CSC2420: Algorithm Design, Analysis and Theory Nov 3, 2010

Lecture Notes 8: Sublinear Algorithms

Professor: Allan Borodin Scribe: Dai Tri Man &

Before we start with sublinear algorithms, we will finish the proof that wemnised in the
previous lecture.

1 Proof of (k 4+ 1)-approximation for maximizing a submodular set function on
k-independence set system

Theorem 1. The natural greedy algorithm achiev@s+ 1)-approximation for the problem of max-
imizing a submodular set functiof{.S) subject toS being independent in &-independence set
system k-matroid). ¢

This result was originally attributed to Nemhauser, Wolsey, and Fisheb{4]they only claimed
this result without a proof. Jenkyns was the first to give a full proghdf result. We will discuss a
simplified proof due to Calinescu et al [1].

Proof. If we have(a+1)-approximation for incremental oracle then approximation boundis1.
Let 5 < 1andg = 1/«a. Then we want

f(Greedy) > Lf(OPT).

k+ 83
Assume the sequence of sets produced as each iteration of the gremuth@igs
S1,S89, ..., S,
whereS; = S;_1 U {e;} andS; = Greedy. We let
8i := pe; (Si—1) = f(Si) — f(Si-1)
denote the improvement in the solution value wheis added intaS; ;.

The goal for us now is to construct a partition@P7T = O; U Oy U ... U O; so that we can
charge profit inD; to ;. For this purpose, we need the following import@farging Lemma

Lemma 1l (Charging Lemma).We can construct a partion @@P7 = O; U Oy U ... U O, such
that
p

> = fo.
0i 2 3 fo,(5t)
for everyl <i <t. ¢

Sketch of proof (of Charging Lemmahen we can construct the partition@fusing the following
algorithm.

Algorithm:
T, <0
for i =tto 2do
B; < {e € T;| S;—1 U{e} isindependerit

if |B;| < k then
Oi — Bi
else
O; is anyk-subset ofB;.
end if
Tio1 =T\ B;
end for
O,=1T

Clearly,|0;| < k for i > 2. Thus it only remains to shoy®,| < k. For this purpose, they showed
by induction oni = ¢, ..., 1 that|T;| < - k. The proof needs the-independence property even in
the base case. For a more detailed proof of this lemma, the reader isdetetfepage 28]. O

Using the Charging Lemma, we can complete the proof of the theorem as follows

t

f(Greedy) = f(St) = Z&‘

=1

6 t
> (Z foi<st>)
i=1
> %fOPT(St) (by submodularity)
> %[f(OPT) — f(Greedy)] (by submodularity)

2 An overview of computational complexity

The content of this “bonus” section is adapted from a distinguished Fiettisréegiven by Avi
Wigderson in Sept 14th, 2010. Since we use randomness extensively agsigning sublinear
algorithms, it would be useful to review the role of randomness in computationglexity theory.
We also review briefly th@ vs. NP question.

2.1 Hard vs. easy problems

Consider the problem of multiplying two integers. This is clearly an easy probiece the simple
grade school multiplication algorithm can return the product of twostvebgit numbers inO(n?)
steps. Thus a problem é&asyif it can be solved by a polynomial time algorithm, i.e., algorithm that

8-2

runs in polynomial steps with respect to the size of the input. The class afobllgmms that can be
solved using a polynomial time algorithm is denotedrby

Next consider the ACTORING problem, where we want to split an integer into two smaller
non-trivial divisors, which when multiplied together equal the original iate@he best known
algorithm for factoring take® (exp(1/n)) steps on am digit input. It is open whether factoring has
a polynomial time algorithm or not. So we don't know if factoring is a hard fgwb However, it
is widely believe that factoring is hard since the theory of public key crypigiyy depends on the
hardness of factoring. We call a problédrard if there is no polynomial time algorithm solving it.

2.2 TheP vs.NP question

Consider the Mp COLORING problem, where we take input as a planar midpwith n countries.
We observe the following questions:

— 2-COLORING: Is M 2-colorable?
— 3-COLORING: Is M 3-colorable?
— 4-COLORING: Is M 4-colorable?

The 2-GLORING problem is clearly easy since we answer using a simple greedy algorithm.
The 4-GOLORING problem is extremely easy since the answer is always yes for every i
by thefour color theoremHowever, it remains unknown if the 36LORING problem is easy or
not, but we know the following theorem:

Theorem 2 (Cook-Levin '71, Karp '72). 3-COLORING is NP-complete. s

HereNP stands fomondeterministic polynomial timéntuitively, NP is the class of problems
whose solutions can be verified easily. For example, ford8-@RING, once given a coloring of the
map M, we can easily check in polynomial time if that coloring is valid by checking if tmny
adjacent countries have different color.

