/4 in timeO(

√
n/ǫ).

8 - 7

Let di denote the degree of vertexvi and we know thatdi ∈ {1, . . . , n − 1}. We assume that
we have an oracle access todi. We will consider a weaker result when the algorithm will take
O
(√

n/(ǫ2.5)
)

. We claim the following algorithm will achieve the approximation ratio less than
(2 + ǫ) with probability at least3/4.

Algorithm:

for i = 1 to 8/ǫ do
Pick a setSi of vertices at random such that|Si| = s =

√
n/(ǫ2.5)

Compute average degreedSi
of vertices inSi

end for
Outputmini dSi

To prove the correctness of this algorithm, we need the following lemma.

Lemma 2. LetS be anySi, then

1. Prob
[

dS > (1 + ǫ)d
]

< 1− ǫ

2
2. Prob

[

dS > (1+ǫ)d
2

]

<
ǫ

64

From this lemma, we can show the correctness of our algorithm (ALG) as follows.

Proof. From Part (1) of the lemma, it follows that

Prob
[

ALG > (1 + ǫ)d
]

= Prob
[

dSi
> (1 + ǫ)d, for all i

]

= Prob
[

dS > (1 + ǫ)d
]8/ǫ

<
(

1− ǫ

2

)8/ǫ
≤ e−4 (by Fact 1)

≤ 1/8

Also, we have

Prob

[

ALG <
(1 + ǫ)d

2

]

= Prob

[

dSi
<

(1 + ǫ)d

2
, for somei

]

≤
∑

i

Prob

[

dSi
<

(1 + ǫ)d

2

]

(by union bound)

≤ 8

ǫ
· ǫ

64
=

1

8

We note that if the algorithm fails to get an estimation, then

ALG > (1 + ǫ)d orALG <
(1 + ǫ)d

2
.

By the union bound, the probability of at least one of these two events happens is at most1/4. Thus
the probability the algorithm fails to get an estimation is bounded by1/4. ⊓⊔

8 - 8

Before proceeding with the proof of Lemma 2, we need some more important tools from prob-
ability theory.

Theorem 5 (Markov inequality). Given a random variableZ ≥ 0 andE[X] = µ. Then

Prob[Z > b · µ] ≤ 1/b

for everyb ≥ 1. �

Theorem 6 (Chernoff’s bound).LetZ ∈ {0, 1} be a random variable such thatE[Z] = µ. Let
Z1, . . . , ZT be independent “trials” ofZ. Then

Prob

[

T
∑

i=1

Zi ≤ (1− δ)µT

]

≤ e−δ2Tµ/4.

�

Proof (Part (1) of Lemma 2).Define the random variableXi to be the degree of vertexvi that is
chosen. Thus, we haveE[Xi] = d. We also observe that

E[dS] = E

1

|S|

∑

i:vi∈S
Xi

=
1

|S|
∑

i:vi∈S
E[Xi] (by linearity of expectation)

= d

Thus, we can apply Markov inequality to get

Prob
[

dS > (1 + ǫ)d
]

≤ 1

1 + ǫ
< 1− ǫ

2
,

for sufficiently smallǫ. ⊓⊔

References

1. Gruia Calinescu, Chandra Chekuri, Martin Pal and Jan Vondrak. Maximizing a submodular set function subject to
a matroid constraint. To appear in SIAM Journal on Computing, special issue for STOC 2008.

2. Oded Goldreich. Pseudorandom generator: a primer. University Lecture Series, vol. 55, AMS, 2010. Also available
at: http://www.wisdom.weizmann.ac.il/ oded/prg-primer.html

3. V. Kabanets. Derandomization: a brief overview. BEATCS, Number76, pages 88-103, 2002. Also available at:
http://www.cs.sfu.ca/ kabanets/Research/beatcs.html

4. G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set func-
tions. Mathematical Programming (14): 265-294, 1978.

8 - 9

http://www.wisdom.weizmann.ac.il/~oded/prg-primer.html
http://www.cs.sfu.ca/~kabanets/Research/beatcs.html