A problem inNP is calledNP-complete if and only if we can reduce any ot problems
to it by a polynomial time transformation of the inputs. In fact, many problems ircedhses and
engineering ar@&P-complete.

Note that we know ECTORING is in NP since we can easily check if the product of two integers
is equal to another integer. But it remains open whether or ROTERING is NP-complete.

The most fundamental question, i.e., thes. NP question, in computational complexity can be
stated as following: is the 3-@.ORING problem (or any otheNP-complete problem) easy? Most
of complexity theorists believe that &lP-complete problems are hard, i.e., they believe that

Conjecture 1.P # NP. ¢

2.3 The power of randomness in saving time

The main idea is to introduce randomness into the polynomial time algorithm, andiyvequoire
good probabilistic algorithm to succeed with high probability, e.g., with 99.998balrility. But
one might ask why we tolerate errors? The reasons are:

— We tolerate errors in life.

— We can make the probability of errors exponentially small by repetition.
— To compensate, we can achieve much more...

We will next see two famous problems, for which we havebabilistic polynomial timelgo-
rithms, but no deterministic polynomial time algorithms are known.

PRIMES. Consider the following problem asked by Gauss: givere [27,2""!], is 2 prime?
Two simple and fast probabilistic algorithms were invented in 1975 by Sol8tassen and Ra-
bin. In fact, Solovay-Strassen and Rabin are the first to introduceonamelss into algorithms. A
later breakthrough is the discovery of polynomial time deterministic algorithmA&i&algorithm,
for primality testing in 2002 due to Agrawal, Kayal and Saxena, but the Alg8rithm is not as
efficient, and thus rarely used in practice.

However, no deterministic polynomial time algorithm is known for the following elpselated
problem: given n, find a prime if2”, 2"*1]. But we can solve the problem using the following
simple probabilistic algorithm: pick at random a sequence of random numbets, . .., z100,
from [27, 27+1], and for eachr; apply primality test. By theprime number theorepwe can easily
show that thaProb[3i, z; is a prime is very high.

POLYNOMIAL IDENTITIES. For example, we want to check if

r 2 n—17
lzy 27 ... = .
2 n—
1 29 1‘% R X
n—
det | |1 23 23... 23 — H (xj —) =07
N : 1<i<j<n
[1a, 22 ... 2t

We know from a theorem by Vandermonde, the answer is yes. But agbainge don’t know
this theorem, how do we check if this identity is true?

In general, given (implicitly, e.g. as a formula) a polynomi@t,, . . ., z,,) of degreel, we want
to known ifp(z1, ..., x,) = 0. The following probabilistic algorithm by Schwartz-Zippel from '80
solves the problem: pick; independently at random froi) 2, , 100d. Then

p=0= Prob[p(ry,...,r,) =0]=1
p # 0= Prob[p(r1,...,r,) # 0] > .99

Again no polynomial time deterministic algorithm is known for this problem.

This leads us to the second most fundamental question of computational giiynée want
to know whether or not randomness helps in saving time. In other worglshare problems with
probabilistic polynomial time algorithm but no deterministic one? One might congetitat:

Conjecture 2.There exists a problem that can be solved with a probabilistic polynomial time algo
rithm but not with a deterministic polynomial time one. FormaB@P £ P. ¢

Surprisingly, recent progress in computational complexity suggests tm¢€ure 2 might be
false! There are, essentially, two general arguments to support thi§ theli@PP = P. The first

8-4

argument is empirical: a large number of randomized algorithms use existidgmasources (with
no guarantees as to their properties) and the results do not seem tcelsehdimpacted. It is also
the case that many randomized algorithms have been dererandomized waitbess to any source
of randomness. The second argument (and perhaps more compellimgest) is that, under some
plausible (what many believe to be more plausible tBRR = P) complexity assumption (namely,
that there exists a problem, saniS in exponential time that requires exponential size circuits),
we can build devices, callegseudorandom generatgrashich can be used to derandomize any
probabilistic polynomial time algorithm to get a deterministic polynomial time one. To leere
about the area aferandomizationthe reader is referred to the surveys[3,2].

3 What are sublinear algorithms?

By sublinear algorithms, we meaublinear time algorithm&nd sublinear space algorithmgt
seems that what can be achieved must be simple since we can’t see thanghitlie sublinear
time/space. To solve more nontrivial problems, we allow approximation andsiefurandom-
ness in the computation. Note that, in contrast to the complexity theory worldeara 0 need
randomness in the design of sublinear time/space algorithms.

Sublinear space algorithms. For sublinear space algorithms, we assume that the Turing machine
has a read-only tape, a sublinear working space, and a write-onlytaaf@i The “gold standard”
is O(logn) working space.

Similar to time complexity, we can also define complexity classes in term of workaesgVe
let L denote the class of problems that can be solved by a deterministic maching€)(kign)
space. The cladsalso has complete problem with respect to log-space reducibility. An integestin
complete problem fok is the following UNDIRECTED REACHABILITY problem: given aindirected
graph and two vertices on the graplndt, decide wether or natis reachable from?

We letNL denote the class of problems that can be solvedrimnadeterministienachines using
O(log n) space. The clag$L also has complete problem with respect to log-space reducibility. The
standard complete problem fdi. is the DRECTED REACHABILITY problem: given airected
graph and two vertices on the graplandt, decide wether or natis reachable frons?

The only connection we know betweérandNL is the following theorem due to Savitch. Let
DSPACE(log? n) denote the class of problems that can be solved by deterministic machines using
O(log? n) space. Then Savitch's theorem can be stated as following.

Theorem 3 (Savitch).NL € DSPACE(log? n). ¢

However, it remains open whethHL # L. The clasd\L and its complemerdoNL exhibit a very
surprising relationship.

Theorem 4 (Immerman-Szelepaosnyi). NL = coNL. ¢
This theorem is counter-intuitive since it seems that we have to check albpmpaths of the non-
deterministic computation to decideaNL problem.

One important subclass of sublinear algorithmssiream algorithmsFor stream algorithms,
we look at input as a stream of items, and we can’t backtrack on inputyadn use only a “small”
working space, where “gold standard'glog n) space. Again to do more useful things with stream

8-5

algorithms, we usually allow randomness in our computation. The main goal isdyp \wthen we
can and cannot get answers with stream algorithms, i.e., we want to poeiteve (upper-bound)
and negative (lower-bound) results about this model.

Sublinear time algorithms. An algorithm issublinear timeif its running time iso(n). As such
an algorithm must provide an answer without reading the entire input. Thahieve non-trivial
tasks, we also allow randomness in sublinear time algorithms.

4 Sublinear time algorithm

For the rest of this lecture, we will focus only on sublinear time algorithms. Wediscuss some
interesting problems that can be solved (or approximated) using sublinealtjoréhms

4.1 Diameter of a metric space

Problem: Given pointszy, ..., z, in an arbitrarily metric spacé/ and distanced(z;, z;) satis-
fying the following condition:

Goal: computeliameter(M) = max, yeu d(z,y). 3

Note that since we hav®(n?) distances, the input “genuinely” h&3(n?) items. We claim
that the following algorithmO(n)-time algorithm guarantees2aapproximation for this problem:
chooser € M arbitrarily (i.e.,z = x1), and then letl’ = max,, d(z, y). We next prove this claim.

Proof. We recall thatdiameter(M) = d(u,v) for some points: andv. And the property of dis-
tances, we have

d(u,v) < d(u,z) + d(z,v).

Thus, we have’ < diameter(M) < 2d’ as desired. O

4.2 Searching in a sorted linked-list

Problem: Assume that elements are stored in a linked-list, where each list element has access to
the next element of the list, and the linked-list is sorted (i.e; fibllows y in the linked-list, then

y < x). We also assume that alllinked-list elements are stored in an artdybut the array is not
sorted and we do not impose any order for the array elements).

Goal: givenz, determine ifc € A, and if so output such thatr = A(37). s

8-6

Algorithm: If we know where list starts, says 4fi), then we search (i), ..., A(i + 2/n). If =

is found, then report. Else, choogé: randomj's and searc(j1), ..., A(j, 5) to get ani such
that
A(l)= max A7).
) tefjn, i m})
A(t)<z

Then, starting from the linked list node storedAt), search forward on the linked list f@n/n
steps. If found, then report success, else report failure. ¢

To show that the algorithm is a correct randomized algorithm with one-sidedfer our prob-
lem, we want to show the following proposition.

Proposition 1. For all x, we have

1. ifz € A, then with probability at leass/7 the algorithm will find: such thatA (i) = x.
2. ifx & A, then the algorithm will always report failure.

Proof. The condition (2) is clear since if is not on the list, then the algorithm will never find any
i such thatA (i) = x, and the algorithm will always fail to find. It remains to show condition (1).
Assumer € A. Since the algorithm basically samples intervals,

Probl[z is not in any of the randomly chosen interjais (1 — t/n)v™,

wheret is the size of each chosen interval and for our algoriths 2./n. Before proceeding, we
need the following facts that we use very often when analyzing randoralgedthms.

Fact 1.

Thus, we have

vn Vvn o
Prob[z is not in any of the randomly chosen interJais (1 — M) = <1 — 2) ’
n vn
< (L) <!
e 7
Thus the probability that the algorithm will findis at least /7. O

4.3 Estimating the average degree of a graph

Problem: Given a graptG = (V, E) and|V| = n, we want to estimate the average degieé all
vertices ofG. ¢

We want to construct an algorithm that approximates the average degheapgroximation
ratio less tharf2 + ¢) with probability at leas8/4 in time O(y/n/¢).

8-7

Let d; denote the degree of vertex and we know thatl; € {1,...,n — 1}. We assume that
we have an oracle accessdg We will consider a weaker result when the algorithm will take
O(y/n/(e*9)). We claim the following algorithm will achieve the approximation ratio less than
(2 + ¢) with probability at leas8 /4.

Algorithm:

for i =1to8/edo
Pick a setS; of vertices at random such tha;| = s = /n/(¢*9)
Compute average degrég, of vertices inS;

end for

Outputmin; dg;

To prove the correctness of this algorithm, we need the following lemma.

Lemma 2. Let.S be anysS;, then

1. Prob[ds > (1 +€)d] <12
€

2. Prob |ds > (159] < =

From this lemma, we can show the correctness of our algorithit{) as follows.
Proof. From Part (1) of the lemma, it follows that
Prob[ALG > (1+ €)d] = Prob[dg, > (1 + €)d, for all i
— Prob[ds > (1+ ¢)d]”*
< (1 — ;)8/6 <e? (by Fact 1)
<1/8
Also, we have

(I+e)d (1+e€)d

Prob |ALG <

] = Prob |:d5'1. < , for somez’]

<" Prob [dsi L J;ﬁ)d] (by union bound)

8 € 1
< . ==
e 64 8
We note that if the algorithm fails to get an estimation, then
(1+e)d
5

ALG > (1+e€)dor ALG <

By the union bound, the probability of at least one of these two event®happat most /4. Thus
the probability the algorithm fails to get an estimation is bounded fy O

8-8

Before proceeding with the proof of Lemina 2, we need some more importdsitftom prob-

ability theory.

Theorem 5 (Markov inequality). Given a random variableZ > 0 and E[X] = u. Then

Prob[Z >b-u] <1/b

for everyb > 1. .

Theorem 6 (Chernoff’s bound).Let Z € {0, 1} be a random variable such th&[Z] = p. Let

Zy,.

.., Z7 be independent “trials” ofZ. Then

T

Y Zi<(1—6)uT

=1

Prob < e 0°Tu/4,

¢

Proof (Part (1) of Lemmal2)Define the random variabl&; to be the degree of vertex that is
chosen. Thus, we havg[X;| = d. We also observe that

Elds] = E =S Z X

’S’ PV, €S
= % Z E[X;] (by linearity of expectation)
‘ ’ 10, €S
=d

Thus, we can apply Markov inequality to get

1
Prob|ds > (1 +€)d| < <1l-—=
[ds > A +ad) < 7 2’
for sufficiently smalle. O
References
1. Gruia Calinescu, Chandra Chekuri, Martin Pal and Jan VondrakirfMizing a submodular set function subject to

a matroid constraint. To appear in SIAM Journal on Computing, spesiaifor STOC 2008.

Oded Goldreich. Pseudorandom generator: a primer. Universitute Series, vol. 55, AMS, 2010. Also available
at:/http://www.wisdom.weizmann.ac.il/ oded/prg-primer.html

V. Kabanets. Derandomization: a brief overview. BEATCS, Nunitfirpages 88-103, 2002. Also available at:
http://www.cs.sfu.ca/ kabanets/Research/beatcs.html

G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the afpagions for maximizing submodular set func-
tions. Mathematical Programming (14): 265-294, 1978.

http://www.wisdom.weizmann.ac.il/~oded/prg-primer.html
http://www.cs.sfu.ca/~kabanets/Research/beatcs.html

